MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  pm2.32 Structured version   Unicode version

Theorem pm2.32 528
Description: Theorem *2.32 of [WhiteheadRussell] p. 105. (Contributed by NM, 3-Jan-2005.)
Assertion
Ref Expression
pm2.32  |-  ( ( ( ph  \/  ps )  \/  ch )  ->  ( ph  \/  ( ps  \/  ch ) ) )

Proof of Theorem pm2.32
StepHypRef Expression
1 orass 526 . 2  |-  ( ( ( ph  \/  ps )  \/  ch )  <->  (
ph  \/  ( ps  \/  ch ) ) )
21biimpi 197 1  |-  ( ( ( ph  \/  ps )  \/  ch )  ->  ( ph  \/  ( ps  \/  ch ) ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    \/ wo 369
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem depends on definitions:  df-bi 188  df-or 371
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator