MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  pm2.68 Structured version   Unicode version

Theorem pm2.68 410
Description: Theorem *2.68 of [WhiteheadRussell] p. 108. (Contributed by NM, 3-Jan-2005.)
Assertion
Ref Expression
pm2.68  |-  ( ( ( ph  ->  ps )  ->  ps )  -> 
( ph  \/  ps ) )

Proof of Theorem pm2.68
StepHypRef Expression
1 jarl 163 . 2  |-  ( ( ( ph  ->  ps )  ->  ps )  -> 
( -.  ph  ->  ps ) )
21orrd 378 1  |-  ( ( ( ph  ->  ps )  ->  ps )  -> 
( ph  \/  ps ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    \/ wo 368
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem depends on definitions:  df-bi 185  df-or 370
This theorem is referenced by:  dfor2  411
  Copyright terms: Public domain W3C validator