MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  plyremlem Structured version   Unicode version

Theorem plyremlem 21654
Description: Closure of a linear factor. (Contributed by Mario Carneiro, 26-Jul-2014.)
Hypothesis
Ref Expression
plyrem.1  |-  G  =  ( Xp  oF  -  ( CC 
X.  { A }
) )
Assertion
Ref Expression
plyremlem  |-  ( A  e.  CC  ->  ( G  e.  (Poly `  CC )  /\  (deg `  G
)  =  1  /\  ( `' G " { 0 } )  =  { A }
) )

Proof of Theorem plyremlem
Dummy variable  z is distinct from all other variables.
StepHypRef Expression
1 plyrem.1 . . 3  |-  G  =  ( Xp  oF  -  ( CC 
X.  { A }
) )
2 ssid 3363 . . . . 5  |-  CC  C_  CC
3 ax-1cn 9327 . . . . 5  |-  1  e.  CC
4 plyid 21561 . . . . 5  |-  ( ( CC  C_  CC  /\  1  e.  CC )  ->  Xp  e.  (Poly `  CC ) )
52, 3, 4mp2an 665 . . . 4  |-  Xp  e.  (Poly `  CC )
6 plyconst 21558 . . . . 5  |-  ( ( CC  C_  CC  /\  A  e.  CC )  ->  ( CC  X.  { A }
)  e.  (Poly `  CC ) )
72, 6mpan 663 . . . 4  |-  ( A  e.  CC  ->  ( CC  X.  { A }
)  e.  (Poly `  CC ) )
8 plysubcl 21574 . . . 4  |-  ( ( Xp  e.  (Poly `  CC )  /\  ( CC  X.  { A }
)  e.  (Poly `  CC ) )  ->  (
Xp  oF  -  ( CC  X.  { A } ) )  e.  (Poly `  CC ) )
95, 7, 8sylancr 656 . . 3  |-  ( A  e.  CC  ->  (
Xp  oF  -  ( CC  X.  { A } ) )  e.  (Poly `  CC ) )
101, 9syl5eqel 2517 . 2  |-  ( A  e.  CC  ->  G  e.  (Poly `  CC )
)
11 negcl 9597 . . . . . . . . 9  |-  ( A  e.  CC  ->  -u A  e.  CC )
12 addcom 9542 . . . . . . . . 9  |-  ( (
-u A  e.  CC  /\  z  e.  CC )  ->  ( -u A  +  z )  =  ( z  +  -u A ) )
1311, 12sylan 468 . . . . . . . 8  |-  ( ( A  e.  CC  /\  z  e.  CC )  ->  ( -u A  +  z )  =  ( z  +  -u A
) )
14 negsub 9644 . . . . . . . . 9  |-  ( ( z  e.  CC  /\  A  e.  CC )  ->  ( z  +  -u A )  =  ( z  -  A ) )
1514ancoms 450 . . . . . . . 8  |-  ( ( A  e.  CC  /\  z  e.  CC )  ->  ( z  +  -u A )  =  ( z  -  A ) )
1613, 15eqtrd 2465 . . . . . . 7  |-  ( ( A  e.  CC  /\  z  e.  CC )  ->  ( -u A  +  z )  =  ( z  -  A ) )
1716mpteq2dva 4366 . . . . . 6  |-  ( A  e.  CC  ->  (
z  e.  CC  |->  (
-u A  +  z ) )  =  ( z  e.  CC  |->  ( z  -  A ) ) )
18 cnex 9350 . . . . . . . 8  |-  CC  e.  _V
1918a1i 11 . . . . . . 7  |-  ( A  e.  CC  ->  CC  e.  _V )
20 negex 9595 . . . . . . . 8  |-  -u A  e.  _V
2120a1i 11 . . . . . . 7  |-  ( ( A  e.  CC  /\  z  e.  CC )  -> 
-u A  e.  _V )
22 simpr 458 . . . . . . 7  |-  ( ( A  e.  CC  /\  z  e.  CC )  ->  z  e.  CC )
23 fconstmpt 4869 . . . . . . . 8  |-  ( CC 
X.  { -u A } )  =  ( z  e.  CC  |->  -u A )
2423a1i 11 . . . . . . 7  |-  ( A  e.  CC  ->  ( CC  X.  { -u A } )  =  ( z  e.  CC  |->  -u A ) )
25 df-idp 21541 . . . . . . . . 9  |-  Xp  =  (  _I  |`  CC )
26 mptresid 5148 . . . . . . . . 9  |-  ( z  e.  CC  |->  z )  =  (  _I  |`  CC )
2725, 26eqtr4i 2456 . . . . . . . 8  |-  Xp  =  ( z  e.  CC  |->  z )
2827a1i 11 . . . . . . 7  |-  ( A  e.  CC  ->  Xp  =  ( z  e.  CC  |->  z ) )
2919, 21, 22, 24, 28offval2 6325 . . . . . 6  |-  ( A  e.  CC  ->  (
( CC  X.  { -u A } )  oF  +  Xp )  =  ( z  e.  CC  |->  ( -u A  +  z )
) )
30 simpl 454 . . . . . . 7  |-  ( ( A  e.  CC  /\  z  e.  CC )  ->  A  e.  CC )
31 fconstmpt 4869 . . . . . . . 8  |-  ( CC 
X.  { A }
)  =  ( z  e.  CC  |->  A )
3231a1i 11 . . . . . . 7  |-  ( A  e.  CC  ->  ( CC  X.  { A }
)  =  ( z  e.  CC  |->  A ) )
3319, 22, 30, 28, 32offval2 6325 . . . . . 6  |-  ( A  e.  CC  ->  (
Xp  oF  -  ( CC  X.  { A } ) )  =  ( z  e.  CC  |->  ( z  -  A ) ) )
3417, 29, 333eqtr4d 2475 . . . . 5  |-  ( A  e.  CC  ->  (
( CC  X.  { -u A } )  oF  +  Xp )  =  ( Xp  oF  -  ( CC  X.  { A } ) ) )
3534, 1syl6eqr 2483 . . . 4  |-  ( A  e.  CC  ->  (
( CC  X.  { -u A } )  oF  +  Xp )  =  G )
3635fveq2d 5683 . . 3  |-  ( A  e.  CC  ->  (deg `  ( ( CC  X.  { -u A } )  oF  +  Xp ) )  =  (deg `  G )
)
37 plyconst 21558 . . . . 5  |-  ( ( CC  C_  CC  /\  -u A  e.  CC )  ->  ( CC  X.  { -u A } )  e.  (Poly `  CC ) )
382, 11, 37sylancr 656 . . . 4  |-  ( A  e.  CC  ->  ( CC  X.  { -u A } )  e.  (Poly `  CC ) )
395a1i 11 . . . 4  |-  ( A  e.  CC  ->  Xp  e.  (Poly `  CC ) )
40 0dgr 21597 . . . . . 6  |-  ( -u A  e.  CC  ->  (deg
`  ( CC  X.  { -u A } ) )  =  0 )
4111, 40syl 16 . . . . 5  |-  ( A  e.  CC  ->  (deg `  ( CC  X.  { -u A } ) )  =  0 )
42 0lt1 9849 . . . . 5  |-  0  <  1
4341, 42syl6eqbr 4317 . . . 4  |-  ( A  e.  CC  ->  (deg `  ( CC  X.  { -u A } ) )  <  1 )
44 eqid 2433 . . . . 5  |-  (deg `  ( CC  X.  { -u A } ) )  =  (deg `  ( CC  X.  { -u A }
) )
45 dgrid 21615 . . . . . 6  |-  (deg `  Xp )  =  1
4645eqcomi 2437 . . . . 5  |-  1  =  (deg `  Xp
)
4744, 46dgradd2 21619 . . . 4  |-  ( ( ( CC  X.  { -u A } )  e.  (Poly `  CC )  /\  Xp  e.  (Poly `  CC )  /\  (deg `  ( CC  X.  { -u A } ) )  <  1 )  -> 
(deg `  ( ( CC  X.  { -u A } )  oF  +  Xp ) )  =  1 )
4838, 39, 43, 47syl3anc 1211 . . 3  |-  ( A  e.  CC  ->  (deg `  ( ( CC  X.  { -u A } )  oF  +  Xp ) )  =  1 )
4936, 48eqtr3d 2467 . 2  |-  ( A  e.  CC  ->  (deg `  G )  =  1 )
501, 33syl5eq 2477 . . . . . . . . . . 11  |-  ( A  e.  CC  ->  G  =  ( z  e.  CC  |->  ( z  -  A ) ) )
5150fveq1d 5681 . . . . . . . . . 10  |-  ( A  e.  CC  ->  ( G `  z )  =  ( ( z  e.  CC  |->  ( z  -  A ) ) `
 z ) )
5251adantr 462 . . . . . . . . 9  |-  ( ( A  e.  CC  /\  z  e.  CC )  ->  ( G `  z
)  =  ( ( z  e.  CC  |->  ( z  -  A ) ) `  z ) )
53 ovex 6105 . . . . . . . . . 10  |-  ( z  -  A )  e. 
_V
54 eqid 2433 . . . . . . . . . . 11  |-  ( z  e.  CC  |->  ( z  -  A ) )  =  ( z  e.  CC  |->  ( z  -  A ) )
5554fvmpt2 5769 . . . . . . . . . 10  |-  ( ( z  e.  CC  /\  ( z  -  A
)  e.  _V )  ->  ( ( z  e.  CC  |->  ( z  -  A ) ) `  z )  =  ( z  -  A ) )
5622, 53, 55sylancl 655 . . . . . . . . 9  |-  ( ( A  e.  CC  /\  z  e.  CC )  ->  ( ( z  e.  CC  |->  ( z  -  A ) ) `  z )  =  ( z  -  A ) )
5752, 56eqtrd 2465 . . . . . . . 8  |-  ( ( A  e.  CC  /\  z  e.  CC )  ->  ( G `  z
)  =  ( z  -  A ) )
5857eqeq1d 2441 . . . . . . 7  |-  ( ( A  e.  CC  /\  z  e.  CC )  ->  ( ( G `  z )  =  0  <-> 
( z  -  A
)  =  0 ) )
59 subeq0 9622 . . . . . . . 8  |-  ( ( z  e.  CC  /\  A  e.  CC )  ->  ( ( z  -  A )  =  0  <-> 
z  =  A ) )
6059ancoms 450 . . . . . . 7  |-  ( ( A  e.  CC  /\  z  e.  CC )  ->  ( ( z  -  A )  =  0  <-> 
z  =  A ) )
6158, 60bitrd 253 . . . . . 6  |-  ( ( A  e.  CC  /\  z  e.  CC )  ->  ( ( G `  z )  =  0  <-> 
z  =  A ) )
6261pm5.32da 634 . . . . 5  |-  ( A  e.  CC  ->  (
( z  e.  CC  /\  ( G `  z
)  =  0 )  <-> 
( z  e.  CC  /\  z  =  A ) ) )
63 plyf 21550 . . . . . 6  |-  ( G  e.  (Poly `  CC )  ->  G : CC --> CC )
64 ffn 5547 . . . . . 6  |-  ( G : CC --> CC  ->  G  Fn  CC )
65 fniniseg 5812 . . . . . 6  |-  ( G  Fn  CC  ->  (
z  e.  ( `' G " { 0 } )  <->  ( z  e.  CC  /\  ( G `
 z )  =  0 ) ) )
6610, 63, 64, 654syl 21 . . . . 5  |-  ( A  e.  CC  ->  (
z  e.  ( `' G " { 0 } )  <->  ( z  e.  CC  /\  ( G `
 z )  =  0 ) ) )
67 eleq1a 2502 . . . . . 6  |-  ( A  e.  CC  ->  (
z  =  A  -> 
z  e.  CC ) )
6867pm4.71rd 628 . . . . 5  |-  ( A  e.  CC  ->  (
z  =  A  <->  ( z  e.  CC  /\  z  =  A ) ) )
6962, 66, 683bitr4d 285 . . . 4  |-  ( A  e.  CC  ->  (
z  e.  ( `' G " { 0 } )  <->  z  =  A ) )
70 elsn 3879 . . . 4  |-  ( z  e.  { A }  <->  z  =  A )
7169, 70syl6bbr 263 . . 3  |-  ( A  e.  CC  ->  (
z  e.  ( `' G " { 0 } )  <->  z  e.  { A } ) )
7271eqrdv 2431 . 2  |-  ( A  e.  CC  ->  ( `' G " { 0 } )  =  { A } )
7310, 49, 723jca 1161 1  |-  ( A  e.  CC  ->  ( G  e.  (Poly `  CC )  /\  (deg `  G
)  =  1  /\  ( `' G " { 0 } )  =  { A }
) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 184    /\ wa 369    /\ w3a 958    = wceq 1362    e. wcel 1755   _Vcvv 2962    C_ wss 3316   {csn 3865   class class class wbr 4280    e. cmpt 4338    _I cid 4618    X. cxp 4825   `'ccnv 4826    |` cres 4829   "cima 4830    Fn wfn 5401   -->wf 5402   ` cfv 5406  (class class class)co 6080    oFcof 6307   CCcc 9267   0cc0 9269   1c1 9270    + caddc 9272    < clt 9405    - cmin 9582   -ucneg 9583  Polycply 21536   Xpcidp 21537  degcdgr 21539
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1594  ax-4 1605  ax-5 1669  ax-6 1707  ax-7 1727  ax-8 1757  ax-9 1759  ax-10 1774  ax-11 1779  ax-12 1791  ax-13 1942  ax-ext 2414  ax-rep 4391  ax-sep 4401  ax-nul 4409  ax-pow 4458  ax-pr 4519  ax-un 6361  ax-inf2 7835  ax-cnex 9325  ax-resscn 9326  ax-1cn 9327  ax-icn 9328  ax-addcl 9329  ax-addrcl 9330  ax-mulcl 9331  ax-mulrcl 9332  ax-mulcom 9333  ax-addass 9334  ax-mulass 9335  ax-distr 9336  ax-i2m1 9337  ax-1ne0 9338  ax-1rid 9339  ax-rnegex 9340  ax-rrecex 9341  ax-cnre 9342  ax-pre-lttri 9343  ax-pre-lttrn 9344  ax-pre-ltadd 9345  ax-pre-mulgt0 9346  ax-pre-sup 9347  ax-addf 9348
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3or 959  df-3an 960  df-tru 1365  df-fal 1368  df-ex 1590  df-nf 1593  df-sb 1700  df-eu 2258  df-mo 2259  df-clab 2420  df-cleq 2426  df-clel 2429  df-nfc 2558  df-ne 2598  df-nel 2599  df-ral 2710  df-rex 2711  df-reu 2712  df-rmo 2713  df-rab 2714  df-v 2964  df-sbc 3176  df-csb 3277  df-dif 3319  df-un 3321  df-in 3323  df-ss 3330  df-pss 3332  df-nul 3626  df-if 3780  df-pw 3850  df-sn 3866  df-pr 3868  df-tp 3870  df-op 3872  df-uni 4080  df-int 4117  df-iun 4161  df-br 4281  df-opab 4339  df-mpt 4340  df-tr 4374  df-eprel 4619  df-id 4623  df-po 4628  df-so 4629  df-fr 4666  df-se 4667  df-we 4668  df-ord 4709  df-on 4710  df-lim 4711  df-suc 4712  df-xp 4833  df-rel 4834  df-cnv 4835  df-co 4836  df-dm 4837  df-rn 4838  df-res 4839  df-ima 4840  df-iota 5369  df-fun 5408  df-fn 5409  df-f 5410  df-f1 5411  df-fo 5412  df-f1o 5413  df-fv 5414  df-isom 5415  df-riota 6039  df-ov 6083  df-oprab 6084  df-mpt2 6085  df-of 6309  df-om 6466  df-1st 6566  df-2nd 6567  df-recs 6818  df-rdg 6852  df-1o 6908  df-oadd 6912  df-er 7089  df-map 7204  df-pm 7205  df-en 7299  df-dom 7300  df-sdom 7301  df-fin 7302  df-sup 7679  df-oi 7712  df-card 8097  df-pnf 9407  df-mnf 9408  df-xr 9409  df-ltxr 9410  df-le 9411  df-sub 9584  df-neg 9585  df-div 9981  df-nn 10310  df-2 10367  df-3 10368  df-n0 10567  df-z 10634  df-uz 10849  df-rp 10979  df-fz 11424  df-fzo 11532  df-fl 11625  df-seq 11790  df-exp 11849  df-hash 12087  df-cj 12571  df-re 12572  df-im 12573  df-sqr 12707  df-abs 12708  df-clim 12949  df-rlim 12950  df-sum 13147  df-0p 20989  df-ply 21540  df-idp 21541  df-coe 21542  df-dgr 21543
This theorem is referenced by:  plyrem  21655  facth  21656  fta1lem  21657  vieta1lem1  21660  vieta1lem2  21661  taylply2  21717  ftalem7  22300
  Copyright terms: Public domain W3C validator