MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  pm2.67-2 Structured version   Unicode version

Theorem pm2.67-2 403
Description: Slight generalization of Theorem *2.67 of [WhiteheadRussell] p. 107. (Contributed by NM, 3-Jan-2005.)
Assertion
Ref Expression
pm2.67-2  |-  ( ( ( ph  \/  ch )  ->  ps )  -> 
( ph  ->  ps )
)

Proof of Theorem pm2.67-2
StepHypRef Expression
1 orc 386 . 2  |-  ( ph  ->  ( ph  \/  ch ) )
21imim1i 60 1  |-  ( ( ( ph  \/  ch )  ->  ps )  -> 
( ph  ->  ps )
)
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    \/ wo 369
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem depends on definitions:  df-bi 188  df-or 371
This theorem is referenced by:  pm2.67  404  jaob  790
  Copyright terms: Public domain W3C validator