MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  plyremlem Structured version   Unicode version

Theorem plyremlem 22676
Description: Closure of a linear factor. (Contributed by Mario Carneiro, 26-Jul-2014.)
Hypothesis
Ref Expression
plyrem.1  |-  G  =  ( Xp  oF  -  ( CC 
X.  { A }
) )
Assertion
Ref Expression
plyremlem  |-  ( A  e.  CC  ->  ( G  e.  (Poly `  CC )  /\  (deg `  G
)  =  1  /\  ( `' G " { 0 } )  =  { A }
) )

Proof of Theorem plyremlem
Dummy variable  z is distinct from all other variables.
StepHypRef Expression
1 plyrem.1 . . 3  |-  G  =  ( Xp  oF  -  ( CC 
X.  { A }
) )
2 ssid 3508 . . . . 5  |-  CC  C_  CC
3 ax-1cn 9553 . . . . 5  |-  1  e.  CC
4 plyid 22583 . . . . 5  |-  ( ( CC  C_  CC  /\  1  e.  CC )  ->  Xp  e.  (Poly `  CC ) )
52, 3, 4mp2an 672 . . . 4  |-  Xp  e.  (Poly `  CC )
6 plyconst 22580 . . . . 5  |-  ( ( CC  C_  CC  /\  A  e.  CC )  ->  ( CC  X.  { A }
)  e.  (Poly `  CC ) )
72, 6mpan 670 . . . 4  |-  ( A  e.  CC  ->  ( CC  X.  { A }
)  e.  (Poly `  CC ) )
8 plysubcl 22596 . . . 4  |-  ( ( Xp  e.  (Poly `  CC )  /\  ( CC  X.  { A }
)  e.  (Poly `  CC ) )  ->  (
Xp  oF  -  ( CC  X.  { A } ) )  e.  (Poly `  CC ) )
95, 7, 8sylancr 663 . . 3  |-  ( A  e.  CC  ->  (
Xp  oF  -  ( CC  X.  { A } ) )  e.  (Poly `  CC ) )
101, 9syl5eqel 2535 . 2  |-  ( A  e.  CC  ->  G  e.  (Poly `  CC )
)
11 negcl 9825 . . . . . . . . 9  |-  ( A  e.  CC  ->  -u A  e.  CC )
12 addcom 9769 . . . . . . . . 9  |-  ( (
-u A  e.  CC  /\  z  e.  CC )  ->  ( -u A  +  z )  =  ( z  +  -u A ) )
1311, 12sylan 471 . . . . . . . 8  |-  ( ( A  e.  CC  /\  z  e.  CC )  ->  ( -u A  +  z )  =  ( z  +  -u A
) )
14 negsub 9872 . . . . . . . . 9  |-  ( ( z  e.  CC  /\  A  e.  CC )  ->  ( z  +  -u A )  =  ( z  -  A ) )
1514ancoms 453 . . . . . . . 8  |-  ( ( A  e.  CC  /\  z  e.  CC )  ->  ( z  +  -u A )  =  ( z  -  A ) )
1613, 15eqtrd 2484 . . . . . . 7  |-  ( ( A  e.  CC  /\  z  e.  CC )  ->  ( -u A  +  z )  =  ( z  -  A ) )
1716mpteq2dva 4523 . . . . . 6  |-  ( A  e.  CC  ->  (
z  e.  CC  |->  (
-u A  +  z ) )  =  ( z  e.  CC  |->  ( z  -  A ) ) )
18 cnex 9576 . . . . . . . 8  |-  CC  e.  _V
1918a1i 11 . . . . . . 7  |-  ( A  e.  CC  ->  CC  e.  _V )
20 negex 9823 . . . . . . . 8  |-  -u A  e.  _V
2120a1i 11 . . . . . . 7  |-  ( ( A  e.  CC  /\  z  e.  CC )  -> 
-u A  e.  _V )
22 simpr 461 . . . . . . 7  |-  ( ( A  e.  CC  /\  z  e.  CC )  ->  z  e.  CC )
23 fconstmpt 5033 . . . . . . . 8  |-  ( CC 
X.  { -u A } )  =  ( z  e.  CC  |->  -u A )
2423a1i 11 . . . . . . 7  |-  ( A  e.  CC  ->  ( CC  X.  { -u A } )  =  ( z  e.  CC  |->  -u A ) )
25 df-idp 22563 . . . . . . . . 9  |-  Xp  =  (  _I  |`  CC )
26 mptresid 5318 . . . . . . . . 9  |-  ( z  e.  CC  |->  z )  =  (  _I  |`  CC )
2725, 26eqtr4i 2475 . . . . . . . 8  |-  Xp  =  ( z  e.  CC  |->  z )
2827a1i 11 . . . . . . 7  |-  ( A  e.  CC  ->  Xp  =  ( z  e.  CC  |->  z ) )
2919, 21, 22, 24, 28offval2 6541 . . . . . 6  |-  ( A  e.  CC  ->  (
( CC  X.  { -u A } )  oF  +  Xp )  =  ( z  e.  CC  |->  ( -u A  +  z )
) )
30 simpl 457 . . . . . . 7  |-  ( ( A  e.  CC  /\  z  e.  CC )  ->  A  e.  CC )
31 fconstmpt 5033 . . . . . . . 8  |-  ( CC 
X.  { A }
)  =  ( z  e.  CC  |->  A )
3231a1i 11 . . . . . . 7  |-  ( A  e.  CC  ->  ( CC  X.  { A }
)  =  ( z  e.  CC  |->  A ) )
3319, 22, 30, 28, 32offval2 6541 . . . . . 6  |-  ( A  e.  CC  ->  (
Xp  oF  -  ( CC  X.  { A } ) )  =  ( z  e.  CC  |->  ( z  -  A ) ) )
3417, 29, 333eqtr4d 2494 . . . . 5  |-  ( A  e.  CC  ->  (
( CC  X.  { -u A } )  oF  +  Xp )  =  ( Xp  oF  -  ( CC  X.  { A } ) ) )
3534, 1syl6eqr 2502 . . . 4  |-  ( A  e.  CC  ->  (
( CC  X.  { -u A } )  oF  +  Xp )  =  G )
3635fveq2d 5860 . . 3  |-  ( A  e.  CC  ->  (deg `  ( ( CC  X.  { -u A } )  oF  +  Xp ) )  =  (deg `  G )
)
37 plyconst 22580 . . . . 5  |-  ( ( CC  C_  CC  /\  -u A  e.  CC )  ->  ( CC  X.  { -u A } )  e.  (Poly `  CC ) )
382, 11, 37sylancr 663 . . . 4  |-  ( A  e.  CC  ->  ( CC  X.  { -u A } )  e.  (Poly `  CC ) )
395a1i 11 . . . 4  |-  ( A  e.  CC  ->  Xp  e.  (Poly `  CC ) )
40 0dgr 22619 . . . . . 6  |-  ( -u A  e.  CC  ->  (deg
`  ( CC  X.  { -u A } ) )  =  0 )
4111, 40syl 16 . . . . 5  |-  ( A  e.  CC  ->  (deg `  ( CC  X.  { -u A } ) )  =  0 )
42 0lt1 10082 . . . . 5  |-  0  <  1
4341, 42syl6eqbr 4474 . . . 4  |-  ( A  e.  CC  ->  (deg `  ( CC  X.  { -u A } ) )  <  1 )
44 eqid 2443 . . . . 5  |-  (deg `  ( CC  X.  { -u A } ) )  =  (deg `  ( CC  X.  { -u A }
) )
45 dgrid 22637 . . . . . 6  |-  (deg `  Xp )  =  1
4645eqcomi 2456 . . . . 5  |-  1  =  (deg `  Xp
)
4744, 46dgradd2 22641 . . . 4  |-  ( ( ( CC  X.  { -u A } )  e.  (Poly `  CC )  /\  Xp  e.  (Poly `  CC )  /\  (deg `  ( CC  X.  { -u A } ) )  <  1 )  -> 
(deg `  ( ( CC  X.  { -u A } )  oF  +  Xp ) )  =  1 )
4838, 39, 43, 47syl3anc 1229 . . 3  |-  ( A  e.  CC  ->  (deg `  ( ( CC  X.  { -u A } )  oF  +  Xp ) )  =  1 )
4936, 48eqtr3d 2486 . 2  |-  ( A  e.  CC  ->  (deg `  G )  =  1 )
501, 33syl5eq 2496 . . . . . . . . . . 11  |-  ( A  e.  CC  ->  G  =  ( z  e.  CC  |->  ( z  -  A ) ) )
5150fveq1d 5858 . . . . . . . . . 10  |-  ( A  e.  CC  ->  ( G `  z )  =  ( ( z  e.  CC  |->  ( z  -  A ) ) `
 z ) )
5251adantr 465 . . . . . . . . 9  |-  ( ( A  e.  CC  /\  z  e.  CC )  ->  ( G `  z
)  =  ( ( z  e.  CC  |->  ( z  -  A ) ) `  z ) )
53 ovex 6309 . . . . . . . . . 10  |-  ( z  -  A )  e. 
_V
54 eqid 2443 . . . . . . . . . . 11  |-  ( z  e.  CC  |->  ( z  -  A ) )  =  ( z  e.  CC  |->  ( z  -  A ) )
5554fvmpt2 5948 . . . . . . . . . 10  |-  ( ( z  e.  CC  /\  ( z  -  A
)  e.  _V )  ->  ( ( z  e.  CC  |->  ( z  -  A ) ) `  z )  =  ( z  -  A ) )
5622, 53, 55sylancl 662 . . . . . . . . 9  |-  ( ( A  e.  CC  /\  z  e.  CC )  ->  ( ( z  e.  CC  |->  ( z  -  A ) ) `  z )  =  ( z  -  A ) )
5752, 56eqtrd 2484 . . . . . . . 8  |-  ( ( A  e.  CC  /\  z  e.  CC )  ->  ( G `  z
)  =  ( z  -  A ) )
5857eqeq1d 2445 . . . . . . 7  |-  ( ( A  e.  CC  /\  z  e.  CC )  ->  ( ( G `  z )  =  0  <-> 
( z  -  A
)  =  0 ) )
59 subeq0 9850 . . . . . . . 8  |-  ( ( z  e.  CC  /\  A  e.  CC )  ->  ( ( z  -  A )  =  0  <-> 
z  =  A ) )
6059ancoms 453 . . . . . . 7  |-  ( ( A  e.  CC  /\  z  e.  CC )  ->  ( ( z  -  A )  =  0  <-> 
z  =  A ) )
6158, 60bitrd 253 . . . . . 6  |-  ( ( A  e.  CC  /\  z  e.  CC )  ->  ( ( G `  z )  =  0  <-> 
z  =  A ) )
6261pm5.32da 641 . . . . 5  |-  ( A  e.  CC  ->  (
( z  e.  CC  /\  ( G `  z
)  =  0 )  <-> 
( z  e.  CC  /\  z  =  A ) ) )
63 plyf 22572 . . . . . 6  |-  ( G  e.  (Poly `  CC )  ->  G : CC --> CC )
64 ffn 5721 . . . . . 6  |-  ( G : CC --> CC  ->  G  Fn  CC )
65 fniniseg 5993 . . . . . 6  |-  ( G  Fn  CC  ->  (
z  e.  ( `' G " { 0 } )  <->  ( z  e.  CC  /\  ( G `
 z )  =  0 ) ) )
6610, 63, 64, 654syl 21 . . . . 5  |-  ( A  e.  CC  ->  (
z  e.  ( `' G " { 0 } )  <->  ( z  e.  CC  /\  ( G `
 z )  =  0 ) ) )
67 eleq1a 2526 . . . . . 6  |-  ( A  e.  CC  ->  (
z  =  A  -> 
z  e.  CC ) )
6867pm4.71rd 635 . . . . 5  |-  ( A  e.  CC  ->  (
z  =  A  <->  ( z  e.  CC  /\  z  =  A ) ) )
6962, 66, 683bitr4d 285 . . . 4  |-  ( A  e.  CC  ->  (
z  e.  ( `' G " { 0 } )  <->  z  =  A ) )
70 elsn 4028 . . . 4  |-  ( z  e.  { A }  <->  z  =  A )
7169, 70syl6bbr 263 . . 3  |-  ( A  e.  CC  ->  (
z  e.  ( `' G " { 0 } )  <->  z  e.  { A } ) )
7271eqrdv 2440 . 2  |-  ( A  e.  CC  ->  ( `' G " { 0 } )  =  { A } )
7310, 49, 723jca 1177 1  |-  ( A  e.  CC  ->  ( G  e.  (Poly `  CC )  /\  (deg `  G
)  =  1  /\  ( `' G " { 0 } )  =  { A }
) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 184    /\ wa 369    /\ w3a 974    = wceq 1383    e. wcel 1804   _Vcvv 3095    C_ wss 3461   {csn 4014   class class class wbr 4437    |-> cmpt 4495    _I cid 4780    X. cxp 4987   `'ccnv 4988    |` cres 4991   "cima 4992    Fn wfn 5573   -->wf 5574   ` cfv 5578  (class class class)co 6281    oFcof 6523   CCcc 9493   0cc0 9495   1c1 9496    + caddc 9498    < clt 9631    - cmin 9810   -ucneg 9811  Polycply 22558   Xpcidp 22559  degcdgr 22561
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1605  ax-4 1618  ax-5 1691  ax-6 1734  ax-7 1776  ax-8 1806  ax-9 1808  ax-10 1823  ax-11 1828  ax-12 1840  ax-13 1985  ax-ext 2421  ax-rep 4548  ax-sep 4558  ax-nul 4566  ax-pow 4615  ax-pr 4676  ax-un 6577  ax-inf2 8061  ax-cnex 9551  ax-resscn 9552  ax-1cn 9553  ax-icn 9554  ax-addcl 9555  ax-addrcl 9556  ax-mulcl 9557  ax-mulrcl 9558  ax-mulcom 9559  ax-addass 9560  ax-mulass 9561  ax-distr 9562  ax-i2m1 9563  ax-1ne0 9564  ax-1rid 9565  ax-rnegex 9566  ax-rrecex 9567  ax-cnre 9568  ax-pre-lttri 9569  ax-pre-lttrn 9570  ax-pre-ltadd 9571  ax-pre-mulgt0 9572  ax-pre-sup 9573  ax-addf 9574
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3or 975  df-3an 976  df-tru 1386  df-fal 1389  df-ex 1600  df-nf 1604  df-sb 1727  df-eu 2272  df-mo 2273  df-clab 2429  df-cleq 2435  df-clel 2438  df-nfc 2593  df-ne 2640  df-nel 2641  df-ral 2798  df-rex 2799  df-reu 2800  df-rmo 2801  df-rab 2802  df-v 3097  df-sbc 3314  df-csb 3421  df-dif 3464  df-un 3466  df-in 3468  df-ss 3475  df-pss 3477  df-nul 3771  df-if 3927  df-pw 3999  df-sn 4015  df-pr 4017  df-tp 4019  df-op 4021  df-uni 4235  df-int 4272  df-iun 4317  df-br 4438  df-opab 4496  df-mpt 4497  df-tr 4531  df-eprel 4781  df-id 4785  df-po 4790  df-so 4791  df-fr 4828  df-se 4829  df-we 4830  df-ord 4871  df-on 4872  df-lim 4873  df-suc 4874  df-xp 4995  df-rel 4996  df-cnv 4997  df-co 4998  df-dm 4999  df-rn 5000  df-res 5001  df-ima 5002  df-iota 5541  df-fun 5580  df-fn 5581  df-f 5582  df-f1 5583  df-fo 5584  df-f1o 5585  df-fv 5586  df-isom 5587  df-riota 6242  df-ov 6284  df-oprab 6285  df-mpt2 6286  df-of 6525  df-om 6686  df-1st 6785  df-2nd 6786  df-recs 7044  df-rdg 7078  df-1o 7132  df-oadd 7136  df-er 7313  df-map 7424  df-pm 7425  df-en 7519  df-dom 7520  df-sdom 7521  df-fin 7522  df-sup 7903  df-oi 7938  df-card 8323  df-pnf 9633  df-mnf 9634  df-xr 9635  df-ltxr 9636  df-le 9637  df-sub 9812  df-neg 9813  df-div 10214  df-nn 10544  df-2 10601  df-3 10602  df-n0 10803  df-z 10872  df-uz 11092  df-rp 11231  df-fz 11683  df-fzo 11806  df-fl 11910  df-seq 12089  df-exp 12148  df-hash 12387  df-cj 12913  df-re 12914  df-im 12915  df-sqrt 13049  df-abs 13050  df-clim 13292  df-rlim 13293  df-sum 13490  df-0p 22054  df-ply 22562  df-idp 22563  df-coe 22564  df-dgr 22565
This theorem is referenced by:  plyrem  22677  facth  22678  fta1lem  22679  vieta1lem1  22682  vieta1lem2  22683  taylply2  22739  ftalem7  23328
  Copyright terms: Public domain W3C validator