MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  pm2.621 Structured version   Unicode version

Theorem pm2.621 409
Description: Theorem *2.621 of [WhiteheadRussell] p. 107. (Contributed by NM, 3-Jan-2005.)
Assertion
Ref Expression
pm2.621  |-  ( (
ph  ->  ps )  -> 
( ( ph  \/  ps )  ->  ps )
)

Proof of Theorem pm2.621
StepHypRef Expression
1 id 23 . 2  |-  ( (
ph  ->  ps )  -> 
( ph  ->  ps )
)
2 idd 25 . 2  |-  ( (
ph  ->  ps )  -> 
( ps  ->  ps ) )
31, 2jaod 381 1  |-  ( (
ph  ->  ps )  -> 
( ( ph  \/  ps )  ->  ps )
)
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    \/ wo 369
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem depends on definitions:  df-bi 188  df-or 371
This theorem is referenced by:  pm2.62  410  pm2.73  853  pm4.72  884  undif4  3855  elnn1uz2  11235
  Copyright terms: Public domain W3C validator