Users' Mathboxes Mathbox for Andrew Salmon < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  pm11.52 Structured version   Unicode version

Theorem pm11.52 30886
Description: Theorem *11.52 in [WhiteheadRussell] p. 164. (Contributed by Andrew Salmon, 24-May-2011.)
Assertion
Ref Expression
pm11.52  |-  ( E. x E. y (
ph  /\  ps )  <->  -. 
A. x A. y
( ph  ->  -.  ps ) )

Proof of Theorem pm11.52
StepHypRef Expression
1 df-an 371 . . 3  |-  ( (
ph  /\  ps )  <->  -.  ( ph  ->  -.  ps ) )
212exbii 1645 . 2  |-  ( E. x E. y (
ph  /\  ps )  <->  E. x E. y  -.  ( ph  ->  -.  ps ) )
3 2nalexn 1629 . 2  |-  ( -. 
A. x A. y
( ph  ->  -.  ps ) 
<->  E. x E. y  -.  ( ph  ->  -.  ps ) )
42, 3bitr4i 252 1  |-  ( E. x E. y (
ph  /\  ps )  <->  -. 
A. x A. y
( ph  ->  -.  ps ) )
Colors of variables: wff setvar class
Syntax hints:   -. wn 3    -> wi 4    <-> wb 184    /\ wa 369   A.wal 1377   E.wex 1596
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1601  ax-4 1612
This theorem depends on definitions:  df-bi 185  df-an 371  df-ex 1597
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator