MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  plymullem Structured version   Unicode version

Theorem plymullem 23077
Description: Lemma for plymul 23079. (Contributed by Mario Carneiro, 21-Jul-2014.)
Hypotheses
Ref Expression
plyadd.1  |-  ( ph  ->  F  e.  (Poly `  S ) )
plyadd.2  |-  ( ph  ->  G  e.  (Poly `  S ) )
plyadd.3  |-  ( (
ph  /\  ( x  e.  S  /\  y  e.  S ) )  -> 
( x  +  y )  e.  S )
plyadd.m  |-  ( ph  ->  M  e.  NN0 )
plyadd.n  |-  ( ph  ->  N  e.  NN0 )
plyadd.a  |-  ( ph  ->  A  e.  ( ( S  u.  { 0 } )  ^m  NN0 ) )
plyadd.b  |-  ( ph  ->  B  e.  ( ( S  u.  { 0 } )  ^m  NN0 ) )
plyadd.a2  |-  ( ph  ->  ( A " ( ZZ>=
`  ( M  + 
1 ) ) )  =  { 0 } )
plyadd.b2  |-  ( ph  ->  ( B " ( ZZ>=
`  ( N  + 
1 ) ) )  =  { 0 } )
plyadd.f  |-  ( ph  ->  F  =  ( z  e.  CC  |->  sum_ k  e.  ( 0 ... M
) ( ( A `
 k )  x.  ( z ^ k
) ) ) )
plyadd.g  |-  ( ph  ->  G  =  ( z  e.  CC  |->  sum_ k  e.  ( 0 ... N
) ( ( B `
 k )  x.  ( z ^ k
) ) ) )
plymul.x  |-  ( (
ph  /\  ( x  e.  S  /\  y  e.  S ) )  -> 
( x  x.  y
)  e.  S )
Assertion
Ref Expression
plymullem  |-  ( ph  ->  ( F  oF  x.  G )  e.  (Poly `  S )
)
Distinct variable groups:    x, k,
y, z, B    x, F, y, z    S, k, x, y, z    x, A, y, z    x, G, y, z    ph, k, x, y, z    k, M, z    k, N, z
Allowed substitution hints:    A( k)    F( k)    G( k)    M( x, y)    N( x, y)

Proof of Theorem plymullem
Dummy variable  n is distinct from all other variables.
StepHypRef Expression
1 plyadd.1 . . . 4  |-  ( ph  ->  F  e.  (Poly `  S ) )
2 plyadd.2 . . . 4  |-  ( ph  ->  G  e.  (Poly `  S ) )
3 plyadd.m . . . 4  |-  ( ph  ->  M  e.  NN0 )
4 plyadd.n . . . 4  |-  ( ph  ->  N  e.  NN0 )
5 plyadd.a . . . . . 6  |-  ( ph  ->  A  e.  ( ( S  u.  { 0 } )  ^m  NN0 ) )
6 plybss 23055 . . . . . . . . . 10  |-  ( F  e.  (Poly `  S
)  ->  S  C_  CC )
71, 6syl 17 . . . . . . . . 9  |-  ( ph  ->  S  C_  CC )
8 0cnd 9625 . . . . . . . . . 10  |-  ( ph  ->  0  e.  CC )
98snssd 4139 . . . . . . . . 9  |-  ( ph  ->  { 0 }  C_  CC )
107, 9unssd 3639 . . . . . . . 8  |-  ( ph  ->  ( S  u.  {
0 } )  C_  CC )
11 cnex 9609 . . . . . . . 8  |-  CC  e.  _V
12 ssexg 4562 . . . . . . . 8  |-  ( ( ( S  u.  {
0 } )  C_  CC  /\  CC  e.  _V )  ->  ( S  u.  { 0 } )  e. 
_V )
1310, 11, 12sylancl 666 . . . . . . 7  |-  ( ph  ->  ( S  u.  {
0 } )  e. 
_V )
14 nn0ex 10864 . . . . . . 7  |-  NN0  e.  _V
15 elmapg 7484 . . . . . . 7  |-  ( ( ( S  u.  {
0 } )  e. 
_V  /\  NN0  e.  _V )  ->  ( A  e.  ( ( S  u.  { 0 } )  ^m  NN0 )  <->  A : NN0 --> ( S  u.  { 0 } ) ) )
1613, 14, 15sylancl 666 . . . . . 6  |-  ( ph  ->  ( A  e.  ( ( S  u.  {
0 } )  ^m  NN0 )  <->  A : NN0 --> ( S  u.  { 0 } ) ) )
175, 16mpbid 213 . . . . 5  |-  ( ph  ->  A : NN0 --> ( S  u.  { 0 } ) )
1817, 10fssd 5746 . . . 4  |-  ( ph  ->  A : NN0 --> CC )
19 plyadd.b . . . . . 6  |-  ( ph  ->  B  e.  ( ( S  u.  { 0 } )  ^m  NN0 ) )
20 elmapg 7484 . . . . . . 7  |-  ( ( ( S  u.  {
0 } )  e. 
_V  /\  NN0  e.  _V )  ->  ( B  e.  ( ( S  u.  { 0 } )  ^m  NN0 )  <->  B : NN0 --> ( S  u.  { 0 } ) ) )
2113, 14, 20sylancl 666 . . . . . 6  |-  ( ph  ->  ( B  e.  ( ( S  u.  {
0 } )  ^m  NN0 )  <->  B : NN0 --> ( S  u.  { 0 } ) ) )
2219, 21mpbid 213 . . . . 5  |-  ( ph  ->  B : NN0 --> ( S  u.  { 0 } ) )
2322, 10fssd 5746 . . . 4  |-  ( ph  ->  B : NN0 --> CC )
24 plyadd.a2 . . . 4  |-  ( ph  ->  ( A " ( ZZ>=
`  ( M  + 
1 ) ) )  =  { 0 } )
25 plyadd.b2 . . . 4  |-  ( ph  ->  ( B " ( ZZ>=
`  ( N  + 
1 ) ) )  =  { 0 } )
26 plyadd.f . . . 4  |-  ( ph  ->  F  =  ( z  e.  CC  |->  sum_ k  e.  ( 0 ... M
) ( ( A `
 k )  x.  ( z ^ k
) ) ) )
27 plyadd.g . . . 4  |-  ( ph  ->  G  =  ( z  e.  CC  |->  sum_ k  e.  ( 0 ... N
) ( ( B `
 k )  x.  ( z ^ k
) ) ) )
281, 2, 3, 4, 18, 23, 24, 25, 26, 27plymullem1 23075 . . 3  |-  ( ph  ->  ( F  oF  x.  G )  =  ( z  e.  CC  |->  sum_
n  e.  ( 0 ... ( M  +  N ) ) (
sum_ k  e.  ( 0 ... n ) ( ( A `  k )  x.  ( B `  ( n  -  k ) ) )  x.  ( z ^ n ) ) ) )
293, 4nn0addcld 10918 . . . 4  |-  ( ph  ->  ( M  +  N
)  e.  NN0 )
30 eqid 2420 . . . . . . 7  |-  ( S  u.  { 0 } )  =  ( S  u.  { 0 } )
31 plyadd.3 . . . . . . 7  |-  ( (
ph  /\  ( x  e.  S  /\  y  e.  S ) )  -> 
( x  +  y )  e.  S )
327, 30, 31un0addcl 10892 . . . . . 6  |-  ( (
ph  /\  ( x  e.  ( S  u.  {
0 } )  /\  y  e.  ( S  u.  { 0 } ) ) )  ->  (
x  +  y )  e.  ( S  u.  { 0 } ) )
33 fzfid 12172 . . . . . 6  |-  ( ph  ->  ( 0 ... n
)  e.  Fin )
34 elfznn0 11874 . . . . . . . . 9  |-  ( k  e.  ( 0 ... n )  ->  k  e.  NN0 )
35 ffvelrn 6026 . . . . . . . . 9  |-  ( ( A : NN0 --> ( S  u.  { 0 } )  /\  k  e. 
NN0 )  ->  ( A `  k )  e.  ( S  u.  {
0 } ) )
3617, 34, 35syl2an 479 . . . . . . . 8  |-  ( (
ph  /\  k  e.  ( 0 ... n
) )  ->  ( A `  k )  e.  ( S  u.  {
0 } ) )
37 fznn0sub 11818 . . . . . . . . 9  |-  ( k  e.  ( 0 ... n )  ->  (
n  -  k )  e.  NN0 )
38 ffvelrn 6026 . . . . . . . . 9  |-  ( ( B : NN0 --> ( S  u.  { 0 } )  /\  ( n  -  k )  e. 
NN0 )  ->  ( B `  ( n  -  k ) )  e.  ( S  u.  { 0 } ) )
3922, 37, 38syl2an 479 . . . . . . . 8  |-  ( (
ph  /\  k  e.  ( 0 ... n
) )  ->  ( B `  ( n  -  k ) )  e.  ( S  u.  { 0 } ) )
4036, 39jca 534 . . . . . . 7  |-  ( (
ph  /\  k  e.  ( 0 ... n
) )  ->  (
( A `  k
)  e.  ( S  u.  { 0 } )  /\  ( B `
 ( n  -  k ) )  e.  ( S  u.  {
0 } ) ) )
41 plymul.x . . . . . . . . 9  |-  ( (
ph  /\  ( x  e.  S  /\  y  e.  S ) )  -> 
( x  x.  y
)  e.  S )
427, 30, 41un0mulcl 10893 . . . . . . . 8  |-  ( (
ph  /\  ( x  e.  ( S  u.  {
0 } )  /\  y  e.  ( S  u.  { 0 } ) ) )  ->  (
x  x.  y )  e.  ( S  u.  { 0 } ) )
4342caovclg 6466 . . . . . . 7  |-  ( (
ph  /\  ( ( A `  k )  e.  ( S  u.  {
0 } )  /\  ( B `  ( n  -  k ) )  e.  ( S  u.  { 0 } ) ) )  ->  ( ( A `  k )  x.  ( B `  (
n  -  k ) ) )  e.  ( S  u.  { 0 } ) )
4440, 43syldan 472 . . . . . 6  |-  ( (
ph  /\  k  e.  ( 0 ... n
) )  ->  (
( A `  k
)  x.  ( B `
 ( n  -  k ) ) )  e.  ( S  u.  { 0 } ) )
45 ssun2 3627 . . . . . . . 8  |-  { 0 }  C_  ( S  u.  { 0 } )
46 c0ex 9626 . . . . . . . . 9  |-  0  e.  _V
4746snss 4118 . . . . . . . 8  |-  ( 0  e.  ( S  u.  { 0 } )  <->  { 0 }  C_  ( S  u.  { 0 } ) )
4845, 47mpbir 212 . . . . . . 7  |-  0  e.  ( S  u.  {
0 } )
4948a1i 11 . . . . . 6  |-  ( ph  ->  0  e.  ( S  u.  { 0 } ) )
5010, 32, 33, 44, 49fsumcllem 13765 . . . . 5  |-  ( ph  -> 
sum_ k  e.  ( 0 ... n ) ( ( A `  k )  x.  ( B `  ( n  -  k ) ) )  e.  ( S  u.  { 0 } ) )
5150adantr 466 . . . 4  |-  ( (
ph  /\  n  e.  ( 0 ... ( M  +  N )
) )  ->  sum_ k  e.  ( 0 ... n
) ( ( A `
 k )  x.  ( B `  (
n  -  k ) ) )  e.  ( S  u.  { 0 } ) )
5210, 29, 51elplyd 23063 . . 3  |-  ( ph  ->  ( z  e.  CC  |->  sum_
n  e.  ( 0 ... ( M  +  N ) ) (
sum_ k  e.  ( 0 ... n ) ( ( A `  k )  x.  ( B `  ( n  -  k ) ) )  x.  ( z ^ n ) ) )  e.  (Poly `  ( S  u.  { 0 } ) ) )
5328, 52eqeltrd 2508 . 2  |-  ( ph  ->  ( F  oF  x.  G )  e.  (Poly `  ( S  u.  { 0 } ) ) )
54 plyun0 23058 . 2  |-  (Poly `  ( S  u.  { 0 } ) )  =  (Poly `  S )
5553, 54syl6eleq 2518 1  |-  ( ph  ->  ( F  oF  x.  G )  e.  (Poly `  S )
)
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 187    /\ wa 370    = wceq 1437    e. wcel 1867   _Vcvv 3078    u. cun 3431    C_ wss 3433   {csn 3993    |-> cmpt 4475   "cima 4848   -->wf 5588   ` cfv 5592  (class class class)co 6296    oFcof 6534    ^m cmap 7471   CCcc 9526   0cc0 9528   1c1 9529    + caddc 9531    x. cmul 9533    - cmin 9849   NN0cn0 10858   ZZ>=cuz 11148   ...cfz 11771   ^cexp 12258   sum_csu 13719  Polycply 23045
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1665  ax-4 1678  ax-5 1748  ax-6 1794  ax-7 1838  ax-8 1869  ax-9 1871  ax-10 1886  ax-11 1891  ax-12 1904  ax-13 2052  ax-ext 2398  ax-rep 4529  ax-sep 4539  ax-nul 4547  ax-pow 4594  ax-pr 4652  ax-un 6588  ax-inf2 8137  ax-cnex 9584  ax-resscn 9585  ax-1cn 9586  ax-icn 9587  ax-addcl 9588  ax-addrcl 9589  ax-mulcl 9590  ax-mulrcl 9591  ax-mulcom 9592  ax-addass 9593  ax-mulass 9594  ax-distr 9595  ax-i2m1 9596  ax-1ne0 9597  ax-1rid 9598  ax-rnegex 9599  ax-rrecex 9600  ax-cnre 9601  ax-pre-lttri 9602  ax-pre-lttrn 9603  ax-pre-ltadd 9604  ax-pre-mulgt0 9605  ax-pre-sup 9606
This theorem depends on definitions:  df-bi 188  df-or 371  df-an 372  df-3or 983  df-3an 984  df-tru 1440  df-fal 1443  df-ex 1660  df-nf 1664  df-sb 1787  df-eu 2267  df-mo 2268  df-clab 2406  df-cleq 2412  df-clel 2415  df-nfc 2570  df-ne 2618  df-nel 2619  df-ral 2778  df-rex 2779  df-reu 2780  df-rmo 2781  df-rab 2782  df-v 3080  df-sbc 3297  df-csb 3393  df-dif 3436  df-un 3438  df-in 3440  df-ss 3447  df-pss 3449  df-nul 3759  df-if 3907  df-pw 3978  df-sn 3994  df-pr 3996  df-tp 3998  df-op 4000  df-uni 4214  df-int 4250  df-iun 4295  df-br 4418  df-opab 4476  df-mpt 4477  df-tr 4512  df-eprel 4756  df-id 4760  df-po 4766  df-so 4767  df-fr 4804  df-se 4805  df-we 4806  df-xp 4851  df-rel 4852  df-cnv 4853  df-co 4854  df-dm 4855  df-rn 4856  df-res 4857  df-ima 4858  df-pred 5390  df-ord 5436  df-on 5437  df-lim 5438  df-suc 5439  df-iota 5556  df-fun 5594  df-fn 5595  df-f 5596  df-f1 5597  df-fo 5598  df-f1o 5599  df-fv 5600  df-isom 5601  df-riota 6258  df-ov 6299  df-oprab 6300  df-mpt2 6301  df-of 6536  df-om 6698  df-1st 6798  df-2nd 6799  df-wrecs 7027  df-recs 7089  df-rdg 7127  df-1o 7181  df-oadd 7185  df-er 7362  df-map 7473  df-en 7569  df-dom 7570  df-sdom 7571  df-fin 7572  df-sup 7953  df-oi 8016  df-card 8363  df-pnf 9666  df-mnf 9667  df-xr 9668  df-ltxr 9669  df-le 9670  df-sub 9851  df-neg 9852  df-div 10259  df-nn 10599  df-2 10657  df-3 10658  df-n0 10859  df-z 10927  df-uz 11149  df-rp 11292  df-fz 11772  df-fzo 11903  df-seq 12200  df-exp 12259  df-hash 12502  df-cj 13130  df-re 13131  df-im 13132  df-sqrt 13266  df-abs 13267  df-clim 13519  df-sum 13720  df-ply 23049
This theorem is referenced by:  plymul  23079
  Copyright terms: Public domain W3C validator