Users' Mathboxes Mathbox for Andrew Salmon < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  pm11.7 Structured version   Visualization version   Unicode version

Theorem pm11.7 36791
Description: Theorem *11.7 in [WhiteheadRussell] p. 166. (Contributed by Andrew Salmon, 24-May-2011.)
Assertion
Ref Expression
pm11.7  |-  ( E. x E. y (
ph  \/  ph )  <->  E. x E. y ph )

Proof of Theorem pm11.7
StepHypRef Expression
1 oridm 521 . 2  |-  ( (
ph  \/  ph )  <->  ph )
212exbii 1730 1  |-  ( E. x E. y (
ph  \/  ph )  <->  E. x E. y ph )
Colors of variables: wff setvar class
Syntax hints:    <-> wb 189    \/ wo 374   E.wex 1674
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1680  ax-4 1693
This theorem depends on definitions:  df-bi 190  df-or 376  df-ex 1675
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator