MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  pm1.2 Structured version   Unicode version

Theorem pm1.2 511
Description: Axiom *1.2 of [WhiteheadRussell] p. 96, which they call "Taut". (Contributed by NM, 3-Jan-2005.)
Assertion
Ref Expression
pm1.2  |-  ( (
ph  \/  ph )  ->  ph )

Proof of Theorem pm1.2
StepHypRef Expression
1 id 22 . 2  |-  ( ph  ->  ph )
21, 1jaoi 377 1  |-  ( (
ph  \/  ph )  ->  ph )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    \/ wo 366
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem depends on definitions:  df-bi 185  df-or 368
This theorem is referenced by:  oridm  512  rb-ax4  1592  sotrieq  4816  swoer  7331  paddidm  35981
  Copyright terms: Public domain W3C validator