MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  plyexmo Structured version   Visualization version   Unicode version

Theorem plyexmo 23266
Description: An infinite set of values can be extended to a polynomial in at most one way. (Contributed by Stefan O'Rear, 14-Nov-2014.)
Assertion
Ref Expression
plyexmo  |-  ( ( D  C_  CC  /\  -.  D  e.  Fin )  ->  E* p ( p  e.  (Poly `  S
)  /\  ( p  |`  D )  =  F ) )
Distinct variable groups:    S, p    F, p    D, p

Proof of Theorem plyexmo
Dummy variables  a 
b are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 simplr 762 . . . . . . . . 9  |-  ( ( ( D  C_  CC  /\ 
-.  D  e.  Fin )  /\  ( ( p  e.  (Poly `  CC )  /\  ( p  |`  D )  =  F )  /\  ( a  e.  (Poly `  CC )  /\  ( a  |`  D )  =  F ) ) )  ->  -.  D  e.  Fin )
2 simpll 760 . . . . . . . . . . . . . 14  |-  ( ( ( D  C_  CC  /\ 
-.  D  e.  Fin )  /\  ( ( p  e.  (Poly `  CC )  /\  ( p  |`  D )  =  F )  /\  ( a  e.  (Poly `  CC )  /\  ( a  |`  D )  =  F ) ) )  ->  D  C_  CC )
32sseld 3431 . . . . . . . . . . . . 13  |-  ( ( ( D  C_  CC  /\ 
-.  D  e.  Fin )  /\  ( ( p  e.  (Poly `  CC )  /\  ( p  |`  D )  =  F )  /\  ( a  e.  (Poly `  CC )  /\  ( a  |`  D )  =  F ) ) )  -> 
( b  e.  D  ->  b  e.  CC ) )
4 simprll 772 . . . . . . . . . . . . . . . . . . 19  |-  ( ( ( D  C_  CC  /\ 
-.  D  e.  Fin )  /\  ( ( p  e.  (Poly `  CC )  /\  ( p  |`  D )  =  F )  /\  ( a  e.  (Poly `  CC )  /\  ( a  |`  D )  =  F ) ) )  ->  p  e.  (Poly `  CC ) )
5 plyf 23152 . . . . . . . . . . . . . . . . . . 19  |-  ( p  e.  (Poly `  CC )  ->  p : CC --> CC )
64, 5syl 17 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( D  C_  CC  /\ 
-.  D  e.  Fin )  /\  ( ( p  e.  (Poly `  CC )  /\  ( p  |`  D )  =  F )  /\  ( a  e.  (Poly `  CC )  /\  ( a  |`  D )  =  F ) ) )  ->  p : CC --> CC )
7 ffn 5728 . . . . . . . . . . . . . . . . . 18  |-  ( p : CC --> CC  ->  p  Fn  CC )
86, 7syl 17 . . . . . . . . . . . . . . . . 17  |-  ( ( ( D  C_  CC  /\ 
-.  D  e.  Fin )  /\  ( ( p  e.  (Poly `  CC )  /\  ( p  |`  D )  =  F )  /\  ( a  e.  (Poly `  CC )  /\  ( a  |`  D )  =  F ) ) )  ->  p  Fn  CC )
98adantr 467 . . . . . . . . . . . . . . . 16  |-  ( ( ( ( D  C_  CC  /\  -.  D  e. 
Fin )  /\  (
( p  e.  (Poly `  CC )  /\  (
p  |`  D )  =  F )  /\  (
a  e.  (Poly `  CC )  /\  (
a  |`  D )  =  F ) ) )  /\  b  e.  D
)  ->  p  Fn  CC )
10 simprrl 774 . . . . . . . . . . . . . . . . . . 19  |-  ( ( ( D  C_  CC  /\ 
-.  D  e.  Fin )  /\  ( ( p  e.  (Poly `  CC )  /\  ( p  |`  D )  =  F )  /\  ( a  e.  (Poly `  CC )  /\  ( a  |`  D )  =  F ) ) )  -> 
a  e.  (Poly `  CC ) )
11 plyf 23152 . . . . . . . . . . . . . . . . . . 19  |-  ( a  e.  (Poly `  CC )  ->  a : CC --> CC )
1210, 11syl 17 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( D  C_  CC  /\ 
-.  D  e.  Fin )  /\  ( ( p  e.  (Poly `  CC )  /\  ( p  |`  D )  =  F )  /\  ( a  e.  (Poly `  CC )  /\  ( a  |`  D )  =  F ) ) )  -> 
a : CC --> CC )
13 ffn 5728 . . . . . . . . . . . . . . . . . 18  |-  ( a : CC --> CC  ->  a  Fn  CC )
1412, 13syl 17 . . . . . . . . . . . . . . . . 17  |-  ( ( ( D  C_  CC  /\ 
-.  D  e.  Fin )  /\  ( ( p  e.  (Poly `  CC )  /\  ( p  |`  D )  =  F )  /\  ( a  e.  (Poly `  CC )  /\  ( a  |`  D )  =  F ) ) )  -> 
a  Fn  CC )
1514adantr 467 . . . . . . . . . . . . . . . 16  |-  ( ( ( ( D  C_  CC  /\  -.  D  e. 
Fin )  /\  (
( p  e.  (Poly `  CC )  /\  (
p  |`  D )  =  F )  /\  (
a  e.  (Poly `  CC )  /\  (
a  |`  D )  =  F ) ) )  /\  b  e.  D
)  ->  a  Fn  CC )
16 cnex 9620 . . . . . . . . . . . . . . . . 17  |-  CC  e.  _V
1716a1i 11 . . . . . . . . . . . . . . . 16  |-  ( ( ( ( D  C_  CC  /\  -.  D  e. 
Fin )  /\  (
( p  e.  (Poly `  CC )  /\  (
p  |`  D )  =  F )  /\  (
a  e.  (Poly `  CC )  /\  (
a  |`  D )  =  F ) ) )  /\  b  e.  D
)  ->  CC  e.  _V )
182sselda 3432 . . . . . . . . . . . . . . . 16  |-  ( ( ( ( D  C_  CC  /\  -.  D  e. 
Fin )  /\  (
( p  e.  (Poly `  CC )  /\  (
p  |`  D )  =  F )  /\  (
a  e.  (Poly `  CC )  /\  (
a  |`  D )  =  F ) ) )  /\  b  e.  D
)  ->  b  e.  CC )
19 fnfvof 6545 . . . . . . . . . . . . . . . 16  |-  ( ( ( p  Fn  CC  /\  a  Fn  CC )  /\  ( CC  e.  _V  /\  b  e.  CC ) )  ->  (
( p  oF  -  a ) `  b )  =  ( ( p `  b
)  -  ( a `
 b ) ) )
209, 15, 17, 18, 19syl22anc 1269 . . . . . . . . . . . . . . 15  |-  ( ( ( ( D  C_  CC  /\  -.  D  e. 
Fin )  /\  (
( p  e.  (Poly `  CC )  /\  (
p  |`  D )  =  F )  /\  (
a  e.  (Poly `  CC )  /\  (
a  |`  D )  =  F ) ) )  /\  b  e.  D
)  ->  ( (
p  oF  -  a ) `  b
)  =  ( ( p `  b )  -  ( a `  b ) ) )
216adantr 467 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ( D  C_  CC  /\  -.  D  e. 
Fin )  /\  (
( p  e.  (Poly `  CC )  /\  (
p  |`  D )  =  F )  /\  (
a  e.  (Poly `  CC )  /\  (
a  |`  D )  =  F ) ) )  /\  b  e.  D
)  ->  p : CC
--> CC )
2221, 18ffvelrnd 6023 . . . . . . . . . . . . . . . 16  |-  ( ( ( ( D  C_  CC  /\  -.  D  e. 
Fin )  /\  (
( p  e.  (Poly `  CC )  /\  (
p  |`  D )  =  F )  /\  (
a  e.  (Poly `  CC )  /\  (
a  |`  D )  =  F ) ) )  /\  b  e.  D
)  ->  ( p `  b )  e.  CC )
23 simprlr 773 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( ( D  C_  CC  /\ 
-.  D  e.  Fin )  /\  ( ( p  e.  (Poly `  CC )  /\  ( p  |`  D )  =  F )  /\  ( a  e.  (Poly `  CC )  /\  ( a  |`  D )  =  F ) ) )  -> 
( p  |`  D )  =  F )
24 simprrr 775 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( ( D  C_  CC  /\ 
-.  D  e.  Fin )  /\  ( ( p  e.  (Poly `  CC )  /\  ( p  |`  D )  =  F )  /\  ( a  e.  (Poly `  CC )  /\  ( a  |`  D )  =  F ) ) )  -> 
( a  |`  D )  =  F )
2523, 24eqtr4d 2488 . . . . . . . . . . . . . . . . . . 19  |-  ( ( ( D  C_  CC  /\ 
-.  D  e.  Fin )  /\  ( ( p  e.  (Poly `  CC )  /\  ( p  |`  D )  =  F )  /\  ( a  e.  (Poly `  CC )  /\  ( a  |`  D )  =  F ) ) )  -> 
( p  |`  D )  =  ( a  |`  D ) )
2625adantr 467 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( ( D  C_  CC  /\  -.  D  e. 
Fin )  /\  (
( p  e.  (Poly `  CC )  /\  (
p  |`  D )  =  F )  /\  (
a  e.  (Poly `  CC )  /\  (
a  |`  D )  =  F ) ) )  /\  b  e.  D
)  ->  ( p  |`  D )  =  ( a  |`  D )
)
2726fveq1d 5867 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ( D  C_  CC  /\  -.  D  e. 
Fin )  /\  (
( p  e.  (Poly `  CC )  /\  (
p  |`  D )  =  F )  /\  (
a  e.  (Poly `  CC )  /\  (
a  |`  D )  =  F ) ) )  /\  b  e.  D
)  ->  ( (
p  |`  D ) `  b )  =  ( ( a  |`  D ) `
 b ) )
28 fvres 5879 . . . . . . . . . . . . . . . . . 18  |-  ( b  e.  D  ->  (
( p  |`  D ) `
 b )  =  ( p `  b
) )
2928adantl 468 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ( D  C_  CC  /\  -.  D  e. 
Fin )  /\  (
( p  e.  (Poly `  CC )  /\  (
p  |`  D )  =  F )  /\  (
a  e.  (Poly `  CC )  /\  (
a  |`  D )  =  F ) ) )  /\  b  e.  D
)  ->  ( (
p  |`  D ) `  b )  =  ( p `  b ) )
30 fvres 5879 . . . . . . . . . . . . . . . . . 18  |-  ( b  e.  D  ->  (
( a  |`  D ) `
 b )  =  ( a `  b
) )
3130adantl 468 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ( D  C_  CC  /\  -.  D  e. 
Fin )  /\  (
( p  e.  (Poly `  CC )  /\  (
p  |`  D )  =  F )  /\  (
a  e.  (Poly `  CC )  /\  (
a  |`  D )  =  F ) ) )  /\  b  e.  D
)  ->  ( (
a  |`  D ) `  b )  =  ( a `  b ) )
3227, 29, 313eqtr3d 2493 . . . . . . . . . . . . . . . 16  |-  ( ( ( ( D  C_  CC  /\  -.  D  e. 
Fin )  /\  (
( p  e.  (Poly `  CC )  /\  (
p  |`  D )  =  F )  /\  (
a  e.  (Poly `  CC )  /\  (
a  |`  D )  =  F ) ) )  /\  b  e.  D
)  ->  ( p `  b )  =  ( a `  b ) )
3322, 32subeq0bd 10045 . . . . . . . . . . . . . . 15  |-  ( ( ( ( D  C_  CC  /\  -.  D  e. 
Fin )  /\  (
( p  e.  (Poly `  CC )  /\  (
p  |`  D )  =  F )  /\  (
a  e.  (Poly `  CC )  /\  (
a  |`  D )  =  F ) ) )  /\  b  e.  D
)  ->  ( (
p `  b )  -  ( a `  b ) )  =  0 )
3420, 33eqtrd 2485 . . . . . . . . . . . . . 14  |-  ( ( ( ( D  C_  CC  /\  -.  D  e. 
Fin )  /\  (
( p  e.  (Poly `  CC )  /\  (
p  |`  D )  =  F )  /\  (
a  e.  (Poly `  CC )  /\  (
a  |`  D )  =  F ) ) )  /\  b  e.  D
)  ->  ( (
p  oF  -  a ) `  b
)  =  0 )
3534ex 436 . . . . . . . . . . . . 13  |-  ( ( ( D  C_  CC  /\ 
-.  D  e.  Fin )  /\  ( ( p  e.  (Poly `  CC )  /\  ( p  |`  D )  =  F )  /\  ( a  e.  (Poly `  CC )  /\  ( a  |`  D )  =  F ) ) )  -> 
( b  e.  D  ->  ( ( p  oF  -  a ) `
 b )  =  0 ) )
363, 35jcad 536 . . . . . . . . . . . 12  |-  ( ( ( D  C_  CC  /\ 
-.  D  e.  Fin )  /\  ( ( p  e.  (Poly `  CC )  /\  ( p  |`  D )  =  F )  /\  ( a  e.  (Poly `  CC )  /\  ( a  |`  D )  =  F ) ) )  -> 
( b  e.  D  ->  ( b  e.  CC  /\  ( ( p  oF  -  a ) `
 b )  =  0 ) ) )
37 plysubcl 23176 . . . . . . . . . . . . . 14  |-  ( ( p  e.  (Poly `  CC )  /\  a  e.  (Poly `  CC )
)  ->  ( p  oF  -  a
)  e.  (Poly `  CC ) )
384, 10, 37syl2anc 667 . . . . . . . . . . . . 13  |-  ( ( ( D  C_  CC  /\ 
-.  D  e.  Fin )  /\  ( ( p  e.  (Poly `  CC )  /\  ( p  |`  D )  =  F )  /\  ( a  e.  (Poly `  CC )  /\  ( a  |`  D )  =  F ) ) )  -> 
( p  oF  -  a )  e.  (Poly `  CC )
)
39 plyf 23152 . . . . . . . . . . . . 13  |-  ( ( p  oF  -  a )  e.  (Poly `  CC )  ->  (
p  oF  -  a ) : CC --> CC )
40 ffn 5728 . . . . . . . . . . . . 13  |-  ( ( p  oF  -  a ) : CC --> CC  ->  ( p  oF  -  a )  Fn  CC )
41 fniniseg 6003 . . . . . . . . . . . . 13  |-  ( ( p  oF  -  a )  Fn  CC  ->  ( b  e.  ( `' ( p  oF  -  a )
" { 0 } )  <->  ( b  e.  CC  /\  ( ( p  oF  -  a ) `  b
)  =  0 ) ) )
4238, 39, 40, 414syl 19 . . . . . . . . . . . 12  |-  ( ( ( D  C_  CC  /\ 
-.  D  e.  Fin )  /\  ( ( p  e.  (Poly `  CC )  /\  ( p  |`  D )  =  F )  /\  ( a  e.  (Poly `  CC )  /\  ( a  |`  D )  =  F ) ) )  -> 
( b  e.  ( `' ( p  oF  -  a )
" { 0 } )  <->  ( b  e.  CC  /\  ( ( p  oF  -  a ) `  b
)  =  0 ) ) )
4336, 42sylibrd 238 . . . . . . . . . . 11  |-  ( ( ( D  C_  CC  /\ 
-.  D  e.  Fin )  /\  ( ( p  e.  (Poly `  CC )  /\  ( p  |`  D )  =  F )  /\  ( a  e.  (Poly `  CC )  /\  ( a  |`  D )  =  F ) ) )  -> 
( b  e.  D  ->  b  e.  ( `' ( p  oF  -  a ) " { 0 } ) ) )
4443ssrdv 3438 . . . . . . . . . 10  |-  ( ( ( D  C_  CC  /\ 
-.  D  e.  Fin )  /\  ( ( p  e.  (Poly `  CC )  /\  ( p  |`  D )  =  F )  /\  ( a  e.  (Poly `  CC )  /\  ( a  |`  D )  =  F ) ) )  ->  D  C_  ( `' ( p  oF  -  a ) " {
0 } ) )
45 ssfi 7792 . . . . . . . . . . 11  |-  ( ( ( `' ( p  oF  -  a
) " { 0 } )  e.  Fin  /\  D  C_  ( `' ( p  oF  -  a ) " { 0 } ) )  ->  D  e.  Fin )
4645expcom 437 . . . . . . . . . 10  |-  ( D 
C_  ( `' ( p  oF  -  a ) " {
0 } )  -> 
( ( `' ( p  oF  -  a ) " {
0 } )  e. 
Fin  ->  D  e.  Fin ) )
4744, 46syl 17 . . . . . . . . 9  |-  ( ( ( D  C_  CC  /\ 
-.  D  e.  Fin )  /\  ( ( p  e.  (Poly `  CC )  /\  ( p  |`  D )  =  F )  /\  ( a  e.  (Poly `  CC )  /\  ( a  |`  D )  =  F ) ) )  -> 
( ( `' ( p  oF  -  a ) " {
0 } )  e. 
Fin  ->  D  e.  Fin ) )
481, 47mtod 181 . . . . . . . 8  |-  ( ( ( D  C_  CC  /\ 
-.  D  e.  Fin )  /\  ( ( p  e.  (Poly `  CC )  /\  ( p  |`  D )  =  F )  /\  ( a  e.  (Poly `  CC )  /\  ( a  |`  D )  =  F ) ) )  ->  -.  ( `' ( p  oF  -  a
) " { 0 } )  e.  Fin )
49 df-ne 2624 . . . . . . . . . . . 12  |-  ( ( p  oF  -  a )  =/=  0p 
<->  -.  ( p  oF  -  a )  =  0p )
5049biimpri 210 . . . . . . . . . . 11  |-  ( -.  ( p  oF  -  a )  =  0p  ->  (
p  oF  -  a )  =/=  0p )
51 eqid 2451 . . . . . . . . . . . 12  |-  ( `' ( p  oF  -  a ) " { 0 } )  =  ( `' ( p  oF  -  a ) " {
0 } )
5251fta1 23261 . . . . . . . . . . 11  |-  ( ( ( p  oF  -  a )  e.  (Poly `  CC )  /\  ( p  oF  -  a )  =/=  0p )  -> 
( ( `' ( p  oF  -  a ) " {
0 } )  e. 
Fin  /\  ( # `  ( `' ( p  oF  -  a )
" { 0 } ) )  <_  (deg `  ( p  oF  -  a ) ) ) )
5338, 50, 52syl2an 480 . . . . . . . . . 10  |-  ( ( ( ( D  C_  CC  /\  -.  D  e. 
Fin )  /\  (
( p  e.  (Poly `  CC )  /\  (
p  |`  D )  =  F )  /\  (
a  e.  (Poly `  CC )  /\  (
a  |`  D )  =  F ) ) )  /\  -.  ( p  oF  -  a
)  =  0p )  ->  ( ( `' ( p  oF  -  a )
" { 0 } )  e.  Fin  /\  ( # `  ( `' ( p  oF  -  a ) " { 0 } ) )  <_  (deg `  (
p  oF  -  a ) ) ) )
5453simpld 461 . . . . . . . . 9  |-  ( ( ( ( D  C_  CC  /\  -.  D  e. 
Fin )  /\  (
( p  e.  (Poly `  CC )  /\  (
p  |`  D )  =  F )  /\  (
a  e.  (Poly `  CC )  /\  (
a  |`  D )  =  F ) ) )  /\  -.  ( p  oF  -  a
)  =  0p )  ->  ( `' ( p  oF  -  a ) " { 0 } )  e.  Fin )
5554ex 436 . . . . . . . 8  |-  ( ( ( D  C_  CC  /\ 
-.  D  e.  Fin )  /\  ( ( p  e.  (Poly `  CC )  /\  ( p  |`  D )  =  F )  /\  ( a  e.  (Poly `  CC )  /\  ( a  |`  D )  =  F ) ) )  -> 
( -.  ( p  oF  -  a
)  =  0p  ->  ( `' ( p  oF  -  a ) " {
0 } )  e. 
Fin ) )
5648, 55mt3d 129 . . . . . . 7  |-  ( ( ( D  C_  CC  /\ 
-.  D  e.  Fin )  /\  ( ( p  e.  (Poly `  CC )  /\  ( p  |`  D )  =  F )  /\  ( a  e.  (Poly `  CC )  /\  ( a  |`  D )  =  F ) ) )  -> 
( p  oF  -  a )  =  0p )
57 df-0p 22628 . . . . . . 7  |-  0p  =  ( CC  X.  { 0 } )
5856, 57syl6eq 2501 . . . . . 6  |-  ( ( ( D  C_  CC  /\ 
-.  D  e.  Fin )  /\  ( ( p  e.  (Poly `  CC )  /\  ( p  |`  D )  =  F )  /\  ( a  e.  (Poly `  CC )  /\  ( a  |`  D )  =  F ) ) )  -> 
( p  oF  -  a )  =  ( CC  X.  {
0 } ) )
5916a1i 11 . . . . . . 7  |-  ( ( ( D  C_  CC  /\ 
-.  D  e.  Fin )  /\  ( ( p  e.  (Poly `  CC )  /\  ( p  |`  D )  =  F )  /\  ( a  e.  (Poly `  CC )  /\  ( a  |`  D )  =  F ) ) )  ->  CC  e.  _V )
60 ofsubeq0 10606 . . . . . . 7  |-  ( ( CC  e.  _V  /\  p : CC --> CC  /\  a : CC --> CC )  ->  ( ( p  oF  -  a
)  =  ( CC 
X.  { 0 } )  <->  p  =  a
) )
6159, 6, 12, 60syl3anc 1268 . . . . . 6  |-  ( ( ( D  C_  CC  /\ 
-.  D  e.  Fin )  /\  ( ( p  e.  (Poly `  CC )  /\  ( p  |`  D )  =  F )  /\  ( a  e.  (Poly `  CC )  /\  ( a  |`  D )  =  F ) ) )  -> 
( ( p  oF  -  a )  =  ( CC  X.  { 0 } )  <-> 
p  =  a ) )
6258, 61mpbid 214 . . . . 5  |-  ( ( ( D  C_  CC  /\ 
-.  D  e.  Fin )  /\  ( ( p  e.  (Poly `  CC )  /\  ( p  |`  D )  =  F )  /\  ( a  e.  (Poly `  CC )  /\  ( a  |`  D )  =  F ) ) )  ->  p  =  a )
6362ex 436 . . . 4  |-  ( ( D  C_  CC  /\  -.  D  e.  Fin )  ->  ( ( ( p  e.  (Poly `  CC )  /\  ( p  |`  D )  =  F )  /\  ( a  e.  (Poly `  CC )  /\  ( a  |`  D )  =  F ) )  ->  p  =  a ) )
6463alrimivv 1774 . . 3  |-  ( ( D  C_  CC  /\  -.  D  e.  Fin )  ->  A. p A. a
( ( ( p  e.  (Poly `  CC )  /\  ( p  |`  D )  =  F )  /\  ( a  e.  (Poly `  CC )  /\  ( a  |`  D )  =  F ) )  ->  p  =  a ) )
65 eleq1 2517 . . . . 5  |-  ( p  =  a  ->  (
p  e.  (Poly `  CC )  <->  a  e.  (Poly `  CC ) ) )
66 reseq1 5099 . . . . . 6  |-  ( p  =  a  ->  (
p  |`  D )  =  ( a  |`  D ) )
6766eqeq1d 2453 . . . . 5  |-  ( p  =  a  ->  (
( p  |`  D )  =  F  <->  ( a  |`  D )  =  F ) )
6865, 67anbi12d 717 . . . 4  |-  ( p  =  a  ->  (
( p  e.  (Poly `  CC )  /\  (
p  |`  D )  =  F )  <->  ( a  e.  (Poly `  CC )  /\  ( a  |`  D )  =  F ) ) )
6968mo4 2346 . . 3  |-  ( E* p ( p  e.  (Poly `  CC )  /\  ( p  |`  D )  =  F )  <->  A. p A. a ( ( ( p  e.  (Poly `  CC )  /\  (
p  |`  D )  =  F )  /\  (
a  e.  (Poly `  CC )  /\  (
a  |`  D )  =  F ) )  ->  p  =  a )
)
7064, 69sylibr 216 . 2  |-  ( ( D  C_  CC  /\  -.  D  e.  Fin )  ->  E* p ( p  e.  (Poly `  CC )  /\  ( p  |`  D )  =  F ) )
71 plyssc 23154 . . . . 5  |-  (Poly `  S )  C_  (Poly `  CC )
7271sseli 3428 . . . 4  |-  ( p  e.  (Poly `  S
)  ->  p  e.  (Poly `  CC ) )
7372anim1i 572 . . 3  |-  ( ( p  e.  (Poly `  S )  /\  (
p  |`  D )  =  F )  ->  (
p  e.  (Poly `  CC )  /\  (
p  |`  D )  =  F ) )
7473moimi 2349 . 2  |-  ( E* p ( p  e.  (Poly `  CC )  /\  ( p  |`  D )  =  F )  ->  E* p ( p  e.  (Poly `  S )  /\  ( p  |`  D )  =  F ) )
7570, 74syl 17 1  |-  ( ( D  C_  CC  /\  -.  D  e.  Fin )  ->  E* p ( p  e.  (Poly `  S
)  /\  ( p  |`  D )  =  F ) )
Colors of variables: wff setvar class
Syntax hints:   -. wn 3    -> wi 4    <-> wb 188    /\ wa 371   A.wal 1442    = wceq 1444    e. wcel 1887   E*wmo 2300    =/= wne 2622   _Vcvv 3045    C_ wss 3404   {csn 3968   class class class wbr 4402    X. cxp 4832   `'ccnv 4833    |` cres 4836   "cima 4837    Fn wfn 5577   -->wf 5578   ` cfv 5582  (class class class)co 6290    oFcof 6529   Fincfn 7569   CCcc 9537   0cc0 9539    <_ cle 9676    - cmin 9860   #chash 12515   0pc0p 22627  Polycply 23138  degcdgr 23141
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1669  ax-4 1682  ax-5 1758  ax-6 1805  ax-7 1851  ax-8 1889  ax-9 1896  ax-10 1915  ax-11 1920  ax-12 1933  ax-13 2091  ax-ext 2431  ax-rep 4515  ax-sep 4525  ax-nul 4534  ax-pow 4581  ax-pr 4639  ax-un 6583  ax-inf2 8146  ax-cnex 9595  ax-resscn 9596  ax-1cn 9597  ax-icn 9598  ax-addcl 9599  ax-addrcl 9600  ax-mulcl 9601  ax-mulrcl 9602  ax-mulcom 9603  ax-addass 9604  ax-mulass 9605  ax-distr 9606  ax-i2m1 9607  ax-1ne0 9608  ax-1rid 9609  ax-rnegex 9610  ax-rrecex 9611  ax-cnre 9612  ax-pre-lttri 9613  ax-pre-lttrn 9614  ax-pre-ltadd 9615  ax-pre-mulgt0 9616  ax-pre-sup 9617  ax-addf 9618
This theorem depends on definitions:  df-bi 189  df-or 372  df-an 373  df-3or 986  df-3an 987  df-tru 1447  df-fal 1450  df-ex 1664  df-nf 1668  df-sb 1798  df-eu 2303  df-mo 2304  df-clab 2438  df-cleq 2444  df-clel 2447  df-nfc 2581  df-ne 2624  df-nel 2625  df-ral 2742  df-rex 2743  df-reu 2744  df-rmo 2745  df-rab 2746  df-v 3047  df-sbc 3268  df-csb 3364  df-dif 3407  df-un 3409  df-in 3411  df-ss 3418  df-pss 3420  df-nul 3732  df-if 3882  df-pw 3953  df-sn 3969  df-pr 3971  df-tp 3973  df-op 3975  df-uni 4199  df-int 4235  df-iun 4280  df-br 4403  df-opab 4462  df-mpt 4463  df-tr 4498  df-eprel 4745  df-id 4749  df-po 4755  df-so 4756  df-fr 4793  df-se 4794  df-we 4795  df-xp 4840  df-rel 4841  df-cnv 4842  df-co 4843  df-dm 4844  df-rn 4845  df-res 4846  df-ima 4847  df-pred 5380  df-ord 5426  df-on 5427  df-lim 5428  df-suc 5429  df-iota 5546  df-fun 5584  df-fn 5585  df-f 5586  df-f1 5587  df-fo 5588  df-f1o 5589  df-fv 5590  df-isom 5591  df-riota 6252  df-ov 6293  df-oprab 6294  df-mpt2 6295  df-of 6531  df-om 6693  df-1st 6793  df-2nd 6794  df-wrecs 7028  df-recs 7090  df-rdg 7128  df-1o 7182  df-oadd 7186  df-er 7363  df-map 7474  df-pm 7475  df-en 7570  df-dom 7571  df-sdom 7572  df-fin 7573  df-sup 7956  df-inf 7957  df-oi 8025  df-card 8373  df-cda 8598  df-pnf 9677  df-mnf 9678  df-xr 9679  df-ltxr 9680  df-le 9681  df-sub 9862  df-neg 9863  df-div 10270  df-nn 10610  df-2 10668  df-3 10669  df-n0 10870  df-z 10938  df-uz 11160  df-rp 11303  df-fz 11785  df-fzo 11916  df-fl 12028  df-seq 12214  df-exp 12273  df-hash 12516  df-cj 13162  df-re 13163  df-im 13164  df-sqrt 13298  df-abs 13299  df-clim 13552  df-rlim 13553  df-sum 13753  df-0p 22628  df-ply 23142  df-idp 23143  df-coe 23144  df-dgr 23145  df-quot 23244
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator