Users' Mathboxes Mathbox for Frédéric Liné < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  pm11.53g Unicode version

Theorem pm11.53g 24129
Description: Theorem *11.53 in [WhiteheadRussell] p. 164. (Contributed by FL, 27-Oct-2013.)
Hypotheses
Ref Expression
pm11.53g.1  |-  F/ y
ph
pm11.53g.2  |-  F/ x ps
Assertion
Ref Expression
pm11.53g  |-  ( A. x A. y ( ph  ->  ps )  <->  ( E. x ph  ->  A. y ps ) )

Proof of Theorem pm11.53g
StepHypRef Expression
1 pm11.53g.1 . . . 4  |-  F/ y
ph
2119.21 1771 . . 3  |-  ( A. y ( ph  ->  ps )  <->  ( ph  ->  A. y ps ) )
32albii 1554 . 2  |-  ( A. x A. y ( ph  ->  ps )  <->  A. x
( ph  ->  A. y ps ) )
4 pm11.53g.2 . . . 4  |-  F/ x ps
54nfal 1732 . . 3  |-  F/ x A. y ps
6519.23 1777 . 2  |-  ( A. x ( ph  ->  A. y ps )  <->  ( E. x ph  ->  A. y ps ) )
73, 6bitri 242 1  |-  ( A. x A. y ( ph  ->  ps )  <->  ( E. x ph  ->  A. y ps ) )
Colors of variables: wff set class
Syntax hints:    -> wi 6    <-> wb 178   A.wal 1532   E.wex 1537   F/wnf 1539
This theorem was proved from axioms:  ax-1 7  ax-2 8  ax-3 9  ax-mp 10  ax-5 1533  ax-6 1534  ax-7 1535  ax-gen 1536  ax-4 1692
This theorem depends on definitions:  df-bi 179  df-an 362  df-ex 1538  df-nf 1540
  Copyright terms: Public domain W3C validator