MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  pm2.46 Structured version   Unicode version

Theorem pm2.46 398
Description: Theorem *2.46 of [WhiteheadRussell] p. 106. (Contributed by NM, 3-Jan-2005.)
Assertion
Ref Expression
pm2.46  |-  ( -.  ( ph  \/  ps )  ->  -.  ps )

Proof of Theorem pm2.46
StepHypRef Expression
1 olc 384 . 2  |-  ( ps 
->  ( ph  \/  ps ) )
21con3i 135 1  |-  ( -.  ( ph  \/  ps )  ->  -.  ps )
Colors of variables: wff setvar class
Syntax hints:   -. wn 3    -> wi 4    \/ wo 368
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem depends on definitions:  df-bi 185  df-or 370
This theorem is referenced by:  pm2.48  400  pm2.49  401  rb-ax3  1562  eueq3  3234  ltnsym  9577  ncolne1  23163  ncolne2  23164  tglineneq  23181
  Copyright terms: Public domain W3C validator