Users' Mathboxes Mathbox for Andrew Salmon < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  pm10.541 Structured version   Unicode version

Theorem pm10.541 36686
Description: Theorem *10.541 in [WhiteheadRussell] p. 155. (Contributed by Andrew Salmon, 24-May-2011.)
Assertion
Ref Expression
pm10.541  |-  ( A. x ( ph  ->  ( ch  \/  ps )
)  <->  ( ch  \/  A. x ( ph  ->  ps ) ) )
Distinct variable group:    ch, x
Allowed substitution hints:    ph( x)    ps( x)

Proof of Theorem pm10.541
StepHypRef Expression
1 bi2.04 362 . . . 4  |-  ( (
ph  ->  ( -.  ch  ->  ps ) )  <->  ( -.  ch  ->  ( ph  ->  ps ) ) )
21albii 1685 . . 3  |-  ( A. x ( ph  ->  ( -.  ch  ->  ps ) )  <->  A. x
( -.  ch  ->  (
ph  ->  ps ) ) )
3 19.21v 1779 . . 3  |-  ( A. x ( -.  ch  ->  ( ph  ->  ps ) )  <->  ( -.  ch  ->  A. x ( ph  ->  ps ) ) )
42, 3bitri 252 . 2  |-  ( A. x ( ph  ->  ( -.  ch  ->  ps ) )  <->  ( -.  ch  ->  A. x ( ph  ->  ps ) ) )
5 df-or 371 . . . 4  |-  ( ( ch  \/  ps )  <->  ( -.  ch  ->  ps ) )
65imbi2i 313 . . 3  |-  ( (
ph  ->  ( ch  \/  ps ) )  <->  ( ph  ->  ( -.  ch  ->  ps ) ) )
76albii 1685 . 2  |-  ( A. x ( ph  ->  ( ch  \/  ps )
)  <->  A. x ( ph  ->  ( -.  ch  ->  ps ) ) )
8 df-or 371 . 2  |-  ( ( ch  \/  A. x
( ph  ->  ps )
)  <->  ( -.  ch  ->  A. x ( ph  ->  ps ) ) )
94, 7, 83bitr4i 280 1  |-  ( A. x ( ph  ->  ( ch  \/  ps )
)  <->  ( ch  \/  A. x ( ph  ->  ps ) ) )
Colors of variables: wff setvar class
Syntax hints:   -. wn 3    -> wi 4    <-> wb 187    \/ wo 369   A.wal 1435
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1663  ax-4 1676  ax-5 1752
This theorem depends on definitions:  df-bi 188  df-or 371  df-ex 1658
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator