MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  plyexmo Structured version   Unicode version

Theorem plyexmo 22875
Description: An infinite set of values can be extended to a polynomial in at most one way. (Contributed by Stefan O'Rear, 14-Nov-2014.)
Assertion
Ref Expression
plyexmo  |-  ( ( D  C_  CC  /\  -.  D  e.  Fin )  ->  E* p ( p  e.  (Poly `  S
)  /\  ( p  |`  D )  =  F ) )
Distinct variable groups:    S, p    F, p    D, p

Proof of Theorem plyexmo
Dummy variables  a 
b are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 simplr 753 . . . . . . . . 9  |-  ( ( ( D  C_  CC  /\ 
-.  D  e.  Fin )  /\  ( ( p  e.  (Poly `  CC )  /\  ( p  |`  D )  =  F )  /\  ( a  e.  (Poly `  CC )  /\  ( a  |`  D )  =  F ) ) )  ->  -.  D  e.  Fin )
2 simpll 751 . . . . . . . . . . . . . 14  |-  ( ( ( D  C_  CC  /\ 
-.  D  e.  Fin )  /\  ( ( p  e.  (Poly `  CC )  /\  ( p  |`  D )  =  F )  /\  ( a  e.  (Poly `  CC )  /\  ( a  |`  D )  =  F ) ) )  ->  D  C_  CC )
32sseld 3488 . . . . . . . . . . . . 13  |-  ( ( ( D  C_  CC  /\ 
-.  D  e.  Fin )  /\  ( ( p  e.  (Poly `  CC )  /\  ( p  |`  D )  =  F )  /\  ( a  e.  (Poly `  CC )  /\  ( a  |`  D )  =  F ) ) )  -> 
( b  e.  D  ->  b  e.  CC ) )
4 simprll 761 . . . . . . . . . . . . . . . . . . 19  |-  ( ( ( D  C_  CC  /\ 
-.  D  e.  Fin )  /\  ( ( p  e.  (Poly `  CC )  /\  ( p  |`  D )  =  F )  /\  ( a  e.  (Poly `  CC )  /\  ( a  |`  D )  =  F ) ) )  ->  p  e.  (Poly `  CC ) )
5 plyf 22761 . . . . . . . . . . . . . . . . . . 19  |-  ( p  e.  (Poly `  CC )  ->  p : CC --> CC )
64, 5syl 16 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( D  C_  CC  /\ 
-.  D  e.  Fin )  /\  ( ( p  e.  (Poly `  CC )  /\  ( p  |`  D )  =  F )  /\  ( a  e.  (Poly `  CC )  /\  ( a  |`  D )  =  F ) ) )  ->  p : CC --> CC )
7 ffn 5713 . . . . . . . . . . . . . . . . . 18  |-  ( p : CC --> CC  ->  p  Fn  CC )
86, 7syl 16 . . . . . . . . . . . . . . . . 17  |-  ( ( ( D  C_  CC  /\ 
-.  D  e.  Fin )  /\  ( ( p  e.  (Poly `  CC )  /\  ( p  |`  D )  =  F )  /\  ( a  e.  (Poly `  CC )  /\  ( a  |`  D )  =  F ) ) )  ->  p  Fn  CC )
98adantr 463 . . . . . . . . . . . . . . . 16  |-  ( ( ( ( D  C_  CC  /\  -.  D  e. 
Fin )  /\  (
( p  e.  (Poly `  CC )  /\  (
p  |`  D )  =  F )  /\  (
a  e.  (Poly `  CC )  /\  (
a  |`  D )  =  F ) ) )  /\  b  e.  D
)  ->  p  Fn  CC )
10 simprrl 763 . . . . . . . . . . . . . . . . . . 19  |-  ( ( ( D  C_  CC  /\ 
-.  D  e.  Fin )  /\  ( ( p  e.  (Poly `  CC )  /\  ( p  |`  D )  =  F )  /\  ( a  e.  (Poly `  CC )  /\  ( a  |`  D )  =  F ) ) )  -> 
a  e.  (Poly `  CC ) )
11 plyf 22761 . . . . . . . . . . . . . . . . . . 19  |-  ( a  e.  (Poly `  CC )  ->  a : CC --> CC )
1210, 11syl 16 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( D  C_  CC  /\ 
-.  D  e.  Fin )  /\  ( ( p  e.  (Poly `  CC )  /\  ( p  |`  D )  =  F )  /\  ( a  e.  (Poly `  CC )  /\  ( a  |`  D )  =  F ) ) )  -> 
a : CC --> CC )
13 ffn 5713 . . . . . . . . . . . . . . . . . 18  |-  ( a : CC --> CC  ->  a  Fn  CC )
1412, 13syl 16 . . . . . . . . . . . . . . . . 17  |-  ( ( ( D  C_  CC  /\ 
-.  D  e.  Fin )  /\  ( ( p  e.  (Poly `  CC )  /\  ( p  |`  D )  =  F )  /\  ( a  e.  (Poly `  CC )  /\  ( a  |`  D )  =  F ) ) )  -> 
a  Fn  CC )
1514adantr 463 . . . . . . . . . . . . . . . 16  |-  ( ( ( ( D  C_  CC  /\  -.  D  e. 
Fin )  /\  (
( p  e.  (Poly `  CC )  /\  (
p  |`  D )  =  F )  /\  (
a  e.  (Poly `  CC )  /\  (
a  |`  D )  =  F ) ) )  /\  b  e.  D
)  ->  a  Fn  CC )
16 cnex 9562 . . . . . . . . . . . . . . . . 17  |-  CC  e.  _V
1716a1i 11 . . . . . . . . . . . . . . . 16  |-  ( ( ( ( D  C_  CC  /\  -.  D  e. 
Fin )  /\  (
( p  e.  (Poly `  CC )  /\  (
p  |`  D )  =  F )  /\  (
a  e.  (Poly `  CC )  /\  (
a  |`  D )  =  F ) ) )  /\  b  e.  D
)  ->  CC  e.  _V )
182sselda 3489 . . . . . . . . . . . . . . . 16  |-  ( ( ( ( D  C_  CC  /\  -.  D  e. 
Fin )  /\  (
( p  e.  (Poly `  CC )  /\  (
p  |`  D )  =  F )  /\  (
a  e.  (Poly `  CC )  /\  (
a  |`  D )  =  F ) ) )  /\  b  e.  D
)  ->  b  e.  CC )
19 fnfvof 6526 . . . . . . . . . . . . . . . 16  |-  ( ( ( p  Fn  CC  /\  a  Fn  CC )  /\  ( CC  e.  _V  /\  b  e.  CC ) )  ->  (
( p  oF  -  a ) `  b )  =  ( ( p `  b
)  -  ( a `
 b ) ) )
209, 15, 17, 18, 19syl22anc 1227 . . . . . . . . . . . . . . 15  |-  ( ( ( ( D  C_  CC  /\  -.  D  e. 
Fin )  /\  (
( p  e.  (Poly `  CC )  /\  (
p  |`  D )  =  F )  /\  (
a  e.  (Poly `  CC )  /\  (
a  |`  D )  =  F ) ) )  /\  b  e.  D
)  ->  ( (
p  oF  -  a ) `  b
)  =  ( ( p `  b )  -  ( a `  b ) ) )
216adantr 463 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ( D  C_  CC  /\  -.  D  e. 
Fin )  /\  (
( p  e.  (Poly `  CC )  /\  (
p  |`  D )  =  F )  /\  (
a  e.  (Poly `  CC )  /\  (
a  |`  D )  =  F ) ) )  /\  b  e.  D
)  ->  p : CC
--> CC )
2221, 18ffvelrnd 6008 . . . . . . . . . . . . . . . 16  |-  ( ( ( ( D  C_  CC  /\  -.  D  e. 
Fin )  /\  (
( p  e.  (Poly `  CC )  /\  (
p  |`  D )  =  F )  /\  (
a  e.  (Poly `  CC )  /\  (
a  |`  D )  =  F ) ) )  /\  b  e.  D
)  ->  ( p `  b )  e.  CC )
23 simprlr 762 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( ( D  C_  CC  /\ 
-.  D  e.  Fin )  /\  ( ( p  e.  (Poly `  CC )  /\  ( p  |`  D )  =  F )  /\  ( a  e.  (Poly `  CC )  /\  ( a  |`  D )  =  F ) ) )  -> 
( p  |`  D )  =  F )
24 simprrr 764 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( ( D  C_  CC  /\ 
-.  D  e.  Fin )  /\  ( ( p  e.  (Poly `  CC )  /\  ( p  |`  D )  =  F )  /\  ( a  e.  (Poly `  CC )  /\  ( a  |`  D )  =  F ) ) )  -> 
( a  |`  D )  =  F )
2523, 24eqtr4d 2498 . . . . . . . . . . . . . . . . . . 19  |-  ( ( ( D  C_  CC  /\ 
-.  D  e.  Fin )  /\  ( ( p  e.  (Poly `  CC )  /\  ( p  |`  D )  =  F )  /\  ( a  e.  (Poly `  CC )  /\  ( a  |`  D )  =  F ) ) )  -> 
( p  |`  D )  =  ( a  |`  D ) )
2625adantr 463 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( ( D  C_  CC  /\  -.  D  e. 
Fin )  /\  (
( p  e.  (Poly `  CC )  /\  (
p  |`  D )  =  F )  /\  (
a  e.  (Poly `  CC )  /\  (
a  |`  D )  =  F ) ) )  /\  b  e.  D
)  ->  ( p  |`  D )  =  ( a  |`  D )
)
2726fveq1d 5850 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ( D  C_  CC  /\  -.  D  e. 
Fin )  /\  (
( p  e.  (Poly `  CC )  /\  (
p  |`  D )  =  F )  /\  (
a  e.  (Poly `  CC )  /\  (
a  |`  D )  =  F ) ) )  /\  b  e.  D
)  ->  ( (
p  |`  D ) `  b )  =  ( ( a  |`  D ) `
 b ) )
28 fvres 5862 . . . . . . . . . . . . . . . . . 18  |-  ( b  e.  D  ->  (
( p  |`  D ) `
 b )  =  ( p `  b
) )
2928adantl 464 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ( D  C_  CC  /\  -.  D  e. 
Fin )  /\  (
( p  e.  (Poly `  CC )  /\  (
p  |`  D )  =  F )  /\  (
a  e.  (Poly `  CC )  /\  (
a  |`  D )  =  F ) ) )  /\  b  e.  D
)  ->  ( (
p  |`  D ) `  b )  =  ( p `  b ) )
30 fvres 5862 . . . . . . . . . . . . . . . . . 18  |-  ( b  e.  D  ->  (
( a  |`  D ) `
 b )  =  ( a `  b
) )
3130adantl 464 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ( D  C_  CC  /\  -.  D  e. 
Fin )  /\  (
( p  e.  (Poly `  CC )  /\  (
p  |`  D )  =  F )  /\  (
a  e.  (Poly `  CC )  /\  (
a  |`  D )  =  F ) ) )  /\  b  e.  D
)  ->  ( (
a  |`  D ) `  b )  =  ( a `  b ) )
3227, 29, 313eqtr3d 2503 . . . . . . . . . . . . . . . 16  |-  ( ( ( ( D  C_  CC  /\  -.  D  e. 
Fin )  /\  (
( p  e.  (Poly `  CC )  /\  (
p  |`  D )  =  F )  /\  (
a  e.  (Poly `  CC )  /\  (
a  |`  D )  =  F ) ) )  /\  b  e.  D
)  ->  ( p `  b )  =  ( a `  b ) )
3322, 32subeq0bd 9981 . . . . . . . . . . . . . . 15  |-  ( ( ( ( D  C_  CC  /\  -.  D  e. 
Fin )  /\  (
( p  e.  (Poly `  CC )  /\  (
p  |`  D )  =  F )  /\  (
a  e.  (Poly `  CC )  /\  (
a  |`  D )  =  F ) ) )  /\  b  e.  D
)  ->  ( (
p `  b )  -  ( a `  b ) )  =  0 )
3420, 33eqtrd 2495 . . . . . . . . . . . . . 14  |-  ( ( ( ( D  C_  CC  /\  -.  D  e. 
Fin )  /\  (
( p  e.  (Poly `  CC )  /\  (
p  |`  D )  =  F )  /\  (
a  e.  (Poly `  CC )  /\  (
a  |`  D )  =  F ) ) )  /\  b  e.  D
)  ->  ( (
p  oF  -  a ) `  b
)  =  0 )
3534ex 432 . . . . . . . . . . . . 13  |-  ( ( ( D  C_  CC  /\ 
-.  D  e.  Fin )  /\  ( ( p  e.  (Poly `  CC )  /\  ( p  |`  D )  =  F )  /\  ( a  e.  (Poly `  CC )  /\  ( a  |`  D )  =  F ) ) )  -> 
( b  e.  D  ->  ( ( p  oF  -  a ) `
 b )  =  0 ) )
363, 35jcad 531 . . . . . . . . . . . 12  |-  ( ( ( D  C_  CC  /\ 
-.  D  e.  Fin )  /\  ( ( p  e.  (Poly `  CC )  /\  ( p  |`  D )  =  F )  /\  ( a  e.  (Poly `  CC )  /\  ( a  |`  D )  =  F ) ) )  -> 
( b  e.  D  ->  ( b  e.  CC  /\  ( ( p  oF  -  a ) `
 b )  =  0 ) ) )
37 plysubcl 22785 . . . . . . . . . . . . . 14  |-  ( ( p  e.  (Poly `  CC )  /\  a  e.  (Poly `  CC )
)  ->  ( p  oF  -  a
)  e.  (Poly `  CC ) )
384, 10, 37syl2anc 659 . . . . . . . . . . . . 13  |-  ( ( ( D  C_  CC  /\ 
-.  D  e.  Fin )  /\  ( ( p  e.  (Poly `  CC )  /\  ( p  |`  D )  =  F )  /\  ( a  e.  (Poly `  CC )  /\  ( a  |`  D )  =  F ) ) )  -> 
( p  oF  -  a )  e.  (Poly `  CC )
)
39 plyf 22761 . . . . . . . . . . . . 13  |-  ( ( p  oF  -  a )  e.  (Poly `  CC )  ->  (
p  oF  -  a ) : CC --> CC )
40 ffn 5713 . . . . . . . . . . . . 13  |-  ( ( p  oF  -  a ) : CC --> CC  ->  ( p  oF  -  a )  Fn  CC )
41 fniniseg 5984 . . . . . . . . . . . . 13  |-  ( ( p  oF  -  a )  Fn  CC  ->  ( b  e.  ( `' ( p  oF  -  a )
" { 0 } )  <->  ( b  e.  CC  /\  ( ( p  oF  -  a ) `  b
)  =  0 ) ) )
4238, 39, 40, 414syl 21 . . . . . . . . . . . 12  |-  ( ( ( D  C_  CC  /\ 
-.  D  e.  Fin )  /\  ( ( p  e.  (Poly `  CC )  /\  ( p  |`  D )  =  F )  /\  ( a  e.  (Poly `  CC )  /\  ( a  |`  D )  =  F ) ) )  -> 
( b  e.  ( `' ( p  oF  -  a )
" { 0 } )  <->  ( b  e.  CC  /\  ( ( p  oF  -  a ) `  b
)  =  0 ) ) )
4336, 42sylibrd 234 . . . . . . . . . . 11  |-  ( ( ( D  C_  CC  /\ 
-.  D  e.  Fin )  /\  ( ( p  e.  (Poly `  CC )  /\  ( p  |`  D )  =  F )  /\  ( a  e.  (Poly `  CC )  /\  ( a  |`  D )  =  F ) ) )  -> 
( b  e.  D  ->  b  e.  ( `' ( p  oF  -  a ) " { 0 } ) ) )
4443ssrdv 3495 . . . . . . . . . 10  |-  ( ( ( D  C_  CC  /\ 
-.  D  e.  Fin )  /\  ( ( p  e.  (Poly `  CC )  /\  ( p  |`  D )  =  F )  /\  ( a  e.  (Poly `  CC )  /\  ( a  |`  D )  =  F ) ) )  ->  D  C_  ( `' ( p  oF  -  a ) " {
0 } ) )
45 ssfi 7733 . . . . . . . . . . 11  |-  ( ( ( `' ( p  oF  -  a
) " { 0 } )  e.  Fin  /\  D  C_  ( `' ( p  oF  -  a ) " { 0 } ) )  ->  D  e.  Fin )
4645expcom 433 . . . . . . . . . 10  |-  ( D 
C_  ( `' ( p  oF  -  a ) " {
0 } )  -> 
( ( `' ( p  oF  -  a ) " {
0 } )  e. 
Fin  ->  D  e.  Fin ) )
4744, 46syl 16 . . . . . . . . 9  |-  ( ( ( D  C_  CC  /\ 
-.  D  e.  Fin )  /\  ( ( p  e.  (Poly `  CC )  /\  ( p  |`  D )  =  F )  /\  ( a  e.  (Poly `  CC )  /\  ( a  |`  D )  =  F ) ) )  -> 
( ( `' ( p  oF  -  a ) " {
0 } )  e. 
Fin  ->  D  e.  Fin ) )
481, 47mtod 177 . . . . . . . 8  |-  ( ( ( D  C_  CC  /\ 
-.  D  e.  Fin )  /\  ( ( p  e.  (Poly `  CC )  /\  ( p  |`  D )  =  F )  /\  ( a  e.  (Poly `  CC )  /\  ( a  |`  D )  =  F ) ) )  ->  -.  ( `' ( p  oF  -  a
) " { 0 } )  e.  Fin )
49 df-ne 2651 . . . . . . . . . . . 12  |-  ( ( p  oF  -  a )  =/=  0p 
<->  -.  ( p  oF  -  a )  =  0p )
5049biimpri 206 . . . . . . . . . . 11  |-  ( -.  ( p  oF  -  a )  =  0p  ->  (
p  oF  -  a )  =/=  0p )
51 eqid 2454 . . . . . . . . . . . 12  |-  ( `' ( p  oF  -  a ) " { 0 } )  =  ( `' ( p  oF  -  a ) " {
0 } )
5251fta1 22870 . . . . . . . . . . 11  |-  ( ( ( p  oF  -  a )  e.  (Poly `  CC )  /\  ( p  oF  -  a )  =/=  0p )  -> 
( ( `' ( p  oF  -  a ) " {
0 } )  e. 
Fin  /\  ( # `  ( `' ( p  oF  -  a )
" { 0 } ) )  <_  (deg `  ( p  oF  -  a ) ) ) )
5338, 50, 52syl2an 475 . . . . . . . . . 10  |-  ( ( ( ( D  C_  CC  /\  -.  D  e. 
Fin )  /\  (
( p  e.  (Poly `  CC )  /\  (
p  |`  D )  =  F )  /\  (
a  e.  (Poly `  CC )  /\  (
a  |`  D )  =  F ) ) )  /\  -.  ( p  oF  -  a
)  =  0p )  ->  ( ( `' ( p  oF  -  a )
" { 0 } )  e.  Fin  /\  ( # `  ( `' ( p  oF  -  a ) " { 0 } ) )  <_  (deg `  (
p  oF  -  a ) ) ) )
5453simpld 457 . . . . . . . . 9  |-  ( ( ( ( D  C_  CC  /\  -.  D  e. 
Fin )  /\  (
( p  e.  (Poly `  CC )  /\  (
p  |`  D )  =  F )  /\  (
a  e.  (Poly `  CC )  /\  (
a  |`  D )  =  F ) ) )  /\  -.  ( p  oF  -  a
)  =  0p )  ->  ( `' ( p  oF  -  a ) " { 0 } )  e.  Fin )
5554ex 432 . . . . . . . 8  |-  ( ( ( D  C_  CC  /\ 
-.  D  e.  Fin )  /\  ( ( p  e.  (Poly `  CC )  /\  ( p  |`  D )  =  F )  /\  ( a  e.  (Poly `  CC )  /\  ( a  |`  D )  =  F ) ) )  -> 
( -.  ( p  oF  -  a
)  =  0p  ->  ( `' ( p  oF  -  a ) " {
0 } )  e. 
Fin ) )
5648, 55mt3d 125 . . . . . . 7  |-  ( ( ( D  C_  CC  /\ 
-.  D  e.  Fin )  /\  ( ( p  e.  (Poly `  CC )  /\  ( p  |`  D )  =  F )  /\  ( a  e.  (Poly `  CC )  /\  ( a  |`  D )  =  F ) ) )  -> 
( p  oF  -  a )  =  0p )
57 df-0p 22243 . . . . . . 7  |-  0p  =  ( CC  X.  { 0 } )
5856, 57syl6eq 2511 . . . . . 6  |-  ( ( ( D  C_  CC  /\ 
-.  D  e.  Fin )  /\  ( ( p  e.  (Poly `  CC )  /\  ( p  |`  D )  =  F )  /\  ( a  e.  (Poly `  CC )  /\  ( a  |`  D )  =  F ) ) )  -> 
( p  oF  -  a )  =  ( CC  X.  {
0 } ) )
5916a1i 11 . . . . . . 7  |-  ( ( ( D  C_  CC  /\ 
-.  D  e.  Fin )  /\  ( ( p  e.  (Poly `  CC )  /\  ( p  |`  D )  =  F )  /\  ( a  e.  (Poly `  CC )  /\  ( a  |`  D )  =  F ) ) )  ->  CC  e.  _V )
60 ofsubeq0 10528 . . . . . . 7  |-  ( ( CC  e.  _V  /\  p : CC --> CC  /\  a : CC --> CC )  ->  ( ( p  oF  -  a
)  =  ( CC 
X.  { 0 } )  <->  p  =  a
) )
6159, 6, 12, 60syl3anc 1226 . . . . . 6  |-  ( ( ( D  C_  CC  /\ 
-.  D  e.  Fin )  /\  ( ( p  e.  (Poly `  CC )  /\  ( p  |`  D )  =  F )  /\  ( a  e.  (Poly `  CC )  /\  ( a  |`  D )  =  F ) ) )  -> 
( ( p  oF  -  a )  =  ( CC  X.  { 0 } )  <-> 
p  =  a ) )
6258, 61mpbid 210 . . . . 5  |-  ( ( ( D  C_  CC  /\ 
-.  D  e.  Fin )  /\  ( ( p  e.  (Poly `  CC )  /\  ( p  |`  D )  =  F )  /\  ( a  e.  (Poly `  CC )  /\  ( a  |`  D )  =  F ) ) )  ->  p  =  a )
6362ex 432 . . . 4  |-  ( ( D  C_  CC  /\  -.  D  e.  Fin )  ->  ( ( ( p  e.  (Poly `  CC )  /\  ( p  |`  D )  =  F )  /\  ( a  e.  (Poly `  CC )  /\  ( a  |`  D )  =  F ) )  ->  p  =  a ) )
6463alrimivv 1725 . . 3  |-  ( ( D  C_  CC  /\  -.  D  e.  Fin )  ->  A. p A. a
( ( ( p  e.  (Poly `  CC )  /\  ( p  |`  D )  =  F )  /\  ( a  e.  (Poly `  CC )  /\  ( a  |`  D )  =  F ) )  ->  p  =  a ) )
65 eleq1 2526 . . . . 5  |-  ( p  =  a  ->  (
p  e.  (Poly `  CC )  <->  a  e.  (Poly `  CC ) ) )
66 reseq1 5256 . . . . . 6  |-  ( p  =  a  ->  (
p  |`  D )  =  ( a  |`  D ) )
6766eqeq1d 2456 . . . . 5  |-  ( p  =  a  ->  (
( p  |`  D )  =  F  <->  ( a  |`  D )  =  F ) )
6865, 67anbi12d 708 . . . 4  |-  ( p  =  a  ->  (
( p  e.  (Poly `  CC )  /\  (
p  |`  D )  =  F )  <->  ( a  e.  (Poly `  CC )  /\  ( a  |`  D )  =  F ) ) )
6968mo4 2335 . . 3  |-  ( E* p ( p  e.  (Poly `  CC )  /\  ( p  |`  D )  =  F )  <->  A. p A. a ( ( ( p  e.  (Poly `  CC )  /\  (
p  |`  D )  =  F )  /\  (
a  e.  (Poly `  CC )  /\  (
a  |`  D )  =  F ) )  ->  p  =  a )
)
7064, 69sylibr 212 . 2  |-  ( ( D  C_  CC  /\  -.  D  e.  Fin )  ->  E* p ( p  e.  (Poly `  CC )  /\  ( p  |`  D )  =  F ) )
71 plyssc 22763 . . . . 5  |-  (Poly `  S )  C_  (Poly `  CC )
7271sseli 3485 . . . 4  |-  ( p  e.  (Poly `  S
)  ->  p  e.  (Poly `  CC ) )
7372anim1i 566 . . 3  |-  ( ( p  e.  (Poly `  S )  /\  (
p  |`  D )  =  F )  ->  (
p  e.  (Poly `  CC )  /\  (
p  |`  D )  =  F ) )
7473moimi 2338 . 2  |-  ( E* p ( p  e.  (Poly `  CC )  /\  ( p  |`  D )  =  F )  ->  E* p ( p  e.  (Poly `  S )  /\  ( p  |`  D )  =  F ) )
7570, 74syl 16 1  |-  ( ( D  C_  CC  /\  -.  D  e.  Fin )  ->  E* p ( p  e.  (Poly `  S
)  /\  ( p  |`  D )  =  F ) )
Colors of variables: wff setvar class
Syntax hints:   -. wn 3    -> wi 4    <-> wb 184    /\ wa 367   A.wal 1396    = wceq 1398    e. wcel 1823   E*wmo 2285    =/= wne 2649   _Vcvv 3106    C_ wss 3461   {csn 4016   class class class wbr 4439    X. cxp 4986   `'ccnv 4987    |` cres 4990   "cima 4991    Fn wfn 5565   -->wf 5566   ` cfv 5570  (class class class)co 6270    oFcof 6511   Fincfn 7509   CCcc 9479   0cc0 9481    <_ cle 9618    - cmin 9796   #chash 12387   0pc0p 22242  Polycply 22747  degcdgr 22750
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1623  ax-4 1636  ax-5 1709  ax-6 1752  ax-7 1795  ax-8 1825  ax-9 1827  ax-10 1842  ax-11 1847  ax-12 1859  ax-13 2004  ax-ext 2432  ax-rep 4550  ax-sep 4560  ax-nul 4568  ax-pow 4615  ax-pr 4676  ax-un 6565  ax-inf2 8049  ax-cnex 9537  ax-resscn 9538  ax-1cn 9539  ax-icn 9540  ax-addcl 9541  ax-addrcl 9542  ax-mulcl 9543  ax-mulrcl 9544  ax-mulcom 9545  ax-addass 9546  ax-mulass 9547  ax-distr 9548  ax-i2m1 9549  ax-1ne0 9550  ax-1rid 9551  ax-rnegex 9552  ax-rrecex 9553  ax-cnre 9554  ax-pre-lttri 9555  ax-pre-lttrn 9556  ax-pre-ltadd 9557  ax-pre-mulgt0 9558  ax-pre-sup 9559  ax-addf 9560
This theorem depends on definitions:  df-bi 185  df-or 368  df-an 369  df-3or 972  df-3an 973  df-tru 1401  df-fal 1404  df-ex 1618  df-nf 1622  df-sb 1745  df-eu 2288  df-mo 2289  df-clab 2440  df-cleq 2446  df-clel 2449  df-nfc 2604  df-ne 2651  df-nel 2652  df-ral 2809  df-rex 2810  df-reu 2811  df-rmo 2812  df-rab 2813  df-v 3108  df-sbc 3325  df-csb 3421  df-dif 3464  df-un 3466  df-in 3468  df-ss 3475  df-pss 3477  df-nul 3784  df-if 3930  df-pw 4001  df-sn 4017  df-pr 4019  df-tp 4021  df-op 4023  df-uni 4236  df-int 4272  df-iun 4317  df-br 4440  df-opab 4498  df-mpt 4499  df-tr 4533  df-eprel 4780  df-id 4784  df-po 4789  df-so 4790  df-fr 4827  df-se 4828  df-we 4829  df-ord 4870  df-on 4871  df-lim 4872  df-suc 4873  df-xp 4994  df-rel 4995  df-cnv 4996  df-co 4997  df-dm 4998  df-rn 4999  df-res 5000  df-ima 5001  df-iota 5534  df-fun 5572  df-fn 5573  df-f 5574  df-f1 5575  df-fo 5576  df-f1o 5577  df-fv 5578  df-isom 5579  df-riota 6232  df-ov 6273  df-oprab 6274  df-mpt2 6275  df-of 6513  df-om 6674  df-1st 6773  df-2nd 6774  df-recs 7034  df-rdg 7068  df-1o 7122  df-oadd 7126  df-er 7303  df-map 7414  df-pm 7415  df-en 7510  df-dom 7511  df-sdom 7512  df-fin 7513  df-sup 7893  df-oi 7927  df-card 8311  df-cda 8539  df-pnf 9619  df-mnf 9620  df-xr 9621  df-ltxr 9622  df-le 9623  df-sub 9798  df-neg 9799  df-div 10203  df-nn 10532  df-2 10590  df-3 10591  df-n0 10792  df-z 10861  df-uz 11083  df-rp 11222  df-fz 11676  df-fzo 11800  df-fl 11910  df-seq 12090  df-exp 12149  df-hash 12388  df-cj 13014  df-re 13015  df-im 13016  df-sqrt 13150  df-abs 13151  df-clim 13393  df-rlim 13394  df-sum 13591  df-0p 22243  df-ply 22751  df-idp 22752  df-coe 22753  df-dgr 22754  df-quot 22853
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator