MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  plyrem Structured version   Unicode version

Theorem plyrem 22805
Description: The polynomial remainder theorem, or little Bézout's theorem (by contrast to the regular Bézout's theorem bezout 14201). If a polynomial  F is divided by the linear factor  x  -  A, the remainder is equal to  F ( A ), the evaluation of the polynomial at  A (interpreted as a constant polynomial). This is part of Metamath 100 proof #89. (Contributed by Mario Carneiro, 26-Jul-2014.)
Hypotheses
Ref Expression
plyrem.1  |-  G  =  ( Xp  oF  -  ( CC 
X.  { A }
) )
plyrem.2  |-  R  =  ( F  oF  -  ( G  oF  x.  ( F quot  G ) ) )
Assertion
Ref Expression
plyrem  |-  ( ( F  e.  (Poly `  S )  /\  A  e.  CC )  ->  R  =  ( CC  X.  { ( F `  A ) } ) )

Proof of Theorem plyrem
StepHypRef Expression
1 plyssc 22701 . . . . . . . 8  |-  (Poly `  S )  C_  (Poly `  CC )
2 simpl 455 . . . . . . . 8  |-  ( ( F  e.  (Poly `  S )  /\  A  e.  CC )  ->  F  e.  (Poly `  S )
)
31, 2sseldi 3428 . . . . . . 7  |-  ( ( F  e.  (Poly `  S )  /\  A  e.  CC )  ->  F  e.  (Poly `  CC )
)
4 plyrem.1 . . . . . . . . . 10  |-  G  =  ( Xp  oF  -  ( CC 
X.  { A }
) )
54plyremlem 22804 . . . . . . . . 9  |-  ( A  e.  CC  ->  ( G  e.  (Poly `  CC )  /\  (deg `  G
)  =  1  /\  ( `' G " { 0 } )  =  { A }
) )
65adantl 464 . . . . . . . 8  |-  ( ( F  e.  (Poly `  S )  /\  A  e.  CC )  ->  ( G  e.  (Poly `  CC )  /\  (deg `  G
)  =  1  /\  ( `' G " { 0 } )  =  { A }
) )
76simp1d 1006 . . . . . . 7  |-  ( ( F  e.  (Poly `  S )  /\  A  e.  CC )  ->  G  e.  (Poly `  CC )
)
86simp2d 1007 . . . . . . . . 9  |-  ( ( F  e.  (Poly `  S )  /\  A  e.  CC )  ->  (deg `  G )  =  1 )
9 ax-1ne0 9490 . . . . . . . . . 10  |-  1  =/=  0
109a1i 11 . . . . . . . . 9  |-  ( ( F  e.  (Poly `  S )  /\  A  e.  CC )  ->  1  =/=  0 )
118, 10eqnetrd 2685 . . . . . . . 8  |-  ( ( F  e.  (Poly `  S )  /\  A  e.  CC )  ->  (deg `  G )  =/=  0
)
12 fveq2 5787 . . . . . . . . . 10  |-  ( G  =  0p  -> 
(deg `  G )  =  (deg `  0p
) )
13 dgr0 22763 . . . . . . . . . 10  |-  (deg ` 
0p )  =  0
1412, 13syl6eq 2449 . . . . . . . . 9  |-  ( G  =  0p  -> 
(deg `  G )  =  0 )
1514necon3i 2632 . . . . . . . 8  |-  ( (deg
`  G )  =/=  0  ->  G  =/=  0p )
1611, 15syl 16 . . . . . . 7  |-  ( ( F  e.  (Poly `  S )  /\  A  e.  CC )  ->  G  =/=  0p )
17 plyrem.2 . . . . . . . 8  |-  R  =  ( F  oF  -  ( G  oF  x.  ( F quot  G ) ) )
1817quotdgr 22803 . . . . . . 7  |-  ( ( F  e.  (Poly `  CC )  /\  G  e.  (Poly `  CC )  /\  G  =/=  0p )  ->  ( R  =  0p  \/  (deg `  R )  <  (deg `  G )
) )
193, 7, 16, 18syl3anc 1226 . . . . . 6  |-  ( ( F  e.  (Poly `  S )  /\  A  e.  CC )  ->  ( R  =  0p  \/  (deg `  R )  <  (deg `  G )
) )
20 0lt1 10010 . . . . . . . 8  |-  0  <  1
2120, 8syl5breqr 4416 . . . . . . 7  |-  ( ( F  e.  (Poly `  S )  /\  A  e.  CC )  ->  0  <  (deg `  G )
)
22 fveq2 5787 . . . . . . . . 9  |-  ( R  =  0p  -> 
(deg `  R )  =  (deg `  0p
) )
2322, 13syl6eq 2449 . . . . . . . 8  |-  ( R  =  0p  -> 
(deg `  R )  =  0 )
2423breq1d 4390 . . . . . . 7  |-  ( R  =  0p  -> 
( (deg `  R
)  <  (deg `  G
)  <->  0  <  (deg `  G ) ) )
2521, 24syl5ibrcom 222 . . . . . 6  |-  ( ( F  e.  (Poly `  S )  /\  A  e.  CC )  ->  ( R  =  0p 
->  (deg `  R )  <  (deg `  G )
) )
26 pm2.62 407 . . . . . 6  |-  ( ( R  =  0p  \/  (deg `  R
)  <  (deg `  G
) )  ->  (
( R  =  0p  ->  (deg `  R
)  <  (deg `  G
) )  ->  (deg `  R )  <  (deg `  G ) ) )
2719, 25, 26sylc 60 . . . . 5  |-  ( ( F  e.  (Poly `  S )  /\  A  e.  CC )  ->  (deg `  R )  <  (deg `  G ) )
2827, 8breqtrd 4404 . . . 4  |-  ( ( F  e.  (Poly `  S )  /\  A  e.  CC )  ->  (deg `  R )  <  1
)
29 quotcl2 22802 . . . . . . . . . 10  |-  ( ( F  e.  (Poly `  CC )  /\  G  e.  (Poly `  CC )  /\  G  =/=  0p )  ->  ( F quot  G )  e.  (Poly `  CC ) )
303, 7, 16, 29syl3anc 1226 . . . . . . . . 9  |-  ( ( F  e.  (Poly `  S )  /\  A  e.  CC )  ->  ( F quot  G )  e.  (Poly `  CC ) )
31 plymulcl 22722 . . . . . . . . 9  |-  ( ( G  e.  (Poly `  CC )  /\  ( F quot  G )  e.  (Poly `  CC ) )  -> 
( G  oF  x.  ( F quot  G
) )  e.  (Poly `  CC ) )
327, 30, 31syl2anc 659 . . . . . . . 8  |-  ( ( F  e.  (Poly `  S )  /\  A  e.  CC )  ->  ( G  oF  x.  ( F quot  G ) )  e.  (Poly `  CC )
)
33 plysubcl 22723 . . . . . . . 8  |-  ( ( F  e.  (Poly `  CC )  /\  ( G  oF  x.  ( F quot  G ) )  e.  (Poly `  CC )
)  ->  ( F  oF  -  ( G  oF  x.  ( F quot  G ) ) )  e.  (Poly `  CC ) )
343, 32, 33syl2anc 659 . . . . . . 7  |-  ( ( F  e.  (Poly `  S )  /\  A  e.  CC )  ->  ( F  oF  -  ( G  oF  x.  ( F quot  G ) ) )  e.  (Poly `  CC ) )
3517, 34syl5eqel 2484 . . . . . 6  |-  ( ( F  e.  (Poly `  S )  /\  A  e.  CC )  ->  R  e.  (Poly `  CC )
)
36 dgrcl 22734 . . . . . 6  |-  ( R  e.  (Poly `  CC )  ->  (deg `  R
)  e.  NN0 )
3735, 36syl 16 . . . . 5  |-  ( ( F  e.  (Poly `  S )  /\  A  e.  CC )  ->  (deg `  R )  e.  NN0 )
38 nn0lt10b 10860 . . . . 5  |-  ( (deg
`  R )  e. 
NN0  ->  ( (deg `  R )  <  1  <->  (deg
`  R )  =  0 ) )
3937, 38syl 16 . . . 4  |-  ( ( F  e.  (Poly `  S )  /\  A  e.  CC )  ->  (
(deg `  R )  <  1  <->  (deg `  R )  =  0 ) )
4028, 39mpbid 210 . . 3  |-  ( ( F  e.  (Poly `  S )  /\  A  e.  CC )  ->  (deg `  R )  =  0 )
41 0dgrb 22747 . . . 4  |-  ( R  e.  (Poly `  CC )  ->  ( (deg `  R )  =  0  <-> 
R  =  ( CC 
X.  { ( R `
 0 ) } ) ) )
4235, 41syl 16 . . 3  |-  ( ( F  e.  (Poly `  S )  /\  A  e.  CC )  ->  (
(deg `  R )  =  0  <->  R  =  ( CC  X.  { ( R `  0 ) } ) ) )
4340, 42mpbid 210 . 2  |-  ( ( F  e.  (Poly `  S )  /\  A  e.  CC )  ->  R  =  ( CC  X.  { ( R ` 
0 ) } ) )
4443fveq1d 5789 . . . . 5  |-  ( ( F  e.  (Poly `  S )  /\  A  e.  CC )  ->  ( R `  A )  =  ( ( CC 
X.  { ( R `
 0 ) } ) `  A ) )
4517fveq1i 5788 . . . . . . 7  |-  ( R `
 A )  =  ( ( F  oF  -  ( G  oF  x.  ( F quot  G ) ) ) `
 A )
46 plyf 22699 . . . . . . . . . . 11  |-  ( F  e.  (Poly `  S
)  ->  F : CC
--> CC )
4746adantr 463 . . . . . . . . . 10  |-  ( ( F  e.  (Poly `  S )  /\  A  e.  CC )  ->  F : CC --> CC )
48 ffn 5652 . . . . . . . . . 10  |-  ( F : CC --> CC  ->  F  Fn  CC )
4947, 48syl 16 . . . . . . . . 9  |-  ( ( F  e.  (Poly `  S )  /\  A  e.  CC )  ->  F  Fn  CC )
50 plyf 22699 . . . . . . . . . . . 12  |-  ( G  e.  (Poly `  CC )  ->  G : CC --> CC )
517, 50syl 16 . . . . . . . . . . 11  |-  ( ( F  e.  (Poly `  S )  /\  A  e.  CC )  ->  G : CC --> CC )
52 ffn 5652 . . . . . . . . . . 11  |-  ( G : CC --> CC  ->  G  Fn  CC )
5351, 52syl 16 . . . . . . . . . 10  |-  ( ( F  e.  (Poly `  S )  /\  A  e.  CC )  ->  G  Fn  CC )
54 plyf 22699 . . . . . . . . . . . 12  |-  ( ( F quot  G )  e.  (Poly `  CC )  ->  ( F quot  G ) : CC --> CC )
5530, 54syl 16 . . . . . . . . . . 11  |-  ( ( F  e.  (Poly `  S )  /\  A  e.  CC )  ->  ( F quot  G ) : CC --> CC )
56 ffn 5652 . . . . . . . . . . 11  |-  ( ( F quot  G ) : CC --> CC  ->  ( F quot  G )  Fn  CC )
5755, 56syl 16 . . . . . . . . . 10  |-  ( ( F  e.  (Poly `  S )  /\  A  e.  CC )  ->  ( F quot  G )  Fn  CC )
58 cnex 9502 . . . . . . . . . . 11  |-  CC  e.  _V
5958a1i 11 . . . . . . . . . 10  |-  ( ( F  e.  (Poly `  S )  /\  A  e.  CC )  ->  CC  e.  _V )
60 inidm 3634 . . . . . . . . . 10  |-  ( CC 
i^i  CC )  =  CC
6153, 57, 59, 59, 60offn 6468 . . . . . . . . 9  |-  ( ( F  e.  (Poly `  S )  /\  A  e.  CC )  ->  ( G  oF  x.  ( F quot  G ) )  Fn  CC )
62 eqidd 2393 . . . . . . . . 9  |-  ( ( ( F  e.  (Poly `  S )  /\  A  e.  CC )  /\  A  e.  CC )  ->  ( F `  A )  =  ( F `  A ) )
636simp3d 1008 . . . . . . . . . . . . . . 15  |-  ( ( F  e.  (Poly `  S )  /\  A  e.  CC )  ->  ( `' G " { 0 } )  =  { A } )
64 ssun1 3594 . . . . . . . . . . . . . . 15  |-  ( `' G " { 0 } )  C_  (
( `' G " { 0 } )  u.  ( `' ( F quot  G ) " { 0 } ) )
6563, 64syl6eqssr 3481 . . . . . . . . . . . . . 14  |-  ( ( F  e.  (Poly `  S )  /\  A  e.  CC )  ->  { A }  C_  ( ( `' G " { 0 } )  u.  ( `' ( F quot  G
) " { 0 } ) ) )
66 snssg 4090 . . . . . . . . . . . . . . 15  |-  ( A  e.  CC  ->  ( A  e.  ( ( `' G " { 0 } )  u.  ( `' ( F quot  G
) " { 0 } ) )  <->  { A }  C_  ( ( `' G " { 0 } )  u.  ( `' ( F quot  G
) " { 0 } ) ) ) )
6766adantl 464 . . . . . . . . . . . . . 14  |-  ( ( F  e.  (Poly `  S )  /\  A  e.  CC )  ->  ( A  e.  ( ( `' G " { 0 } )  u.  ( `' ( F quot  G
) " { 0 } ) )  <->  { A }  C_  ( ( `' G " { 0 } )  u.  ( `' ( F quot  G
) " { 0 } ) ) ) )
6865, 67mpbird 232 . . . . . . . . . . . . 13  |-  ( ( F  e.  (Poly `  S )  /\  A  e.  CC )  ->  A  e.  ( ( `' G " { 0 } )  u.  ( `' ( F quot  G ) " { 0 } ) ) )
69 ofmulrt 22782 . . . . . . . . . . . . . 14  |-  ( ( CC  e.  _V  /\  G : CC --> CC  /\  ( F quot  G ) : CC --> CC )  -> 
( `' ( G  oF  x.  ( F quot  G ) ) " { 0 } )  =  ( ( `' G " { 0 } )  u.  ( `' ( F quot  G
) " { 0 } ) ) )
7059, 51, 55, 69syl3anc 1226 . . . . . . . . . . . . 13  |-  ( ( F  e.  (Poly `  S )  /\  A  e.  CC )  ->  ( `' ( G  oF  x.  ( F quot  G ) ) " {
0 } )  =  ( ( `' G " { 0 } )  u.  ( `' ( F quot  G ) " { 0 } ) ) )
7168, 70eleqtrrd 2483 . . . . . . . . . . . 12  |-  ( ( F  e.  (Poly `  S )  /\  A  e.  CC )  ->  A  e.  ( `' ( G  oF  x.  ( F quot  G ) ) " { 0 } ) )
72 fniniseg 5923 . . . . . . . . . . . . 13  |-  ( ( G  oF  x.  ( F quot  G ) )  Fn  CC  ->  ( A  e.  ( `' ( G  oF  x.  ( F quot  G
) ) " {
0 } )  <->  ( A  e.  CC  /\  ( ( G  oF  x.  ( F quot  G ) ) `  A )  =  0 ) ) )
7361, 72syl 16 . . . . . . . . . . . 12  |-  ( ( F  e.  (Poly `  S )  /\  A  e.  CC )  ->  ( A  e.  ( `' ( G  oF  x.  ( F quot  G ) ) " { 0 } )  <->  ( A  e.  CC  /\  ( ( G  oF  x.  ( F quot  G ) ) `  A )  =  0 ) ) )
7471, 73mpbid 210 . . . . . . . . . . 11  |-  ( ( F  e.  (Poly `  S )  /\  A  e.  CC )  ->  ( A  e.  CC  /\  (
( G  oF  x.  ( F quot  G
) ) `  A
)  =  0 ) )
7574simprd 461 . . . . . . . . . 10  |-  ( ( F  e.  (Poly `  S )  /\  A  e.  CC )  ->  (
( G  oF  x.  ( F quot  G
) ) `  A
)  =  0 )
7675adantr 463 . . . . . . . . 9  |-  ( ( ( F  e.  (Poly `  S )  /\  A  e.  CC )  /\  A  e.  CC )  ->  (
( G  oF  x.  ( F quot  G
) ) `  A
)  =  0 )
7749, 61, 59, 59, 60, 62, 76ofval 6466 . . . . . . . 8  |-  ( ( ( F  e.  (Poly `  S )  /\  A  e.  CC )  /\  A  e.  CC )  ->  (
( F  oF  -  ( G  oF  x.  ( F quot  G ) ) ) `  A )  =  ( ( F `  A
)  -  0 ) )
7877anabss3 821 . . . . . . 7  |-  ( ( F  e.  (Poly `  S )  /\  A  e.  CC )  ->  (
( F  oF  -  ( G  oF  x.  ( F quot  G ) ) ) `  A )  =  ( ( F `  A
)  -  0 ) )
7945, 78syl5eq 2445 . . . . . 6  |-  ( ( F  e.  (Poly `  S )  /\  A  e.  CC )  ->  ( R `  A )  =  ( ( F `
 A )  - 
0 ) )
8046ffvelrnda 5946 . . . . . . 7  |-  ( ( F  e.  (Poly `  S )  /\  A  e.  CC )  ->  ( F `  A )  e.  CC )
8180subid1d 9851 . . . . . 6  |-  ( ( F  e.  (Poly `  S )  /\  A  e.  CC )  ->  (
( F `  A
)  -  0 )  =  ( F `  A ) )
8279, 81eqtrd 2433 . . . . 5  |-  ( ( F  e.  (Poly `  S )  /\  A  e.  CC )  ->  ( R `  A )  =  ( F `  A ) )
83 fvex 5797 . . . . . . 7  |-  ( R `
 0 )  e. 
_V
8483fvconst2 6043 . . . . . 6  |-  ( A  e.  CC  ->  (
( CC  X.  {
( R `  0
) } ) `  A )  =  ( R `  0 ) )
8584adantl 464 . . . . 5  |-  ( ( F  e.  (Poly `  S )  /\  A  e.  CC )  ->  (
( CC  X.  {
( R `  0
) } ) `  A )  =  ( R `  0 ) )
8644, 82, 853eqtr3d 2441 . . . 4  |-  ( ( F  e.  (Poly `  S )  /\  A  e.  CC )  ->  ( F `  A )  =  ( R ` 
0 ) )
8786sneqd 3969 . . 3  |-  ( ( F  e.  (Poly `  S )  /\  A  e.  CC )  ->  { ( F `  A ) }  =  { ( R `  0 ) } )
8887xpeq2d 4950 . 2  |-  ( ( F  e.  (Poly `  S )  /\  A  e.  CC )  ->  ( CC  X.  { ( F `
 A ) } )  =  ( CC 
X.  { ( R `
 0 ) } ) )
8943, 88eqtr4d 2436 1  |-  ( ( F  e.  (Poly `  S )  /\  A  e.  CC )  ->  R  =  ( CC  X.  { ( F `  A ) } ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 184    \/ wo 366    /\ wa 367    /\ w3a 971    = wceq 1399    e. wcel 1836    =/= wne 2587   _Vcvv 3047    u. cun 3400    C_ wss 3402   {csn 3957   class class class wbr 4380    X. cxp 4924   `'ccnv 4925   "cima 4929    Fn wfn 5504   -->wf 5505   ` cfv 5509  (class class class)co 6214    oFcof 6455   CCcc 9419   0cc0 9421   1c1 9422    x. cmul 9426    < clt 9557    - cmin 9736   NN0cn0 10730   0pc0p 22180  Polycply 22685   Xpcidp 22686  degcdgr 22688   quot cquot 22790
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1633  ax-4 1646  ax-5 1719  ax-6 1765  ax-7 1808  ax-8 1838  ax-9 1840  ax-10 1855  ax-11 1860  ax-12 1872  ax-13 2016  ax-ext 2370  ax-rep 4491  ax-sep 4501  ax-nul 4509  ax-pow 4556  ax-pr 4614  ax-un 6509  ax-inf2 7990  ax-cnex 9477  ax-resscn 9478  ax-1cn 9479  ax-icn 9480  ax-addcl 9481  ax-addrcl 9482  ax-mulcl 9483  ax-mulrcl 9484  ax-mulcom 9485  ax-addass 9486  ax-mulass 9487  ax-distr 9488  ax-i2m1 9489  ax-1ne0 9490  ax-1rid 9491  ax-rnegex 9492  ax-rrecex 9493  ax-cnre 9494  ax-pre-lttri 9495  ax-pre-lttrn 9496  ax-pre-ltadd 9497  ax-pre-mulgt0 9498  ax-pre-sup 9499  ax-addf 9500
This theorem depends on definitions:  df-bi 185  df-or 368  df-an 369  df-3or 972  df-3an 973  df-tru 1402  df-fal 1405  df-ex 1628  df-nf 1632  df-sb 1758  df-eu 2232  df-mo 2233  df-clab 2378  df-cleq 2384  df-clel 2387  df-nfc 2542  df-ne 2589  df-nel 2590  df-ral 2747  df-rex 2748  df-reu 2749  df-rmo 2750  df-rab 2751  df-v 3049  df-sbc 3266  df-csb 3362  df-dif 3405  df-un 3407  df-in 3409  df-ss 3416  df-pss 3418  df-nul 3725  df-if 3871  df-pw 3942  df-sn 3958  df-pr 3960  df-tp 3962  df-op 3964  df-uni 4177  df-int 4213  df-iun 4258  df-br 4381  df-opab 4439  df-mpt 4440  df-tr 4474  df-eprel 4718  df-id 4722  df-po 4727  df-so 4728  df-fr 4765  df-se 4766  df-we 4767  df-ord 4808  df-on 4809  df-lim 4810  df-suc 4811  df-xp 4932  df-rel 4933  df-cnv 4934  df-co 4935  df-dm 4936  df-rn 4937  df-res 4938  df-ima 4939  df-iota 5473  df-fun 5511  df-fn 5512  df-f 5513  df-f1 5514  df-fo 5515  df-f1o 5516  df-fv 5517  df-isom 5518  df-riota 6176  df-ov 6217  df-oprab 6218  df-mpt2 6219  df-of 6457  df-om 6618  df-1st 6717  df-2nd 6718  df-recs 6978  df-rdg 7012  df-1o 7066  df-oadd 7070  df-er 7247  df-map 7358  df-pm 7359  df-en 7454  df-dom 7455  df-sdom 7456  df-fin 7457  df-sup 7834  df-oi 7868  df-card 8251  df-pnf 9559  df-mnf 9560  df-xr 9561  df-ltxr 9562  df-le 9563  df-sub 9738  df-neg 9739  df-div 10142  df-nn 10471  df-2 10529  df-3 10530  df-n0 10731  df-z 10800  df-uz 11020  df-rp 11158  df-fz 11612  df-fzo 11736  df-fl 11847  df-seq 12030  df-exp 12089  df-hash 12327  df-cj 12953  df-re 12954  df-im 12955  df-sqrt 13089  df-abs 13090  df-clim 13332  df-rlim 13333  df-sum 13530  df-0p 22181  df-ply 22689  df-idp 22690  df-coe 22691  df-dgr 22692  df-quot 22791
This theorem is referenced by:  facth  22806
  Copyright terms: Public domain W3C validator