MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  pm2.64 Structured version   Unicode version

Theorem pm2.64 796
Description: Theorem *2.64 of [WhiteheadRussell] p. 107. (Contributed by NM, 3-Jan-2005.)
Assertion
Ref Expression
pm2.64  |-  ( (
ph  \/  ps )  ->  ( ( ph  \/  -.  ps )  ->  ph )
)

Proof of Theorem pm2.64
StepHypRef Expression
1 ax-1 6 . . 3  |-  ( ph  ->  ( ( ph  \/  ps )  ->  ph )
)
2 orel2 384 . . 3  |-  ( -. 
ps  ->  ( ( ph  \/  ps )  ->  ph )
)
31, 2jaoi 380 . 2  |-  ( (
ph  \/  -.  ps )  ->  ( ( ph  \/  ps )  ->  ph )
)
43com12 32 1  |-  ( (
ph  \/  ps )  ->  ( ( ph  \/  -.  ps )  ->  ph )
)
Colors of variables: wff setvar class
Syntax hints:   -. wn 3    -> wi 4    \/ wo 369
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem depends on definitions:  df-bi 188  df-or 371
This theorem is referenced by:  hirstL-ax3  38293
  Copyright terms: Public domain W3C validator