MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  pm2.25 Structured version   Unicode version

Theorem pm2.25 402
Description: Theorem *2.25 of [WhiteheadRussell] p. 104. (Contributed by NM, 3-Jan-2005.)
Assertion
Ref Expression
pm2.25  |-  ( ph  \/  ( ( ph  \/  ps )  ->  ps )
)

Proof of Theorem pm2.25
StepHypRef Expression
1 orel1 380 . 2  |-  ( -. 
ph  ->  ( ( ph  \/  ps )  ->  ps ) )
21orri 374 1  |-  ( ph  \/  ( ( ph  \/  ps )  ->  ps )
)
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    \/ wo 366
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem depends on definitions:  df-bi 185  df-or 368
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator