Users' Mathboxes Mathbox for Andrew Salmon < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  pm10.42 Structured version   Unicode version

Theorem pm10.42 36097
Description: Theorem *10.42 in [WhiteheadRussell] p. 155. (Contributed by Andrew Salmon, 17-Jun-2011.)
Assertion
Ref Expression
pm10.42  |-  ( ( E. x ph  \/  E. x ps )  <->  E. x
( ph  \/  ps ) )

Proof of Theorem pm10.42
StepHypRef Expression
1 19.43 1714 . 2  |-  ( E. x ( ph  \/  ps )  <->  ( E. x ph  \/  E. x ps ) )
21bicomi 202 1  |-  ( ( E. x ph  \/  E. x ps )  <->  E. x
( ph  \/  ps ) )
Colors of variables: wff setvar class
Syntax hints:    <-> wb 184    \/ wo 366   E.wex 1633
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1639  ax-4 1652
This theorem depends on definitions:  df-bi 185  df-or 368  df-ex 1634
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator