Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  plymulx0 Structured version   Unicode version

Theorem plymulx0 28160
Description: Coefficients of a polynomial multiplyed by  Xp. (Contributed by Thierry Arnoux, 25-Sep-2018.)
Assertion
Ref Expression
plymulx0  |-  ( F  e.  ( (Poly `  RR )  \  { 0p } )  -> 
(coeff `  ( F  oF  x.  Xp ) )  =  ( n  e.  NN0  |->  if ( n  =  0 ,  0 ,  ( (coeff `  F ) `  ( n  -  1 ) ) ) ) )
Distinct variable group:    n, F

Proof of Theorem plymulx0
Dummy variables  i  x  y are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eldifi 3626 . . . . . 6  |-  ( F  e.  ( (Poly `  RR )  \  { 0p } )  ->  F  e.  (Poly `  RR ) )
2 ax-resscn 9548 . . . . . . . 8  |-  RR  C_  CC
3 1re 9594 . . . . . . . 8  |-  1  e.  RR
4 plyid 22357 . . . . . . . 8  |-  ( ( RR  C_  CC  /\  1  e.  RR )  ->  Xp  e.  (Poly `  RR ) )
52, 3, 4mp2an 672 . . . . . . 7  |-  Xp  e.  (Poly `  RR )
65a1i 11 . . . . . 6  |-  ( F  e.  ( (Poly `  RR )  \  { 0p } )  ->  Xp  e.  (Poly `  RR ) )
7 simprl 755 . . . . . . 7  |-  ( ( F  e.  ( (Poly `  RR )  \  {
0p } )  /\  ( x  e.  RR  /\  y  e.  RR ) )  ->  x  e.  RR )
8 simprr 756 . . . . . . 7  |-  ( ( F  e.  ( (Poly `  RR )  \  {
0p } )  /\  ( x  e.  RR  /\  y  e.  RR ) )  -> 
y  e.  RR )
97, 8readdcld 9622 . . . . . 6  |-  ( ( F  e.  ( (Poly `  RR )  \  {
0p } )  /\  ( x  e.  RR  /\  y  e.  RR ) )  -> 
( x  +  y )  e.  RR )
107, 8remulcld 9623 . . . . . 6  |-  ( ( F  e.  ( (Poly `  RR )  \  {
0p } )  /\  ( x  e.  RR  /\  y  e.  RR ) )  -> 
( x  x.  y
)  e.  RR )
111, 6, 9, 10plymul 22366 . . . . 5  |-  ( F  e.  ( (Poly `  RR )  \  { 0p } )  -> 
( F  oF  x.  Xp )  e.  (Poly `  RR ) )
12 0re 9595 . . . . 5  |-  0  e.  RR
13 eqid 2467 . . . . . 6  |-  (coeff `  ( F  oF  x.  Xp ) )  =  (coeff `  ( F  oF  x.  Xp ) )
1413coef2 22379 . . . . 5  |-  ( ( ( F  oF  x.  Xp )  e.  (Poly `  RR )  /\  0  e.  RR )  ->  (coeff `  ( F  oF  x.  Xp ) ) : NN0 --> RR )
1511, 12, 14sylancl 662 . . . 4  |-  ( F  e.  ( (Poly `  RR )  \  { 0p } )  -> 
(coeff `  ( F  oF  x.  Xp ) ) : NN0 --> RR )
16 ffn 5730 . . . 4  |-  ( (coeff `  ( F  oF  x.  Xp ) ) : NN0 --> RR  ->  (coeff `  ( F  oF  x.  Xp ) )  Fn  NN0 )
1715, 16syl 16 . . 3  |-  ( F  e.  ( (Poly `  RR )  \  { 0p } )  -> 
(coeff `  ( F  oF  x.  Xp ) )  Fn 
NN0 )
18 dffn5 5912 . . 3  |-  ( (coeff `  ( F  oF  x.  Xp ) )  Fn  NN0  <->  (coeff `  ( F  oF  x.  Xp ) )  =  ( n  e.  NN0  |->  ( (coeff `  ( F  oF  x.  Xp ) ) `  n ) ) )
1917, 18sylib 196 . 2  |-  ( F  e.  ( (Poly `  RR )  \  { 0p } )  -> 
(coeff `  ( F  oF  x.  Xp ) )  =  ( n  e.  NN0  |->  ( (coeff `  ( F  oF  x.  Xp ) ) `  n ) ) )
20 cnex 9572 . . . . . . . . 9  |-  CC  e.  _V
2120a1i 11 . . . . . . . 8  |-  ( F  e.  ( (Poly `  RR )  \  { 0p } )  ->  CC  e.  _V )
22 plyf 22346 . . . . . . . . 9  |-  ( F  e.  (Poly `  RR )  ->  F : CC --> CC )
231, 22syl 16 . . . . . . . 8  |-  ( F  e.  ( (Poly `  RR )  \  { 0p } )  ->  F : CC --> CC )
24 plyf 22346 . . . . . . . . . 10  |-  ( Xp  e.  (Poly `  RR )  ->  Xp : CC --> CC )
255, 24ax-mp 5 . . . . . . . . 9  |-  Xp : CC --> CC
2625a1i 11 . . . . . . . 8  |-  ( F  e.  ( (Poly `  RR )  \  { 0p } )  ->  Xp : CC --> CC )
27 simprl 755 . . . . . . . . 9  |-  ( ( F  e.  ( (Poly `  RR )  \  {
0p } )  /\  ( x  e.  CC  /\  y  e.  CC ) )  ->  x  e.  CC )
28 simprr 756 . . . . . . . . 9  |-  ( ( F  e.  ( (Poly `  RR )  \  {
0p } )  /\  ( x  e.  CC  /\  y  e.  CC ) )  -> 
y  e.  CC )
2927, 28mulcomd 9616 . . . . . . . 8  |-  ( ( F  e.  ( (Poly `  RR )  \  {
0p } )  /\  ( x  e.  CC  /\  y  e.  CC ) )  -> 
( x  x.  y
)  =  ( y  x.  x ) )
3021, 23, 26, 29caofcom 6555 . . . . . . 7  |-  ( F  e.  ( (Poly `  RR )  \  { 0p } )  -> 
( F  oF  x.  Xp )  =  ( Xp  oF  x.  F
) )
3130fveq2d 5869 . . . . . 6  |-  ( F  e.  ( (Poly `  RR )  \  { 0p } )  -> 
(coeff `  ( F  oF  x.  Xp ) )  =  (coeff `  ( Xp  oF  x.  F
) ) )
3231fveq1d 5867 . . . . 5  |-  ( F  e.  ( (Poly `  RR )  \  { 0p } )  -> 
( (coeff `  ( F  oF  x.  Xp ) ) `  n )  =  ( (coeff `  ( Xp  oF  x.  F
) ) `  n
) )
3332adantr 465 . . . 4  |-  ( ( F  e.  ( (Poly `  RR )  \  {
0p } )  /\  n  e.  NN0 )  ->  ( (coeff `  ( F  oF  x.  Xp ) ) `
 n )  =  ( (coeff `  (
Xp  oF  x.  F ) ) `
 n ) )
345a1i 11 . . . . . 6  |-  ( ( F  e.  ( (Poly `  RR )  \  {
0p } )  /\  n  e.  NN0 )  ->  Xp  e.  (Poly `  RR )
)
351adantr 465 . . . . . 6  |-  ( ( F  e.  ( (Poly `  RR )  \  {
0p } )  /\  n  e.  NN0 )  ->  F  e.  (Poly `  RR ) )
36 simpr 461 . . . . . 6  |-  ( ( F  e.  ( (Poly `  RR )  \  {
0p } )  /\  n  e.  NN0 )  ->  n  e.  NN0 )
37 eqid 2467 . . . . . . 7  |-  (coeff `  Xp )  =  (coeff `  Xp
)
38 eqid 2467 . . . . . . 7  |-  (coeff `  F )  =  (coeff `  F )
3937, 38coemul 22399 . . . . . 6  |-  ( ( Xp  e.  (Poly `  RR )  /\  F  e.  (Poly `  RR )  /\  n  e.  NN0 )  ->  ( (coeff `  ( Xp  oF  x.  F ) ) `  n )  =  sum_ i  e.  ( 0 ... n ) ( ( (coeff `  Xp ) `  i )  x.  (
(coeff `  F ) `  ( n  -  i
) ) ) )
4034, 35, 36, 39syl3anc 1228 . . . . 5  |-  ( ( F  e.  ( (Poly `  RR )  \  {
0p } )  /\  n  e.  NN0 )  ->  ( (coeff `  ( Xp  oF  x.  F ) ) `  n )  =  sum_ i  e.  ( 0 ... n ) ( ( (coeff `  Xp ) `  i )  x.  (
(coeff `  F ) `  ( n  -  i
) ) ) )
41 elfznn0 11769 . . . . . . . . . 10  |-  ( i  e.  ( 0 ... n )  ->  i  e.  NN0 )
42 coeidp 22410 . . . . . . . . . 10  |-  ( i  e.  NN0  ->  ( (coeff `  Xp ) `  i )  =  if ( i  =  1 ,  1 ,  0 ) )
4341, 42syl 16 . . . . . . . . 9  |-  ( i  e.  ( 0 ... n )  ->  (
(coeff `  Xp
) `  i )  =  if ( i  =  1 ,  1 ,  0 ) )
4443oveq1d 6298 . . . . . . . 8  |-  ( i  e.  ( 0 ... n )  ->  (
( (coeff `  Xp ) `  i
)  x.  ( (coeff `  F ) `  (
n  -  i ) ) )  =  ( if ( i  =  1 ,  1 ,  0 )  x.  (
(coeff `  F ) `  ( n  -  i
) ) ) )
45 ovif 6362 . . . . . . . 8  |-  ( if ( i  =  1 ,  1 ,  0 )  x.  ( (coeff `  F ) `  (
n  -  i ) ) )  =  if ( i  =  1 ,  ( 1  x.  ( (coeff `  F
) `  ( n  -  i ) ) ) ,  ( 0  x.  ( (coeff `  F ) `  (
n  -  i ) ) ) )
4644, 45syl6eq 2524 . . . . . . 7  |-  ( i  e.  ( 0 ... n )  ->  (
( (coeff `  Xp ) `  i
)  x.  ( (coeff `  F ) `  (
n  -  i ) ) )  =  if ( i  =  1 ,  ( 1  x.  ( (coeff `  F
) `  ( n  -  i ) ) ) ,  ( 0  x.  ( (coeff `  F ) `  (
n  -  i ) ) ) ) )
4746adantl 466 . . . . . 6  |-  ( ( ( F  e.  ( (Poly `  RR )  \  { 0p }
)  /\  n  e.  NN0 )  /\  i  e.  ( 0 ... n
) )  ->  (
( (coeff `  Xp ) `  i
)  x.  ( (coeff `  F ) `  (
n  -  i ) ) )  =  if ( i  =  1 ,  ( 1  x.  ( (coeff `  F
) `  ( n  -  i ) ) ) ,  ( 0  x.  ( (coeff `  F ) `  (
n  -  i ) ) ) ) )
4847sumeq2dv 13487 . . . . 5  |-  ( ( F  e.  ( (Poly `  RR )  \  {
0p } )  /\  n  e.  NN0 )  ->  sum_ i  e.  ( 0 ... n ) ( ( (coeff `  Xp ) `  i )  x.  (
(coeff `  F ) `  ( n  -  i
) ) )  = 
sum_ i  e.  ( 0 ... n ) if ( i  =  1 ,  ( 1  x.  ( (coeff `  F ) `  (
n  -  i ) ) ) ,  ( 0  x.  ( (coeff `  F ) `  (
n  -  i ) ) ) ) )
49 elsn 4041 . . . . . . . . . 10  |-  ( i  e.  { 1 }  <-> 
i  =  1 )
5049bicomi 202 . . . . . . . . 9  |-  ( i  =  1  <->  i  e.  { 1 } )
5150a1i 11 . . . . . . . 8  |-  ( ( ( F  e.  ( (Poly `  RR )  \  { 0p }
)  /\  n  e.  NN0 )  /\  i  e.  ( 0 ... n
) )  ->  (
i  =  1  <->  i  e.  { 1 } ) )
5238coef2 22379 . . . . . . . . . . . . 13  |-  ( ( F  e.  (Poly `  RR )  /\  0  e.  RR )  ->  (coeff `  F ) : NN0 --> RR )
531, 12, 52sylancl 662 . . . . . . . . . . . 12  |-  ( F  e.  ( (Poly `  RR )  \  { 0p } )  -> 
(coeff `  F ) : NN0 --> RR )
5453ad2antrr 725 . . . . . . . . . . 11  |-  ( ( ( F  e.  ( (Poly `  RR )  \  { 0p }
)  /\  n  e.  NN0 )  /\  i  e.  ( 0 ... n
) )  ->  (coeff `  F ) : NN0 --> RR )
55 fznn0sub 11715 . . . . . . . . . . . 12  |-  ( i  e.  ( 0 ... n )  ->  (
n  -  i )  e.  NN0 )
5655adantl 466 . . . . . . . . . . 11  |-  ( ( ( F  e.  ( (Poly `  RR )  \  { 0p }
)  /\  n  e.  NN0 )  /\  i  e.  ( 0 ... n
) )  ->  (
n  -  i )  e.  NN0 )
5754, 56ffvelrnd 6021 . . . . . . . . . 10  |-  ( ( ( F  e.  ( (Poly `  RR )  \  { 0p }
)  /\  n  e.  NN0 )  /\  i  e.  ( 0 ... n
) )  ->  (
(coeff `  F ) `  ( n  -  i
) )  e.  RR )
582, 57sseldi 3502 . . . . . . . . 9  |-  ( ( ( F  e.  ( (Poly `  RR )  \  { 0p }
)  /\  n  e.  NN0 )  /\  i  e.  ( 0 ... n
) )  ->  (
(coeff `  F ) `  ( n  -  i
) )  e.  CC )
5958mulid2d 9613 . . . . . . . 8  |-  ( ( ( F  e.  ( (Poly `  RR )  \  { 0p }
)  /\  n  e.  NN0 )  /\  i  e.  ( 0 ... n
) )  ->  (
1  x.  ( (coeff `  F ) `  (
n  -  i ) ) )  =  ( (coeff `  F ) `  ( n  -  i
) ) )
6058mul02d 9776 . . . . . . . 8  |-  ( ( ( F  e.  ( (Poly `  RR )  \  { 0p }
)  /\  n  e.  NN0 )  /\  i  e.  ( 0 ... n
) )  ->  (
0  x.  ( (coeff `  F ) `  (
n  -  i ) ) )  =  0 )
6151, 59, 60ifbieq12d 3966 . . . . . . 7  |-  ( ( ( F  e.  ( (Poly `  RR )  \  { 0p }
)  /\  n  e.  NN0 )  /\  i  e.  ( 0 ... n
) )  ->  if ( i  =  1 ,  ( 1  x.  ( (coeff `  F
) `  ( n  -  i ) ) ) ,  ( 0  x.  ( (coeff `  F ) `  (
n  -  i ) ) ) )  =  if ( i  e. 
{ 1 } , 
( (coeff `  F
) `  ( n  -  i ) ) ,  0 ) )
6261sumeq2dv 13487 . . . . . 6  |-  ( ( F  e.  ( (Poly `  RR )  \  {
0p } )  /\  n  e.  NN0 )  ->  sum_ i  e.  ( 0 ... n ) if ( i  =  1 ,  ( 1  x.  ( (coeff `  F ) `  (
n  -  i ) ) ) ,  ( 0  x.  ( (coeff `  F ) `  (
n  -  i ) ) ) )  = 
sum_ i  e.  ( 0 ... n ) if ( i  e. 
{ 1 } , 
( (coeff `  F
) `  ( n  -  i ) ) ,  0 ) )
63 eqeq2 2482 . . . . . . 7  |-  ( 0  =  if ( n  =  0 ,  0 ,  ( (coeff `  F ) `  (
n  -  1 ) ) )  ->  ( sum_ i  e.  ( 0 ... n ) if ( i  e.  {
1 } ,  ( (coeff `  F ) `  ( n  -  i
) ) ,  0 )  =  0  <->  sum_ i  e.  ( 0 ... n ) if ( i  e.  {
1 } ,  ( (coeff `  F ) `  ( n  -  i
) ) ,  0 )  =  if ( n  =  0 ,  0 ,  ( (coeff `  F ) `  (
n  -  1 ) ) ) ) )
64 eqeq2 2482 . . . . . . 7  |-  ( ( (coeff `  F ) `  ( n  -  1 ) )  =  if ( n  =  0 ,  0 ,  ( (coeff `  F ) `  ( n  -  1 ) ) )  -> 
( sum_ i  e.  ( 0 ... n ) if ( i  e. 
{ 1 } , 
( (coeff `  F
) `  ( n  -  i ) ) ,  0 )  =  ( (coeff `  F
) `  ( n  -  1 ) )  <->  sum_ i  e.  ( 0 ... n ) if ( i  e.  {
1 } ,  ( (coeff `  F ) `  ( n  -  i
) ) ,  0 )  =  if ( n  =  0 ,  0 ,  ( (coeff `  F ) `  (
n  -  1 ) ) ) ) )
65 oveq2 6291 . . . . . . . . . . 11  |-  ( n  =  0  ->  (
0 ... n )  =  ( 0 ... 0
) )
66 0z 10874 . . . . . . . . . . . 12  |-  0  e.  ZZ
67 fzsn 11724 . . . . . . . . . . . 12  |-  ( 0  e.  ZZ  ->  (
0 ... 0 )  =  { 0 } )
6866, 67ax-mp 5 . . . . . . . . . . 11  |-  ( 0 ... 0 )  =  { 0 }
6965, 68syl6eq 2524 . . . . . . . . . 10  |-  ( n  =  0  ->  (
0 ... n )  =  { 0 } )
70 elsni 4052 . . . . . . . . . . . . 13  |-  ( i  e.  { 0 }  ->  i  =  0 )
7170adantl 466 . . . . . . . . . . . 12  |-  ( ( n  =  0  /\  i  e.  { 0 } )  ->  i  =  0 )
72 ax-1ne0 9560 . . . . . . . . . . . . . 14  |-  1  =/=  0
7372nesymi 2740 . . . . . . . . . . . . 13  |-  -.  0  =  1
74 eqeq1 2471 . . . . . . . . . . . . 13  |-  ( i  =  0  ->  (
i  =  1  <->  0  =  1 ) )
7573, 74mtbiri 303 . . . . . . . . . . . 12  |-  ( i  =  0  ->  -.  i  =  1 )
7671, 75syl 16 . . . . . . . . . . 11  |-  ( ( n  =  0  /\  i  e.  { 0 } )  ->  -.  i  =  1 )
7750notbii 296 . . . . . . . . . . . 12  |-  ( -.  i  =  1  <->  -.  i  e.  { 1 } )
7877biimpi 194 . . . . . . . . . . 11  |-  ( -.  i  =  1  ->  -.  i  e.  { 1 } )
79 iffalse 3948 . . . . . . . . . . 11  |-  ( -.  i  e.  { 1 }  ->  if (
i  e.  { 1 } ,  ( (coeff `  F ) `  (
n  -  i ) ) ,  0 )  =  0 )
8076, 78, 793syl 20 . . . . . . . . . 10  |-  ( ( n  =  0  /\  i  e.  { 0 } )  ->  if ( i  e.  {
1 } ,  ( (coeff `  F ) `  ( n  -  i
) ) ,  0 )  =  0 )
8169, 80sumeq12rdv 13491 . . . . . . . . 9  |-  ( n  =  0  ->  sum_ i  e.  ( 0 ... n
) if ( i  e.  { 1 } ,  ( (coeff `  F ) `  (
n  -  i ) ) ,  0 )  =  sum_ i  e.  {
0 } 0 )
82 snfi 7596 . . . . . . . . . . 11  |-  { 0 }  e.  Fin
8382olci 391 . . . . . . . . . 10  |-  ( { 0 }  C_  ( ZZ>=
`  0 )  \/ 
{ 0 }  e.  Fin )
84 sumz 13506 . . . . . . . . . 10  |-  ( ( { 0 }  C_  ( ZZ>= `  0 )  \/  { 0 }  e.  Fin )  ->  sum_ i  e.  { 0 } 0  =  0 )
8583, 84ax-mp 5 . . . . . . . . 9  |-  sum_ i  e.  { 0 } 0  =  0
8681, 85syl6eq 2524 . . . . . . . 8  |-  ( n  =  0  ->  sum_ i  e.  ( 0 ... n
) if ( i  e.  { 1 } ,  ( (coeff `  F ) `  (
n  -  i ) ) ,  0 )  =  0 )
8786adantl 466 . . . . . . 7  |-  ( ( ( F  e.  ( (Poly `  RR )  \  { 0p }
)  /\  n  e.  NN0 )  /\  n  =  0 )  ->  sum_ i  e.  ( 0 ... n
) if ( i  e.  { 1 } ,  ( (coeff `  F ) `  (
n  -  i ) ) ,  0 )  =  0 )
88 simpll 753 . . . . . . . 8  |-  ( ( ( F  e.  ( (Poly `  RR )  \  { 0p }
)  /\  n  e.  NN0 )  /\  -.  n  =  0 )  ->  F  e.  ( (Poly `  RR )  \  {
0p } ) )
8936adantr 465 . . . . . . . . . 10  |-  ( ( ( F  e.  ( (Poly `  RR )  \  { 0p }
)  /\  n  e.  NN0 )  /\  -.  n  =  0 )  ->  n  e.  NN0 )
90 simpr 461 . . . . . . . . . . 11  |-  ( ( ( F  e.  ( (Poly `  RR )  \  { 0p }
)  /\  n  e.  NN0 )  /\  -.  n  =  0 )  ->  -.  n  =  0
)
9190neqned 2670 . . . . . . . . . 10  |-  ( ( ( F  e.  ( (Poly `  RR )  \  { 0p }
)  /\  n  e.  NN0 )  /\  -.  n  =  0 )  ->  n  =/=  0 )
9289, 91jca 532 . . . . . . . . 9  |-  ( ( ( F  e.  ( (Poly `  RR )  \  { 0p }
)  /\  n  e.  NN0 )  /\  -.  n  =  0 )  -> 
( n  e.  NN0  /\  n  =/=  0 ) )
93 elnnne0 10808 . . . . . . . . 9  |-  ( n  e.  NN  <->  ( n  e.  NN0  /\  n  =/=  0 ) )
9492, 93sylibr 212 . . . . . . . 8  |-  ( ( ( F  e.  ( (Poly `  RR )  \  { 0p }
)  /\  n  e.  NN0 )  /\  -.  n  =  0 )  ->  n  e.  NN )
95 1nn0 10810 . . . . . . . . . . . . 13  |-  1  e.  NN0
9695a1i 11 . . . . . . . . . . . 12  |-  ( ( F  e.  ( (Poly `  RR )  \  {
0p } )  /\  n  e.  NN )  ->  1  e.  NN0 )
97 simpr 461 . . . . . . . . . . . . 13  |-  ( ( F  e.  ( (Poly `  RR )  \  {
0p } )  /\  n  e.  NN )  ->  n  e.  NN )
9897nnnn0d 10851 . . . . . . . . . . . 12  |-  ( ( F  e.  ( (Poly `  RR )  \  {
0p } )  /\  n  e.  NN )  ->  n  e.  NN0 )
99 nnge1 10561 . . . . . . . . . . . . 13  |-  ( n  e.  NN  ->  1  <_  n )
10097, 99syl 16 . . . . . . . . . . . 12  |-  ( ( F  e.  ( (Poly `  RR )  \  {
0p } )  /\  n  e.  NN )  ->  1  <_  n
)
101 elfz2nn0 11767 . . . . . . . . . . . 12  |-  ( 1  e.  ( 0 ... n )  <->  ( 1  e.  NN0  /\  n  e.  NN0  /\  1  <_  n ) )
10296, 98, 100, 101syl3anbrc 1180 . . . . . . . . . . 11  |-  ( ( F  e.  ( (Poly `  RR )  \  {
0p } )  /\  n  e.  NN )  ->  1  e.  ( 0 ... n ) )
1033elexi 3123 . . . . . . . . . . . 12  |-  1  e.  _V
104103snss 4151 . . . . . . . . . . 11  |-  ( 1  e.  ( 0 ... n )  <->  { 1 }  C_  ( 0 ... n ) )
105102, 104sylib 196 . . . . . . . . . 10  |-  ( ( F  e.  ( (Poly `  RR )  \  {
0p } )  /\  n  e.  NN )  ->  { 1 } 
C_  ( 0 ... n ) )
10653ad2antrr 725 . . . . . . . . . . . . 13  |-  ( ( ( F  e.  ( (Poly `  RR )  \  { 0p }
)  /\  n  e.  NN )  /\  i  e.  { 1 } )  ->  (coeff `  F
) : NN0 --> RR )
107 oveq2 6291 . . . . . . . . . . . . . . . 16  |-  ( i  =  1  ->  (
n  -  i )  =  ( n  - 
1 ) )
10849, 107sylbi 195 . . . . . . . . . . . . . . 15  |-  ( i  e.  { 1 }  ->  ( n  -  i )  =  ( n  -  1 ) )
109108adantl 466 . . . . . . . . . . . . . 14  |-  ( ( ( F  e.  ( (Poly `  RR )  \  { 0p }
)  /\  n  e.  NN )  /\  i  e.  { 1 } )  ->  ( n  -  i )  =  ( n  -  1 ) )
110 nnm1nn0 10836 . . . . . . . . . . . . . . 15  |-  ( n  e.  NN  ->  (
n  -  1 )  e.  NN0 )
111110ad2antlr 726 . . . . . . . . . . . . . 14  |-  ( ( ( F  e.  ( (Poly `  RR )  \  { 0p }
)  /\  n  e.  NN )  /\  i  e.  { 1 } )  ->  ( n  - 
1 )  e.  NN0 )
112109, 111eqeltrd 2555 . . . . . . . . . . . . 13  |-  ( ( ( F  e.  ( (Poly `  RR )  \  { 0p }
)  /\  n  e.  NN )  /\  i  e.  { 1 } )  ->  ( n  -  i )  e.  NN0 )
113106, 112ffvelrnd 6021 . . . . . . . . . . . 12  |-  ( ( ( F  e.  ( (Poly `  RR )  \  { 0p }
)  /\  n  e.  NN )  /\  i  e.  { 1 } )  ->  ( (coeff `  F ) `  (
n  -  i ) )  e.  RR )
1142, 113sseldi 3502 . . . . . . . . . . 11  |-  ( ( ( F  e.  ( (Poly `  RR )  \  { 0p }
)  /\  n  e.  NN )  /\  i  e.  { 1 } )  ->  ( (coeff `  F ) `  (
n  -  i ) )  e.  CC )
115114ralrimiva 2878 . . . . . . . . . 10  |-  ( ( F  e.  ( (Poly `  RR )  \  {
0p } )  /\  n  e.  NN )  ->  A. i  e.  {
1 }  ( (coeff `  F ) `  (
n  -  i ) )  e.  CC )
116 fzfi 12049 . . . . . . . . . . . 12  |-  ( 0 ... n )  e. 
Fin
117116olci 391 . . . . . . . . . . 11  |-  ( ( 0 ... n ) 
C_  ( ZZ>= `  0
)  \/  ( 0 ... n )  e. 
Fin )
118117a1i 11 . . . . . . . . . 10  |-  ( ( F  e.  ( (Poly `  RR )  \  {
0p } )  /\  n  e.  NN )  ->  ( ( 0 ... n )  C_  ( ZZ>= `  0 )  \/  ( 0 ... n
)  e.  Fin )
)
119 sumss2 13510 . . . . . . . . . 10  |-  ( ( ( { 1 } 
C_  ( 0 ... n )  /\  A. i  e.  { 1 }  ( (coeff `  F ) `  (
n  -  i ) )  e.  CC )  /\  ( ( 0 ... n )  C_  ( ZZ>= `  0 )  \/  ( 0 ... n
)  e.  Fin )
)  ->  sum_ i  e. 
{ 1 }  (
(coeff `  F ) `  ( n  -  i
) )  =  sum_ i  e.  ( 0 ... n ) if ( i  e.  {
1 } ,  ( (coeff `  F ) `  ( n  -  i
) ) ,  0 ) )
120105, 115, 118, 119syl21anc 1227 . . . . . . . . 9  |-  ( ( F  e.  ( (Poly `  RR )  \  {
0p } )  /\  n  e.  NN )  ->  sum_ i  e.  {
1 }  ( (coeff `  F ) `  (
n  -  i ) )  =  sum_ i  e.  ( 0 ... n
) if ( i  e.  { 1 } ,  ( (coeff `  F ) `  (
n  -  i ) ) ,  0 ) )
12153adantr 465 . . . . . . . . . . . 12  |-  ( ( F  e.  ( (Poly `  RR )  \  {
0p } )  /\  n  e.  NN )  ->  (coeff `  F
) : NN0 --> RR )
12297, 110syl 16 . . . . . . . . . . . 12  |-  ( ( F  e.  ( (Poly `  RR )  \  {
0p } )  /\  n  e.  NN )  ->  ( n  - 
1 )  e.  NN0 )
123121, 122ffvelrnd 6021 . . . . . . . . . . 11  |-  ( ( F  e.  ( (Poly `  RR )  \  {
0p } )  /\  n  e.  NN )  ->  ( (coeff `  F ) `  (
n  -  1 ) )  e.  RR )
1242, 123sseldi 3502 . . . . . . . . . 10  |-  ( ( F  e.  ( (Poly `  RR )  \  {
0p } )  /\  n  e.  NN )  ->  ( (coeff `  F ) `  (
n  -  1 ) )  e.  CC )
125107fveq2d 5869 . . . . . . . . . . 11  |-  ( i  =  1  ->  (
(coeff `  F ) `  ( n  -  i
) )  =  ( (coeff `  F ) `  ( n  -  1 ) ) )
126125sumsn 13525 . . . . . . . . . 10  |-  ( ( 1  e.  RR  /\  ( (coeff `  F ) `  ( n  -  1 ) )  e.  CC )  ->  sum_ i  e.  {
1 }  ( (coeff `  F ) `  (
n  -  i ) )  =  ( (coeff `  F ) `  (
n  -  1 ) ) )
1273, 124, 126sylancr 663 . . . . . . . . 9  |-  ( ( F  e.  ( (Poly `  RR )  \  {
0p } )  /\  n  e.  NN )  ->  sum_ i  e.  {
1 }  ( (coeff `  F ) `  (
n  -  i ) )  =  ( (coeff `  F ) `  (
n  -  1 ) ) )
128120, 127eqtr3d 2510 . . . . . . . 8  |-  ( ( F  e.  ( (Poly `  RR )  \  {
0p } )  /\  n  e.  NN )  ->  sum_ i  e.  ( 0 ... n ) if ( i  e. 
{ 1 } , 
( (coeff `  F
) `  ( n  -  i ) ) ,  0 )  =  ( (coeff `  F
) `  ( n  -  1 ) ) )
12988, 94, 128syl2anc 661 . . . . . . 7  |-  ( ( ( F  e.  ( (Poly `  RR )  \  { 0p }
)  /\  n  e.  NN0 )  /\  -.  n  =  0 )  ->  sum_ i  e.  ( 0 ... n ) if ( i  e.  {
1 } ,  ( (coeff `  F ) `  ( n  -  i
) ) ,  0 )  =  ( (coeff `  F ) `  (
n  -  1 ) ) )
13063, 64, 87, 129ifbothda 3974 . . . . . 6  |-  ( ( F  e.  ( (Poly `  RR )  \  {
0p } )  /\  n  e.  NN0 )  ->  sum_ i  e.  ( 0 ... n ) if ( i  e. 
{ 1 } , 
( (coeff `  F
) `  ( n  -  i ) ) ,  0 )  =  if ( n  =  0 ,  0 ,  ( (coeff `  F
) `  ( n  -  1 ) ) ) )
13162, 130eqtrd 2508 . . . . 5  |-  ( ( F  e.  ( (Poly `  RR )  \  {
0p } )  /\  n  e.  NN0 )  ->  sum_ i  e.  ( 0 ... n ) if ( i  =  1 ,  ( 1  x.  ( (coeff `  F ) `  (
n  -  i ) ) ) ,  ( 0  x.  ( (coeff `  F ) `  (
n  -  i ) ) ) )  =  if ( n  =  0 ,  0 ,  ( (coeff `  F
) `  ( n  -  1 ) ) ) )
13240, 48, 1313eqtrd 2512 . . . 4  |-  ( ( F  e.  ( (Poly `  RR )  \  {
0p } )  /\  n  e.  NN0 )  ->  ( (coeff `  ( Xp  oF  x.  F ) ) `  n )  =  if ( n  =  0 ,  0 ,  ( (coeff `  F ) `  (
n  -  1 ) ) ) )
13333, 132eqtrd 2508 . . 3  |-  ( ( F  e.  ( (Poly `  RR )  \  {
0p } )  /\  n  e.  NN0 )  ->  ( (coeff `  ( F  oF  x.  Xp ) ) `
 n )  =  if ( n  =  0 ,  0 ,  ( (coeff `  F
) `  ( n  -  1 ) ) ) )
134133mpteq2dva 4533 . 2  |-  ( F  e.  ( (Poly `  RR )  \  { 0p } )  -> 
( n  e.  NN0  |->  ( (coeff `  ( F  oF  x.  Xp ) ) `  n ) )  =  ( n  e.  NN0  |->  if ( n  =  0 ,  0 ,  ( (coeff `  F ) `  ( n  -  1 ) ) ) ) )
13519, 134eqtrd 2508 1  |-  ( F  e.  ( (Poly `  RR )  \  { 0p } )  -> 
(coeff `  ( F  oF  x.  Xp ) )  =  ( n  e.  NN0  |->  if ( n  =  0 ,  0 ,  ( (coeff `  F ) `  ( n  -  1 ) ) ) ) )
Colors of variables: wff setvar class
Syntax hints:   -. wn 3    -> wi 4    <-> wb 184    \/ wo 368    /\ wa 369    = wceq 1379    e. wcel 1767    =/= wne 2662   A.wral 2814   _Vcvv 3113    \ cdif 3473    C_ wss 3476   ifcif 3939   {csn 4027   class class class wbr 4447    |-> cmpt 4505    Fn wfn 5582   -->wf 5583   ` cfv 5587  (class class class)co 6283    oFcof 6521   Fincfn 7516   CCcc 9489   RRcr 9490   0cc0 9491   1c1 9492    x. cmul 9496    <_ cle 9628    - cmin 9804   NNcn 10535   NN0cn0 10794   ZZcz 10863   ZZ>=cuz 11081   ...cfz 11671   sum_csu 13470   0pc0p 21827  Polycply 22332   Xpcidp 22333  coeffccoe 22334
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1601  ax-4 1612  ax-5 1680  ax-6 1719  ax-7 1739  ax-8 1769  ax-9 1771  ax-10 1786  ax-11 1791  ax-12 1803  ax-13 1968  ax-ext 2445  ax-rep 4558  ax-sep 4568  ax-nul 4576  ax-pow 4625  ax-pr 4686  ax-un 6575  ax-inf2 8057  ax-cnex 9547  ax-resscn 9548  ax-1cn 9549  ax-icn 9550  ax-addcl 9551  ax-addrcl 9552  ax-mulcl 9553  ax-mulrcl 9554  ax-mulcom 9555  ax-addass 9556  ax-mulass 9557  ax-distr 9558  ax-i2m1 9559  ax-1ne0 9560  ax-1rid 9561  ax-rnegex 9562  ax-rrecex 9563  ax-cnre 9564  ax-pre-lttri 9565  ax-pre-lttrn 9566  ax-pre-ltadd 9567  ax-pre-mulgt0 9568  ax-pre-sup 9569  ax-addf 9570
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3or 974  df-3an 975  df-tru 1382  df-fal 1385  df-ex 1597  df-nf 1600  df-sb 1712  df-eu 2279  df-mo 2280  df-clab 2453  df-cleq 2459  df-clel 2462  df-nfc 2617  df-ne 2664  df-nel 2665  df-ral 2819  df-rex 2820  df-reu 2821  df-rmo 2822  df-rab 2823  df-v 3115  df-sbc 3332  df-csb 3436  df-dif 3479  df-un 3481  df-in 3483  df-ss 3490  df-pss 3492  df-nul 3786  df-if 3940  df-pw 4012  df-sn 4028  df-pr 4030  df-tp 4032  df-op 4034  df-uni 4246  df-int 4283  df-iun 4327  df-br 4448  df-opab 4506  df-mpt 4507  df-tr 4541  df-eprel 4791  df-id 4795  df-po 4800  df-so 4801  df-fr 4838  df-se 4839  df-we 4840  df-ord 4881  df-on 4882  df-lim 4883  df-suc 4884  df-xp 5005  df-rel 5006  df-cnv 5007  df-co 5008  df-dm 5009  df-rn 5010  df-res 5011  df-ima 5012  df-iota 5550  df-fun 5589  df-fn 5590  df-f 5591  df-f1 5592  df-fo 5593  df-f1o 5594  df-fv 5595  df-isom 5596  df-riota 6244  df-ov 6286  df-oprab 6287  df-mpt2 6288  df-of 6523  df-om 6680  df-1st 6784  df-2nd 6785  df-recs 7042  df-rdg 7076  df-1o 7130  df-oadd 7134  df-er 7311  df-map 7422  df-pm 7423  df-en 7517  df-dom 7518  df-sdom 7519  df-fin 7520  df-sup 7900  df-oi 7934  df-card 8319  df-pnf 9629  df-mnf 9630  df-xr 9631  df-ltxr 9632  df-le 9633  df-sub 9806  df-neg 9807  df-div 10206  df-nn 10536  df-2 10593  df-3 10594  df-n0 10795  df-z 10864  df-uz 11082  df-rp 11220  df-fz 11672  df-fzo 11792  df-fl 11896  df-seq 12075  df-exp 12134  df-hash 12373  df-cj 12894  df-re 12895  df-im 12896  df-sqrt 13030  df-abs 13031  df-clim 13273  df-rlim 13274  df-sum 13471  df-0p 21828  df-ply 22336  df-idp 22337  df-coe 22338  df-dgr 22339
This theorem is referenced by:  plymulx  28161
  Copyright terms: Public domain W3C validator