MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  plymullem Structured version   Unicode version

Theorem plymullem 22440
Description: Lemma for plymul 22442. (Contributed by Mario Carneiro, 21-Jul-2014.)
Hypotheses
Ref Expression
plyadd.1  |-  ( ph  ->  F  e.  (Poly `  S ) )
plyadd.2  |-  ( ph  ->  G  e.  (Poly `  S ) )
plyadd.3  |-  ( (
ph  /\  ( x  e.  S  /\  y  e.  S ) )  -> 
( x  +  y )  e.  S )
plyadd.m  |-  ( ph  ->  M  e.  NN0 )
plyadd.n  |-  ( ph  ->  N  e.  NN0 )
plyadd.a  |-  ( ph  ->  A  e.  ( ( S  u.  { 0 } )  ^m  NN0 ) )
plyadd.b  |-  ( ph  ->  B  e.  ( ( S  u.  { 0 } )  ^m  NN0 ) )
plyadd.a2  |-  ( ph  ->  ( A " ( ZZ>=
`  ( M  + 
1 ) ) )  =  { 0 } )
plyadd.b2  |-  ( ph  ->  ( B " ( ZZ>=
`  ( N  + 
1 ) ) )  =  { 0 } )
plyadd.f  |-  ( ph  ->  F  =  ( z  e.  CC  |->  sum_ k  e.  ( 0 ... M
) ( ( A `
 k )  x.  ( z ^ k
) ) ) )
plyadd.g  |-  ( ph  ->  G  =  ( z  e.  CC  |->  sum_ k  e.  ( 0 ... N
) ( ( B `
 k )  x.  ( z ^ k
) ) ) )
plymul.x  |-  ( (
ph  /\  ( x  e.  S  /\  y  e.  S ) )  -> 
( x  x.  y
)  e.  S )
Assertion
Ref Expression
plymullem  |-  ( ph  ->  ( F  oF  x.  G )  e.  (Poly `  S )
)
Distinct variable groups:    x, k,
y, z, B    x, F, y, z    S, k, x, y, z    x, A, y, z    x, G, y, z    ph, k, x, y, z    k, M, z    k, N, z
Allowed substitution hints:    A( k)    F( k)    G( k)    M( x, y)    N( x, y)

Proof of Theorem plymullem
Dummy variable  n is distinct from all other variables.
StepHypRef Expression
1 plyadd.1 . . . 4  |-  ( ph  ->  F  e.  (Poly `  S ) )
2 plyadd.2 . . . 4  |-  ( ph  ->  G  e.  (Poly `  S ) )
3 plyadd.m . . . 4  |-  ( ph  ->  M  e.  NN0 )
4 plyadd.n . . . 4  |-  ( ph  ->  N  e.  NN0 )
5 plyadd.a . . . . . 6  |-  ( ph  ->  A  e.  ( ( S  u.  { 0 } )  ^m  NN0 ) )
6 plybss 22418 . . . . . . . . . 10  |-  ( F  e.  (Poly `  S
)  ->  S  C_  CC )
71, 6syl 16 . . . . . . . . 9  |-  ( ph  ->  S  C_  CC )
8 0cnd 9590 . . . . . . . . . 10  |-  ( ph  ->  0  e.  CC )
98snssd 4172 . . . . . . . . 9  |-  ( ph  ->  { 0 }  C_  CC )
107, 9unssd 3680 . . . . . . . 8  |-  ( ph  ->  ( S  u.  {
0 } )  C_  CC )
11 cnex 9574 . . . . . . . 8  |-  CC  e.  _V
12 ssexg 4593 . . . . . . . 8  |-  ( ( ( S  u.  {
0 } )  C_  CC  /\  CC  e.  _V )  ->  ( S  u.  { 0 } )  e. 
_V )
1310, 11, 12sylancl 662 . . . . . . 7  |-  ( ph  ->  ( S  u.  {
0 } )  e. 
_V )
14 nn0ex 10802 . . . . . . 7  |-  NN0  e.  _V
15 elmapg 7434 . . . . . . 7  |-  ( ( ( S  u.  {
0 } )  e. 
_V  /\  NN0  e.  _V )  ->  ( A  e.  ( ( S  u.  { 0 } )  ^m  NN0 )  <->  A : NN0 --> ( S  u.  { 0 } ) ) )
1613, 14, 15sylancl 662 . . . . . 6  |-  ( ph  ->  ( A  e.  ( ( S  u.  {
0 } )  ^m  NN0 )  <->  A : NN0 --> ( S  u.  { 0 } ) ) )
175, 16mpbid 210 . . . . 5  |-  ( ph  ->  A : NN0 --> ( S  u.  { 0 } ) )
18 fss 5739 . . . . 5  |-  ( ( A : NN0 --> ( S  u.  { 0 } )  /\  ( S  u.  { 0 } )  C_  CC )  ->  A : NN0 --> CC )
1917, 10, 18syl2anc 661 . . . 4  |-  ( ph  ->  A : NN0 --> CC )
20 plyadd.b . . . . . 6  |-  ( ph  ->  B  e.  ( ( S  u.  { 0 } )  ^m  NN0 ) )
21 elmapg 7434 . . . . . . 7  |-  ( ( ( S  u.  {
0 } )  e. 
_V  /\  NN0  e.  _V )  ->  ( B  e.  ( ( S  u.  { 0 } )  ^m  NN0 )  <->  B : NN0 --> ( S  u.  { 0 } ) ) )
2213, 14, 21sylancl 662 . . . . . 6  |-  ( ph  ->  ( B  e.  ( ( S  u.  {
0 } )  ^m  NN0 )  <->  B : NN0 --> ( S  u.  { 0 } ) ) )
2320, 22mpbid 210 . . . . 5  |-  ( ph  ->  B : NN0 --> ( S  u.  { 0 } ) )
24 fss 5739 . . . . 5  |-  ( ( B : NN0 --> ( S  u.  { 0 } )  /\  ( S  u.  { 0 } )  C_  CC )  ->  B : NN0 --> CC )
2523, 10, 24syl2anc 661 . . . 4  |-  ( ph  ->  B : NN0 --> CC )
26 plyadd.a2 . . . 4  |-  ( ph  ->  ( A " ( ZZ>=
`  ( M  + 
1 ) ) )  =  { 0 } )
27 plyadd.b2 . . . 4  |-  ( ph  ->  ( B " ( ZZ>=
`  ( N  + 
1 ) ) )  =  { 0 } )
28 plyadd.f . . . 4  |-  ( ph  ->  F  =  ( z  e.  CC  |->  sum_ k  e.  ( 0 ... M
) ( ( A `
 k )  x.  ( z ^ k
) ) ) )
29 plyadd.g . . . 4  |-  ( ph  ->  G  =  ( z  e.  CC  |->  sum_ k  e.  ( 0 ... N
) ( ( B `
 k )  x.  ( z ^ k
) ) ) )
301, 2, 3, 4, 19, 25, 26, 27, 28, 29plymullem1 22438 . . 3  |-  ( ph  ->  ( F  oF  x.  G )  =  ( z  e.  CC  |->  sum_
n  e.  ( 0 ... ( M  +  N ) ) (
sum_ k  e.  ( 0 ... n ) ( ( A `  k )  x.  ( B `  ( n  -  k ) ) )  x.  ( z ^ n ) ) ) )
313, 4nn0addcld 10857 . . . 4  |-  ( ph  ->  ( M  +  N
)  e.  NN0 )
32 eqid 2467 . . . . . . 7  |-  ( S  u.  { 0 } )  =  ( S  u.  { 0 } )
33 plyadd.3 . . . . . . 7  |-  ( (
ph  /\  ( x  e.  S  /\  y  e.  S ) )  -> 
( x  +  y )  e.  S )
347, 32, 33un0addcl 10830 . . . . . 6  |-  ( (
ph  /\  ( x  e.  ( S  u.  {
0 } )  /\  y  e.  ( S  u.  { 0 } ) ) )  ->  (
x  +  y )  e.  ( S  u.  { 0 } ) )
35 fzfid 12052 . . . . . 6  |-  ( ph  ->  ( 0 ... n
)  e.  Fin )
36 elfznn0 11771 . . . . . . . . 9  |-  ( k  e.  ( 0 ... n )  ->  k  e.  NN0 )
37 ffvelrn 6020 . . . . . . . . 9  |-  ( ( A : NN0 --> ( S  u.  { 0 } )  /\  k  e. 
NN0 )  ->  ( A `  k )  e.  ( S  u.  {
0 } ) )
3817, 36, 37syl2an 477 . . . . . . . 8  |-  ( (
ph  /\  k  e.  ( 0 ... n
) )  ->  ( A `  k )  e.  ( S  u.  {
0 } ) )
39 fznn0sub 11717 . . . . . . . . 9  |-  ( k  e.  ( 0 ... n )  ->  (
n  -  k )  e.  NN0 )
40 ffvelrn 6020 . . . . . . . . 9  |-  ( ( B : NN0 --> ( S  u.  { 0 } )  /\  ( n  -  k )  e. 
NN0 )  ->  ( B `  ( n  -  k ) )  e.  ( S  u.  { 0 } ) )
4123, 39, 40syl2an 477 . . . . . . . 8  |-  ( (
ph  /\  k  e.  ( 0 ... n
) )  ->  ( B `  ( n  -  k ) )  e.  ( S  u.  { 0 } ) )
4238, 41jca 532 . . . . . . 7  |-  ( (
ph  /\  k  e.  ( 0 ... n
) )  ->  (
( A `  k
)  e.  ( S  u.  { 0 } )  /\  ( B `
 ( n  -  k ) )  e.  ( S  u.  {
0 } ) ) )
43 plymul.x . . . . . . . . 9  |-  ( (
ph  /\  ( x  e.  S  /\  y  e.  S ) )  -> 
( x  x.  y
)  e.  S )
447, 32, 43un0mulcl 10831 . . . . . . . 8  |-  ( (
ph  /\  ( x  e.  ( S  u.  {
0 } )  /\  y  e.  ( S  u.  { 0 } ) ) )  ->  (
x  x.  y )  e.  ( S  u.  { 0 } ) )
4544caovclg 6452 . . . . . . 7  |-  ( (
ph  /\  ( ( A `  k )  e.  ( S  u.  {
0 } )  /\  ( B `  ( n  -  k ) )  e.  ( S  u.  { 0 } ) ) )  ->  ( ( A `  k )  x.  ( B `  (
n  -  k ) ) )  e.  ( S  u.  { 0 } ) )
4642, 45syldan 470 . . . . . 6  |-  ( (
ph  /\  k  e.  ( 0 ... n
) )  ->  (
( A `  k
)  x.  ( B `
 ( n  -  k ) ) )  e.  ( S  u.  { 0 } ) )
47 ssun2 3668 . . . . . . . 8  |-  { 0 }  C_  ( S  u.  { 0 } )
48 c0ex 9591 . . . . . . . . 9  |-  0  e.  _V
4948snss 4151 . . . . . . . 8  |-  ( 0  e.  ( S  u.  { 0 } )  <->  { 0 }  C_  ( S  u.  { 0 } ) )
5047, 49mpbir 209 . . . . . . 7  |-  0  e.  ( S  u.  {
0 } )
5150a1i 11 . . . . . 6  |-  ( ph  ->  0  e.  ( S  u.  { 0 } ) )
5210, 34, 35, 46, 51fsumcllem 13520 . . . . 5  |-  ( ph  -> 
sum_ k  e.  ( 0 ... n ) ( ( A `  k )  x.  ( B `  ( n  -  k ) ) )  e.  ( S  u.  { 0 } ) )
5352adantr 465 . . . 4  |-  ( (
ph  /\  n  e.  ( 0 ... ( M  +  N )
) )  ->  sum_ k  e.  ( 0 ... n
) ( ( A `
 k )  x.  ( B `  (
n  -  k ) ) )  e.  ( S  u.  { 0 } ) )
5410, 31, 53elplyd 22426 . . 3  |-  ( ph  ->  ( z  e.  CC  |->  sum_
n  e.  ( 0 ... ( M  +  N ) ) (
sum_ k  e.  ( 0 ... n ) ( ( A `  k )  x.  ( B `  ( n  -  k ) ) )  x.  ( z ^ n ) ) )  e.  (Poly `  ( S  u.  { 0 } ) ) )
5530, 54eqeltrd 2555 . 2  |-  ( ph  ->  ( F  oF  x.  G )  e.  (Poly `  ( S  u.  { 0 } ) ) )
56 plyun0 22421 . 2  |-  (Poly `  ( S  u.  { 0 } ) )  =  (Poly `  S )
5755, 56syl6eleq 2565 1  |-  ( ph  ->  ( F  oF  x.  G )  e.  (Poly `  S )
)
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 184    /\ wa 369    = wceq 1379    e. wcel 1767   _Vcvv 3113    u. cun 3474    C_ wss 3476   {csn 4027    |-> cmpt 4505   "cima 5002   -->wf 5584   ` cfv 5588  (class class class)co 6285    oFcof 6523    ^m cmap 7421   CCcc 9491   0cc0 9493   1c1 9494    + caddc 9496    x. cmul 9498    - cmin 9806   NN0cn0 10796   ZZ>=cuz 11083   ...cfz 11673   ^cexp 12135   sum_csu 13474  Polycply 22408
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1601  ax-4 1612  ax-5 1680  ax-6 1719  ax-7 1739  ax-8 1769  ax-9 1771  ax-10 1786  ax-11 1791  ax-12 1803  ax-13 1968  ax-ext 2445  ax-rep 4558  ax-sep 4568  ax-nul 4576  ax-pow 4625  ax-pr 4686  ax-un 6577  ax-inf2 8059  ax-cnex 9549  ax-resscn 9550  ax-1cn 9551  ax-icn 9552  ax-addcl 9553  ax-addrcl 9554  ax-mulcl 9555  ax-mulrcl 9556  ax-mulcom 9557  ax-addass 9558  ax-mulass 9559  ax-distr 9560  ax-i2m1 9561  ax-1ne0 9562  ax-1rid 9563  ax-rnegex 9564  ax-rrecex 9565  ax-cnre 9566  ax-pre-lttri 9567  ax-pre-lttrn 9568  ax-pre-ltadd 9569  ax-pre-mulgt0 9570  ax-pre-sup 9571
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3or 974  df-3an 975  df-tru 1382  df-fal 1385  df-ex 1597  df-nf 1600  df-sb 1712  df-eu 2279  df-mo 2280  df-clab 2453  df-cleq 2459  df-clel 2462  df-nfc 2617  df-ne 2664  df-nel 2665  df-ral 2819  df-rex 2820  df-reu 2821  df-rmo 2822  df-rab 2823  df-v 3115  df-sbc 3332  df-csb 3436  df-dif 3479  df-un 3481  df-in 3483  df-ss 3490  df-pss 3492  df-nul 3786  df-if 3940  df-pw 4012  df-sn 4028  df-pr 4030  df-tp 4032  df-op 4034  df-uni 4246  df-int 4283  df-iun 4327  df-br 4448  df-opab 4506  df-mpt 4507  df-tr 4541  df-eprel 4791  df-id 4795  df-po 4800  df-so 4801  df-fr 4838  df-se 4839  df-we 4840  df-ord 4881  df-on 4882  df-lim 4883  df-suc 4884  df-xp 5005  df-rel 5006  df-cnv 5007  df-co 5008  df-dm 5009  df-rn 5010  df-res 5011  df-ima 5012  df-iota 5551  df-fun 5590  df-fn 5591  df-f 5592  df-f1 5593  df-fo 5594  df-f1o 5595  df-fv 5596  df-isom 5597  df-riota 6246  df-ov 6288  df-oprab 6289  df-mpt2 6290  df-of 6525  df-om 6686  df-1st 6785  df-2nd 6786  df-recs 7043  df-rdg 7077  df-1o 7131  df-oadd 7135  df-er 7312  df-map 7423  df-en 7518  df-dom 7519  df-sdom 7520  df-fin 7521  df-sup 7902  df-oi 7936  df-card 8321  df-pnf 9631  df-mnf 9632  df-xr 9633  df-ltxr 9634  df-le 9635  df-sub 9808  df-neg 9809  df-div 10208  df-nn 10538  df-2 10595  df-3 10596  df-n0 10797  df-z 10866  df-uz 11084  df-rp 11222  df-fz 11674  df-fzo 11794  df-seq 12077  df-exp 12136  df-hash 12375  df-cj 12898  df-re 12899  df-im 12900  df-sqrt 13034  df-abs 13035  df-clim 13277  df-sum 13475  df-ply 22412
This theorem is referenced by:  plymul  22442
  Copyright terms: Public domain W3C validator