MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  plyeq0lem Structured version   Visualization version   Unicode version

Theorem plyeq0lem 23176
Description: Lemma for plyeq0 23177. If  A is the coefficient function for a nonzero polynomial such that  P ( z )  =  sum_ k  e.  NN0 A ( k )  x.  z ^
k  =  0 for every  z  e.  CC and  A ( M ) is the nonzero leading coefficient, then the function  F ( z )  =  P ( z )  /  z ^ M is a sum of powers of  1  /  z, and so the limit of this function as  z 
~~> +oo is the constant term,  A ( M ). But  F ( z )  =  0 everywhere, so this limit is also equal to zero so that  A ( M )  =  0, a contradiction. (Contributed by Mario Carneiro, 22-Jul-2014.)
Hypotheses
Ref Expression
plyeq0.1  |-  ( ph  ->  S  C_  CC )
plyeq0.2  |-  ( ph  ->  N  e.  NN0 )
plyeq0.3  |-  ( ph  ->  A  e.  ( ( S  u.  { 0 } )  ^m  NN0 ) )
plyeq0.4  |-  ( ph  ->  ( A " ( ZZ>=
`  ( N  + 
1 ) ) )  =  { 0 } )
plyeq0.5  |-  ( ph  ->  0p  =  ( z  e.  CC  |->  sum_ k  e.  ( 0 ... N ) ( ( A `  k
)  x.  ( z ^ k ) ) ) )
plyeq0.6  |-  M  =  sup ( ( `' A " ( S 
\  { 0 } ) ) ,  RR ,  <  )
plyeq0.7  |-  ( ph  ->  ( `' A "
( S  \  {
0 } ) )  =/=  (/) )
Assertion
Ref Expression
plyeq0lem  |-  -.  ph
Distinct variable groups:    z, k, A    k, M    k, N, z    ph, k, z    S, k, z
Allowed substitution hint:    M( z)

Proof of Theorem plyeq0lem
Dummy variables  m  n  x are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 nnuz 11201 . . . . . 6  |-  NN  =  ( ZZ>= `  1 )
2 1zzd 10975 . . . . . 6  |-  ( ph  ->  1  e.  ZZ )
3 fzfid 12193 . . . . . 6  |-  ( ph  ->  ( 0 ... N
)  e.  Fin )
4 1zzd 10975 . . . . . . . . . 10  |-  ( ( ( ph  /\  k  e.  ( 0 ... N
) )  /\  k  <  M )  ->  1  e.  ZZ )
5 plyeq0.3 . . . . . . . . . . . . . . . . 17  |-  ( ph  ->  A  e.  ( ( S  u.  { 0 } )  ^m  NN0 ) )
6 plyeq0.1 . . . . . . . . . . . . . . . . . . . 20  |-  ( ph  ->  S  C_  CC )
7 0cn 9640 . . . . . . . . . . . . . . . . . . . . . 22  |-  0  e.  CC
87a1i 11 . . . . . . . . . . . . . . . . . . . . 21  |-  ( ph  ->  0  e.  CC )
98snssd 4120 . . . . . . . . . . . . . . . . . . . 20  |-  ( ph  ->  { 0 }  C_  CC )
106, 9unssd 3612 . . . . . . . . . . . . . . . . . . 19  |-  ( ph  ->  ( S  u.  {
0 } )  C_  CC )
11 cnex 9625 . . . . . . . . . . . . . . . . . . 19  |-  CC  e.  _V
12 ssexg 4552 . . . . . . . . . . . . . . . . . . 19  |-  ( ( ( S  u.  {
0 } )  C_  CC  /\  CC  e.  _V )  ->  ( S  u.  { 0 } )  e. 
_V )
1310, 11, 12sylancl 669 . . . . . . . . . . . . . . . . . 18  |-  ( ph  ->  ( S  u.  {
0 } )  e. 
_V )
14 nn0ex 10882 . . . . . . . . . . . . . . . . . 18  |-  NN0  e.  _V
15 elmapg 7490 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( S  u.  {
0 } )  e. 
_V  /\  NN0  e.  _V )  ->  ( A  e.  ( ( S  u.  { 0 } )  ^m  NN0 )  <->  A : NN0 --> ( S  u.  { 0 } ) ) )
1613, 14, 15sylancl 669 . . . . . . . . . . . . . . . . 17  |-  ( ph  ->  ( A  e.  ( ( S  u.  {
0 } )  ^m  NN0 )  <->  A : NN0 --> ( S  u.  { 0 } ) ) )
175, 16mpbid 214 . . . . . . . . . . . . . . . 16  |-  ( ph  ->  A : NN0 --> ( S  u.  { 0 } ) )
1817, 10fssd 5743 . . . . . . . . . . . . . . 15  |-  ( ph  ->  A : NN0 --> CC )
19 elfznn0 11894 . . . . . . . . . . . . . . 15  |-  ( k  e.  ( 0 ... N )  ->  k  e.  NN0 )
20 ffvelrn 6025 . . . . . . . . . . . . . . 15  |-  ( ( A : NN0 --> CC  /\  k  e.  NN0 )  -> 
( A `  k
)  e.  CC )
2118, 19, 20syl2an 480 . . . . . . . . . . . . . 14  |-  ( (
ph  /\  k  e.  ( 0 ... N
) )  ->  ( A `  k )  e.  CC )
2221adantr 467 . . . . . . . . . . . . 13  |-  ( ( ( ph  /\  k  e.  ( 0 ... N
) )  /\  k  <  M )  ->  ( A `  k )  e.  CC )
2322abscld 13510 . . . . . . . . . . . 12  |-  ( ( ( ph  /\  k  e.  ( 0 ... N
) )  /\  k  <  M )  ->  ( abs `  ( A `  k ) )  e.  RR )
2423recnd 9674 . . . . . . . . . . 11  |-  ( ( ( ph  /\  k  e.  ( 0 ... N
) )  /\  k  <  M )  ->  ( abs `  ( A `  k ) )  e.  CC )
25 divcnv 13923 . . . . . . . . . . 11  |-  ( ( abs `  ( A `
 k ) )  e.  CC  ->  (
n  e.  NN  |->  ( ( abs `  ( A `  k )
)  /  n ) )  ~~>  0 )
2624, 25syl 17 . . . . . . . . . 10  |-  ( ( ( ph  /\  k  e.  ( 0 ... N
) )  /\  k  <  M )  ->  (
n  e.  NN  |->  ( ( abs `  ( A `  k )
)  /  n ) )  ~~>  0 )
27 nnex 10622 . . . . . . . . . . . 12  |-  NN  e.  _V
2827mptex 6141 . . . . . . . . . . 11  |-  ( n  e.  NN  |->  ( ( abs `  ( A `
 k ) )  x.  ( n ^
( k  -  M
) ) ) )  e.  _V
2928a1i 11 . . . . . . . . . 10  |-  ( ( ( ph  /\  k  e.  ( 0 ... N
) )  /\  k  <  M )  ->  (
n  e.  NN  |->  ( ( abs `  ( A `  k )
)  x.  ( n ^ ( k  -  M ) ) ) )  e.  _V )
30 oveq2 6303 . . . . . . . . . . . . 13  |-  ( n  =  m  ->  (
( abs `  ( A `  k )
)  /  n )  =  ( ( abs `  ( A `  k
) )  /  m
) )
31 eqid 2453 . . . . . . . . . . . . 13  |-  ( n  e.  NN  |->  ( ( abs `  ( A `
 k ) )  /  n ) )  =  ( n  e.  NN  |->  ( ( abs `  ( A `  k
) )  /  n
) )
32 ovex 6323 . . . . . . . . . . . . 13  |-  ( ( abs `  ( A `
 k ) )  /  m )  e. 
_V
3330, 31, 32fvmpt 5953 . . . . . . . . . . . 12  |-  ( m  e.  NN  ->  (
( n  e.  NN  |->  ( ( abs `  ( A `  k )
)  /  n ) ) `  m )  =  ( ( abs `  ( A `  k
) )  /  m
) )
3433adantl 468 . . . . . . . . . . 11  |-  ( ( ( ( ph  /\  k  e.  ( 0 ... N ) )  /\  k  <  M
)  /\  m  e.  NN )  ->  ( ( n  e.  NN  |->  ( ( abs `  ( A `  k )
)  /  n ) ) `  m )  =  ( ( abs `  ( A `  k
) )  /  m
) )
35 nndivre 10652 . . . . . . . . . . . 12  |-  ( ( ( abs `  ( A `  k )
)  e.  RR  /\  m  e.  NN )  ->  ( ( abs `  ( A `  k )
)  /  m )  e.  RR )
3623, 35sylan 474 . . . . . . . . . . 11  |-  ( ( ( ( ph  /\  k  e.  ( 0 ... N ) )  /\  k  <  M
)  /\  m  e.  NN )  ->  ( ( abs `  ( A `
 k ) )  /  m )  e.  RR )
3734, 36eqeltrd 2531 . . . . . . . . . 10  |-  ( ( ( ( ph  /\  k  e.  ( 0 ... N ) )  /\  k  <  M
)  /\  m  e.  NN )  ->  ( ( n  e.  NN  |->  ( ( abs `  ( A `  k )
)  /  n ) ) `  m )  e.  RR )
38 oveq1 6302 . . . . . . . . . . . . . 14  |-  ( n  =  m  ->  (
n ^ ( k  -  M ) )  =  ( m ^
( k  -  M
) ) )
3938oveq2d 6311 . . . . . . . . . . . . 13  |-  ( n  =  m  ->  (
( abs `  ( A `  k )
)  x.  ( n ^ ( k  -  M ) ) )  =  ( ( abs `  ( A `  k
) )  x.  (
m ^ ( k  -  M ) ) ) )
40 eqid 2453 . . . . . . . . . . . . 13  |-  ( n  e.  NN  |->  ( ( abs `  ( A `
 k ) )  x.  ( n ^
( k  -  M
) ) ) )  =  ( n  e.  NN  |->  ( ( abs `  ( A `  k
) )  x.  (
n ^ ( k  -  M ) ) ) )
41 ovex 6323 . . . . . . . . . . . . 13  |-  ( ( abs `  ( A `
 k ) )  x.  ( m ^
( k  -  M
) ) )  e. 
_V
4239, 40, 41fvmpt 5953 . . . . . . . . . . . 12  |-  ( m  e.  NN  ->  (
( n  e.  NN  |->  ( ( abs `  ( A `  k )
)  x.  ( n ^ ( k  -  M ) ) ) ) `  m )  =  ( ( abs `  ( A `  k
) )  x.  (
m ^ ( k  -  M ) ) ) )
4342adantl 468 . . . . . . . . . . 11  |-  ( ( ( ( ph  /\  k  e.  ( 0 ... N ) )  /\  k  <  M
)  /\  m  e.  NN )  ->  ( ( n  e.  NN  |->  ( ( abs `  ( A `  k )
)  x.  ( n ^ ( k  -  M ) ) ) ) `  m )  =  ( ( abs `  ( A `  k
) )  x.  (
m ^ ( k  -  M ) ) ) )
4421ad2antrr 733 . . . . . . . . . . . . 13  |-  ( ( ( ( ph  /\  k  e.  ( 0 ... N ) )  /\  k  <  M
)  /\  m  e.  NN )  ->  ( A `
 k )  e.  CC )
4544abscld 13510 . . . . . . . . . . . 12  |-  ( ( ( ( ph  /\  k  e.  ( 0 ... N ) )  /\  k  <  M
)  /\  m  e.  NN )  ->  ( abs `  ( A `  k
) )  e.  RR )
46 nnrp 11318 . . . . . . . . . . . . . . 15  |-  ( m  e.  NN  ->  m  e.  RR+ )
4746adantl 468 . . . . . . . . . . . . . 14  |-  ( ( ( ( ph  /\  k  e.  ( 0 ... N ) )  /\  k  <  M
)  /\  m  e.  NN )  ->  m  e.  RR+ )
48 elfzelz 11807 . . . . . . . . . . . . . . . 16  |-  ( k  e.  ( 0 ... N )  ->  k  e.  ZZ )
49 cnvimass 5191 . . . . . . . . . . . . . . . . . . 19  |-  ( `' A " ( S 
\  { 0 } ) )  C_  dom  A
50 fdm 5738 . . . . . . . . . . . . . . . . . . . 20  |-  ( A : NN0 --> ( S  u.  { 0 } )  ->  dom  A  = 
NN0 )
5117, 50syl 17 . . . . . . . . . . . . . . . . . . 19  |-  ( ph  ->  dom  A  =  NN0 )
5249, 51syl5sseq 3482 . . . . . . . . . . . . . . . . . 18  |-  ( ph  ->  ( `' A "
( S  \  {
0 } ) ) 
C_  NN0 )
53 plyeq0.6 . . . . . . . . . . . . . . . . . . 19  |-  M  =  sup ( ( `' A " ( S 
\  { 0 } ) ) ,  RR ,  <  )
54 nn0ssz 10965 . . . . . . . . . . . . . . . . . . . . 21  |-  NN0  C_  ZZ
5552, 54syl6ss 3446 . . . . . . . . . . . . . . . . . . . 20  |-  ( ph  ->  ( `' A "
( S  \  {
0 } ) ) 
C_  ZZ )
56 plyeq0.7 . . . . . . . . . . . . . . . . . . . 20  |-  ( ph  ->  ( `' A "
( S  \  {
0 } ) )  =/=  (/) )
57 plyeq0.2 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( ph  ->  N  e.  NN0 )
5857nn0red 10933 . . . . . . . . . . . . . . . . . . . . 21  |-  ( ph  ->  N  e.  RR )
5952sselda 3434 . . . . . . . . . . . . . . . . . . . . . . 23  |-  ( (
ph  /\  z  e.  ( `' A " ( S 
\  { 0 } ) ) )  -> 
z  e.  NN0 )
60 plyeq0.4 . . . . . . . . . . . . . . . . . . . . . . . . 25  |-  ( ph  ->  ( A " ( ZZ>=
`  ( N  + 
1 ) ) )  =  { 0 } )
61 plyco0 23158 . . . . . . . . . . . . . . . . . . . . . . . . . 26  |-  ( ( N  e.  NN0  /\  A : NN0 --> CC )  ->  ( ( A
" ( ZZ>= `  ( N  +  1 ) ) )  =  {
0 }  <->  A. k  e.  NN0  ( ( A `
 k )  =/=  0  ->  k  <_  N ) ) )
6257, 18, 61syl2anc 667 . . . . . . . . . . . . . . . . . . . . . . . . 25  |-  ( ph  ->  ( ( A "
( ZZ>= `  ( N  +  1 ) ) )  =  { 0 }  <->  A. k  e.  NN0  ( ( A `  k )  =/=  0  ->  k  <_  N )
) )
6360, 62mpbid 214 . . . . . . . . . . . . . . . . . . . . . . . 24  |-  ( ph  ->  A. k  e.  NN0  ( ( A `  k )  =/=  0  ->  k  <_  N )
)
6463adantr 467 . . . . . . . . . . . . . . . . . . . . . . 23  |-  ( (
ph  /\  z  e.  ( `' A " ( S 
\  { 0 } ) ) )  ->  A. k  e.  NN0  ( ( A `  k )  =/=  0  ->  k  <_  N )
)
65 ffn 5733 . . . . . . . . . . . . . . . . . . . . . . . . . . 27  |-  ( A : NN0 --> ( S  u.  { 0 } )  ->  A  Fn  NN0 )
6617, 65syl 17 . . . . . . . . . . . . . . . . . . . . . . . . . 26  |-  ( ph  ->  A  Fn  NN0 )
67 elpreima 6007 . . . . . . . . . . . . . . . . . . . . . . . . . 26  |-  ( A  Fn  NN0  ->  ( z  e.  ( `' A " ( S  \  {
0 } ) )  <-> 
( z  e.  NN0  /\  ( A `  z
)  e.  ( S 
\  { 0 } ) ) ) )
6866, 67syl 17 . . . . . . . . . . . . . . . . . . . . . . . . 25  |-  ( ph  ->  ( z  e.  ( `' A " ( S 
\  { 0 } ) )  <->  ( z  e.  NN0  /\  ( A `
 z )  e.  ( S  \  {
0 } ) ) ) )
6968simplbda 630 . . . . . . . . . . . . . . . . . . . . . . . 24  |-  ( (
ph  /\  z  e.  ( `' A " ( S 
\  { 0 } ) ) )  -> 
( A `  z
)  e.  ( S 
\  { 0 } ) )
70 eldifsni 4101 . . . . . . . . . . . . . . . . . . . . . . . 24  |-  ( ( A `  z )  e.  ( S  \  { 0 } )  ->  ( A `  z )  =/=  0
)
7169, 70syl 17 . . . . . . . . . . . . . . . . . . . . . . 23  |-  ( (
ph  /\  z  e.  ( `' A " ( S 
\  { 0 } ) ) )  -> 
( A `  z
)  =/=  0 )
72 fveq2 5870 . . . . . . . . . . . . . . . . . . . . . . . . . 26  |-  ( k  =  z  ->  ( A `  k )  =  ( A `  z ) )
7372neeq1d 2685 . . . . . . . . . . . . . . . . . . . . . . . . 25  |-  ( k  =  z  ->  (
( A `  k
)  =/=  0  <->  ( A `  z )  =/=  0 ) )
74 breq1 4408 . . . . . . . . . . . . . . . . . . . . . . . . 25  |-  ( k  =  z  ->  (
k  <_  N  <->  z  <_  N ) )
7573, 74imbi12d 322 . . . . . . . . . . . . . . . . . . . . . . . 24  |-  ( k  =  z  ->  (
( ( A `  k )  =/=  0  ->  k  <_  N )  <->  ( ( A `  z
)  =/=  0  -> 
z  <_  N )
) )
7675rspcv 3148 . . . . . . . . . . . . . . . . . . . . . . 23  |-  ( z  e.  NN0  ->  ( A. k  e.  NN0  ( ( A `  k )  =/=  0  ->  k  <_  N )  ->  (
( A `  z
)  =/=  0  -> 
z  <_  N )
) )
7759, 64, 71, 76syl3c 63 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( (
ph  /\  z  e.  ( `' A " ( S 
\  { 0 } ) ) )  -> 
z  <_  N )
7877ralrimiva 2804 . . . . . . . . . . . . . . . . . . . . 21  |-  ( ph  ->  A. z  e.  ( `' A " ( S 
\  { 0 } ) ) z  <_  N )
79 breq2 4409 . . . . . . . . . . . . . . . . . . . . . . 23  |-  ( x  =  N  ->  (
z  <_  x  <->  z  <_  N ) )
8079ralbidv 2829 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( x  =  N  ->  ( A. z  e.  ( `' A " ( S 
\  { 0 } ) ) z  <_  x 
<-> 
A. z  e.  ( `' A " ( S 
\  { 0 } ) ) z  <_  N ) )
8180rspcev 3152 . . . . . . . . . . . . . . . . . . . . 21  |-  ( ( N  e.  RR  /\  A. z  e.  ( `' A " ( S 
\  { 0 } ) ) z  <_  N )  ->  E. x  e.  RR  A. z  e.  ( `' A "
( S  \  {
0 } ) ) z  <_  x )
8258, 78, 81syl2anc 667 . . . . . . . . . . . . . . . . . . . 20  |-  ( ph  ->  E. x  e.  RR  A. z  e.  ( `' A " ( S 
\  { 0 } ) ) z  <_  x )
83 suprzcl 11022 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( ( `' A "
( S  \  {
0 } ) ) 
C_  ZZ  /\  ( `' A " ( S 
\  { 0 } ) )  =/=  (/)  /\  E. x  e.  RR  A. z  e.  ( `' A "
( S  \  {
0 } ) ) z  <_  x )  ->  sup ( ( `' A " ( S 
\  { 0 } ) ) ,  RR ,  <  )  e.  ( `' A " ( S 
\  { 0 } ) ) )
8455, 56, 82, 83syl3anc 1269 . . . . . . . . . . . . . . . . . . 19  |-  ( ph  ->  sup ( ( `' A " ( S 
\  { 0 } ) ) ,  RR ,  <  )  e.  ( `' A " ( S 
\  { 0 } ) ) )
8553, 84syl5eqel 2535 . . . . . . . . . . . . . . . . . 18  |-  ( ph  ->  M  e.  ( `' A " ( S 
\  { 0 } ) ) )
8652, 85sseldd 3435 . . . . . . . . . . . . . . . . 17  |-  ( ph  ->  M  e.  NN0 )
8786nn0zd 11045 . . . . . . . . . . . . . . . 16  |-  ( ph  ->  M  e.  ZZ )
88 zsubcl 10986 . . . . . . . . . . . . . . . 16  |-  ( ( k  e.  ZZ  /\  M  e.  ZZ )  ->  ( k  -  M
)  e.  ZZ )
8948, 87, 88syl2anr 481 . . . . . . . . . . . . . . 15  |-  ( (
ph  /\  k  e.  ( 0 ... N
) )  ->  (
k  -  M )  e.  ZZ )
9089ad2antrr 733 . . . . . . . . . . . . . 14  |-  ( ( ( ( ph  /\  k  e.  ( 0 ... N ) )  /\  k  <  M
)  /\  m  e.  NN )  ->  ( k  -  M )  e.  ZZ )
9147, 90rpexpcld 12446 . . . . . . . . . . . . 13  |-  ( ( ( ( ph  /\  k  e.  ( 0 ... N ) )  /\  k  <  M
)  /\  m  e.  NN )  ->  ( m ^ ( k  -  M ) )  e.  RR+ )
9291rpred 11348 . . . . . . . . . . . 12  |-  ( ( ( ( ph  /\  k  e.  ( 0 ... N ) )  /\  k  <  M
)  /\  m  e.  NN )  ->  ( m ^ ( k  -  M ) )  e.  RR )
9345, 92remulcld 9676 . . . . . . . . . . 11  |-  ( ( ( ( ph  /\  k  e.  ( 0 ... N ) )  /\  k  <  M
)  /\  m  e.  NN )  ->  ( ( abs `  ( A `
 k ) )  x.  ( m ^
( k  -  M
) ) )  e.  RR )
9443, 93eqeltrd 2531 . . . . . . . . . 10  |-  ( ( ( ( ph  /\  k  e.  ( 0 ... N ) )  /\  k  <  M
)  /\  m  e.  NN )  ->  ( ( n  e.  NN  |->  ( ( abs `  ( A `  k )
)  x.  ( n ^ ( k  -  M ) ) ) ) `  m )  e.  RR )
95 nnrecre 10653 . . . . . . . . . . . . 13  |-  ( m  e.  NN  ->  (
1  /  m )  e.  RR )
9695adantl 468 . . . . . . . . . . . 12  |-  ( ( ( ( ph  /\  k  e.  ( 0 ... N ) )  /\  k  <  M
)  /\  m  e.  NN )  ->  ( 1  /  m )  e.  RR )
9722absge0d 13518 . . . . . . . . . . . . 13  |-  ( ( ( ph  /\  k  e.  ( 0 ... N
) )  /\  k  <  M )  ->  0  <_  ( abs `  ( A `  k )
) )
9897adantr 467 . . . . . . . . . . . 12  |-  ( ( ( ( ph  /\  k  e.  ( 0 ... N ) )  /\  k  <  M
)  /\  m  e.  NN )  ->  0  <_ 
( abs `  ( A `  k )
) )
99 nnre 10623 . . . . . . . . . . . . . . 15  |-  ( m  e.  NN  ->  m  e.  RR )
10099adantl 468 . . . . . . . . . . . . . 14  |-  ( ( ( ( ph  /\  k  e.  ( 0 ... N ) )  /\  k  <  M
)  /\  m  e.  NN )  ->  m  e.  RR )
101 nnge1 10642 . . . . . . . . . . . . . . 15  |-  ( m  e.  NN  ->  1  <_  m )
102101adantl 468 . . . . . . . . . . . . . 14  |-  ( ( ( ( ph  /\  k  e.  ( 0 ... N ) )  /\  k  <  M
)  /\  m  e.  NN )  ->  1  <_  m )
103 1red 9663 . . . . . . . . . . . . . . . 16  |-  ( ( ( ( ph  /\  k  e.  ( 0 ... N ) )  /\  k  <  M
)  /\  m  e.  NN )  ->  1  e.  RR )
10490zred 11047 . . . . . . . . . . . . . . . 16  |-  ( ( ( ( ph  /\  k  e.  ( 0 ... N ) )  /\  k  <  M
)  /\  m  e.  NN )  ->  ( k  -  M )  e.  RR )
105 simplr 763 . . . . . . . . . . . . . . . . . . 19  |-  ( ( ( ( ph  /\  k  e.  ( 0 ... N ) )  /\  k  <  M
)  /\  m  e.  NN )  ->  k  < 
M )
10648adantl 468 . . . . . . . . . . . . . . . . . . . . 21  |-  ( (
ph  /\  k  e.  ( 0 ... N
) )  ->  k  e.  ZZ )
107106ad2antrr 733 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( ( ( ph  /\  k  e.  ( 0 ... N ) )  /\  k  <  M
)  /\  m  e.  NN )  ->  k  e.  ZZ )
10887ad3antrrr 737 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( ( ( ph  /\  k  e.  ( 0 ... N ) )  /\  k  <  M
)  /\  m  e.  NN )  ->  M  e.  ZZ )
109 zltp1le 10993 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( k  e.  ZZ  /\  M  e.  ZZ )  ->  ( k  <  M  <->  ( k  +  1 )  <_  M ) )
110107, 108, 109syl2anc 667 . . . . . . . . . . . . . . . . . . 19  |-  ( ( ( ( ph  /\  k  e.  ( 0 ... N ) )  /\  k  <  M
)  /\  m  e.  NN )  ->  ( k  <  M  <->  ( k  +  1 )  <_  M ) )
111105, 110mpbid 214 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( ( ph  /\  k  e.  ( 0 ... N ) )  /\  k  <  M
)  /\  m  e.  NN )  ->  ( k  +  1 )  <_  M )
11219adantl 468 . . . . . . . . . . . . . . . . . . . . 21  |-  ( (
ph  /\  k  e.  ( 0 ... N
) )  ->  k  e.  NN0 )
113112nn0red 10933 . . . . . . . . . . . . . . . . . . . 20  |-  ( (
ph  /\  k  e.  ( 0 ... N
) )  ->  k  e.  RR )
114113ad2antrr 733 . . . . . . . . . . . . . . . . . . 19  |-  ( ( ( ( ph  /\  k  e.  ( 0 ... N ) )  /\  k  <  M
)  /\  m  e.  NN )  ->  k  e.  RR )
11586adantr 467 . . . . . . . . . . . . . . . . . . . . 21  |-  ( (
ph  /\  k  e.  ( 0 ... N
) )  ->  M  e.  NN0 )
116115nn0red 10933 . . . . . . . . . . . . . . . . . . . 20  |-  ( (
ph  /\  k  e.  ( 0 ... N
) )  ->  M  e.  RR )
117116ad2antrr 733 . . . . . . . . . . . . . . . . . . 19  |-  ( ( ( ( ph  /\  k  e.  ( 0 ... N ) )  /\  k  <  M
)  /\  m  e.  NN )  ->  M  e.  RR )
118114, 103, 117leaddsub2d 10222 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( ( ph  /\  k  e.  ( 0 ... N ) )  /\  k  <  M
)  /\  m  e.  NN )  ->  ( ( k  +  1 )  <_  M  <->  1  <_  ( M  -  k ) ) )
119111, 118mpbid 214 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ( ph  /\  k  e.  ( 0 ... N ) )  /\  k  <  M
)  /\  m  e.  NN )  ->  1  <_ 
( M  -  k
) )
120113recnd 9674 . . . . . . . . . . . . . . . . . . 19  |-  ( (
ph  /\  k  e.  ( 0 ... N
) )  ->  k  e.  CC )
121120ad2antrr 733 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( ( ph  /\  k  e.  ( 0 ... N ) )  /\  k  <  M
)  /\  m  e.  NN )  ->  k  e.  CC )
122116recnd 9674 . . . . . . . . . . . . . . . . . . 19  |-  ( (
ph  /\  k  e.  ( 0 ... N
) )  ->  M  e.  CC )
123122ad2antrr 733 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( ( ph  /\  k  e.  ( 0 ... N ) )  /\  k  <  M
)  /\  m  e.  NN )  ->  M  e.  CC )
124121, 123negsubdi2d 10007 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ( ph  /\  k  e.  ( 0 ... N ) )  /\  k  <  M
)  /\  m  e.  NN )  ->  -u (
k  -  M )  =  ( M  -  k ) )
125119, 124breqtrrd 4432 . . . . . . . . . . . . . . . 16  |-  ( ( ( ( ph  /\  k  e.  ( 0 ... N ) )  /\  k  <  M
)  /\  m  e.  NN )  ->  1  <_  -u ( k  -  M
) )
126103, 104, 125lenegcon2d 10203 . . . . . . . . . . . . . . 15  |-  ( ( ( ( ph  /\  k  e.  ( 0 ... N ) )  /\  k  <  M
)  /\  m  e.  NN )  ->  ( k  -  M )  <_  -u 1 )
127 neg1z 10980 . . . . . . . . . . . . . . . 16  |-  -u 1  e.  ZZ
128 eluz 11179 . . . . . . . . . . . . . . . 16  |-  ( ( ( k  -  M
)  e.  ZZ  /\  -u 1  e.  ZZ )  ->  ( -u 1  e.  ( ZZ>= `  ( k  -  M ) )  <->  ( k  -  M )  <_  -u 1
) )
12990, 127, 128sylancl 669 . . . . . . . . . . . . . . 15  |-  ( ( ( ( ph  /\  k  e.  ( 0 ... N ) )  /\  k  <  M
)  /\  m  e.  NN )  ->  ( -u
1  e.  ( ZZ>= `  ( k  -  M
) )  <->  ( k  -  M )  <_  -u 1
) )
130126, 129mpbird 236 . . . . . . . . . . . . . 14  |-  ( ( ( ( ph  /\  k  e.  ( 0 ... N ) )  /\  k  <  M
)  /\  m  e.  NN )  ->  -u 1  e.  ( ZZ>= `  ( k  -  M ) ) )
131100, 102, 130leexp2ad 12455 . . . . . . . . . . . . 13  |-  ( ( ( ( ph  /\  k  e.  ( 0 ... N ) )  /\  k  <  M
)  /\  m  e.  NN )  ->  ( m ^ ( k  -  M ) )  <_ 
( m ^ -u 1
) )
132 nncn 10624 . . . . . . . . . . . . . . 15  |-  ( m  e.  NN  ->  m  e.  CC )
133132adantl 468 . . . . . . . . . . . . . 14  |-  ( ( ( ( ph  /\  k  e.  ( 0 ... N ) )  /\  k  <  M
)  /\  m  e.  NN )  ->  m  e.  CC )
134 expn1 12289 . . . . . . . . . . . . . 14  |-  ( m  e.  CC  ->  (
m ^ -u 1
)  =  ( 1  /  m ) )
135133, 134syl 17 . . . . . . . . . . . . 13  |-  ( ( ( ( ph  /\  k  e.  ( 0 ... N ) )  /\  k  <  M
)  /\  m  e.  NN )  ->  ( m ^ -u 1 )  =  ( 1  /  m ) )
136131, 135breqtrd 4430 . . . . . . . . . . . 12  |-  ( ( ( ( ph  /\  k  e.  ( 0 ... N ) )  /\  k  <  M
)  /\  m  e.  NN )  ->  ( m ^ ( k  -  M ) )  <_ 
( 1  /  m
) )
13792, 96, 45, 98, 136lemul2ad 10554 . . . . . . . . . . 11  |-  ( ( ( ( ph  /\  k  e.  ( 0 ... N ) )  /\  k  <  M
)  /\  m  e.  NN )  ->  ( ( abs `  ( A `
 k ) )  x.  ( m ^
( k  -  M
) ) )  <_ 
( ( abs `  ( A `  k )
)  x.  ( 1  /  m ) ) )
13824adantr 467 . . . . . . . . . . . . 13  |-  ( ( ( ( ph  /\  k  e.  ( 0 ... N ) )  /\  k  <  M
)  /\  m  e.  NN )  ->  ( abs `  ( A `  k
) )  e.  CC )
139 nnne0 10649 . . . . . . . . . . . . . 14  |-  ( m  e.  NN  ->  m  =/=  0 )
140139adantl 468 . . . . . . . . . . . . 13  |-  ( ( ( ( ph  /\  k  e.  ( 0 ... N ) )  /\  k  <  M
)  /\  m  e.  NN )  ->  m  =/=  0 )
141138, 133, 140divrecd 10393 . . . . . . . . . . . 12  |-  ( ( ( ( ph  /\  k  e.  ( 0 ... N ) )  /\  k  <  M
)  /\  m  e.  NN )  ->  ( ( abs `  ( A `
 k ) )  /  m )  =  ( ( abs `  ( A `  k )
)  x.  ( 1  /  m ) ) )
14234, 141eqtrd 2487 . . . . . . . . . . 11  |-  ( ( ( ( ph  /\  k  e.  ( 0 ... N ) )  /\  k  <  M
)  /\  m  e.  NN )  ->  ( ( n  e.  NN  |->  ( ( abs `  ( A `  k )
)  /  n ) ) `  m )  =  ( ( abs `  ( A `  k
) )  x.  (
1  /  m ) ) )
143137, 43, 1423brtr4d 4436 . . . . . . . . . 10  |-  ( ( ( ( ph  /\  k  e.  ( 0 ... N ) )  /\  k  <  M
)  /\  m  e.  NN )  ->  ( ( n  e.  NN  |->  ( ( abs `  ( A `  k )
)  x.  ( n ^ ( k  -  M ) ) ) ) `  m )  <_  ( ( n  e.  NN  |->  ( ( abs `  ( A `
 k ) )  /  n ) ) `
 m ) )
14491rpge0d 11352 . . . . . . . . . . . 12  |-  ( ( ( ( ph  /\  k  e.  ( 0 ... N ) )  /\  k  <  M
)  /\  m  e.  NN )  ->  0  <_ 
( m ^ (
k  -  M ) ) )
14545, 92, 98, 144mulge0d 10197 . . . . . . . . . . 11  |-  ( ( ( ( ph  /\  k  e.  ( 0 ... N ) )  /\  k  <  M
)  /\  m  e.  NN )  ->  0  <_ 
( ( abs `  ( A `  k )
)  x.  ( m ^ ( k  -  M ) ) ) )
146145, 43breqtrrd 4432 . . . . . . . . . 10  |-  ( ( ( ( ph  /\  k  e.  ( 0 ... N ) )  /\  k  <  M
)  /\  m  e.  NN )  ->  0  <_ 
( ( n  e.  NN  |->  ( ( abs `  ( A `  k
) )  x.  (
n ^ ( k  -  M ) ) ) ) `  m
) )
1471, 4, 26, 29, 37, 94, 143, 146climsqz2 13717 . . . . . . . . 9  |-  ( ( ( ph  /\  k  e.  ( 0 ... N
) )  /\  k  <  M )  ->  (
n  e.  NN  |->  ( ( abs `  ( A `  k )
)  x.  ( n ^ ( k  -  M ) ) ) )  ~~>  0 )
14827mptex 6141 . . . . . . . . . . 11  |-  ( n  e.  NN  |->  ( ( A `  k )  x.  ( n ^
( k  -  M
) ) ) )  e.  _V
149148a1i 11 . . . . . . . . . 10  |-  ( ( ( ph  /\  k  e.  ( 0 ... N
) )  /\  k  <  M )  ->  (
n  e.  NN  |->  ( ( A `  k
)  x.  ( n ^ ( k  -  M ) ) ) )  e.  _V )
15038oveq2d 6311 . . . . . . . . . . . . . . 15  |-  ( n  =  m  ->  (
( A `  k
)  x.  ( n ^ ( k  -  M ) ) )  =  ( ( A `
 k )  x.  ( m ^ (
k  -  M ) ) ) )
151 eqid 2453 . . . . . . . . . . . . . . 15  |-  ( n  e.  NN  |->  ( ( A `  k )  x.  ( n ^
( k  -  M
) ) ) )  =  ( n  e.  NN  |->  ( ( A `
 k )  x.  ( n ^ (
k  -  M ) ) ) )
152 ovex 6323 . . . . . . . . . . . . . . 15  |-  ( ( A `  k )  x.  ( m ^
( k  -  M
) ) )  e. 
_V
153150, 151, 152fvmpt 5953 . . . . . . . . . . . . . 14  |-  ( m  e.  NN  ->  (
( n  e.  NN  |->  ( ( A `  k )  x.  (
n ^ ( k  -  M ) ) ) ) `  m
)  =  ( ( A `  k )  x.  ( m ^
( k  -  M
) ) ) )
154153ad2antlr 734 . . . . . . . . . . . . 13  |-  ( ( ( ph  /\  m  e.  NN )  /\  k  e.  ( 0 ... N
) )  ->  (
( n  e.  NN  |->  ( ( A `  k )  x.  (
n ^ ( k  -  M ) ) ) ) `  m
)  =  ( ( A `  k )  x.  ( m ^
( k  -  M
) ) ) )
15518adantr 467 . . . . . . . . . . . . . . 15  |-  ( (
ph  /\  m  e.  NN )  ->  A : NN0
--> CC )
156155, 19, 20syl2an 480 . . . . . . . . . . . . . 14  |-  ( ( ( ph  /\  m  e.  NN )  /\  k  e.  ( 0 ... N
) )  ->  ( A `  k )  e.  CC )
157132ad2antlr 734 . . . . . . . . . . . . . . 15  |-  ( ( ( ph  /\  m  e.  NN )  /\  k  e.  ( 0 ... N
) )  ->  m  e.  CC )
158139ad2antlr 734 . . . . . . . . . . . . . . 15  |-  ( ( ( ph  /\  m  e.  NN )  /\  k  e.  ( 0 ... N
) )  ->  m  =/=  0 )
15987adantr 467 . . . . . . . . . . . . . . . 16  |-  ( (
ph  /\  m  e.  NN )  ->  M  e.  ZZ )
16048, 159, 88syl2anr 481 . . . . . . . . . . . . . . 15  |-  ( ( ( ph  /\  m  e.  NN )  /\  k  e.  ( 0 ... N
) )  ->  (
k  -  M )  e.  ZZ )
161157, 158, 160expclzd 12428 . . . . . . . . . . . . . 14  |-  ( ( ( ph  /\  m  e.  NN )  /\  k  e.  ( 0 ... N
) )  ->  (
m ^ ( k  -  M ) )  e.  CC )
162156, 161mulcld 9668 . . . . . . . . . . . . 13  |-  ( ( ( ph  /\  m  e.  NN )  /\  k  e.  ( 0 ... N
) )  ->  (
( A `  k
)  x.  ( m ^ ( k  -  M ) ) )  e.  CC )
163154, 162eqeltrd 2531 . . . . . . . . . . . 12  |-  ( ( ( ph  /\  m  e.  NN )  /\  k  e.  ( 0 ... N
) )  ->  (
( n  e.  NN  |->  ( ( A `  k )  x.  (
n ^ ( k  -  M ) ) ) ) `  m
)  e.  CC )
164163an32s 814 . . . . . . . . . . 11  |-  ( ( ( ph  /\  k  e.  ( 0 ... N
) )  /\  m  e.  NN )  ->  (
( n  e.  NN  |->  ( ( A `  k )  x.  (
n ^ ( k  -  M ) ) ) ) `  m
)  e.  CC )
165164adantlr 722 . . . . . . . . . 10  |-  ( ( ( ( ph  /\  k  e.  ( 0 ... N ) )  /\  k  <  M
)  /\  m  e.  NN )  ->  ( ( n  e.  NN  |->  ( ( A `  k
)  x.  ( n ^ ( k  -  M ) ) ) ) `  m )  e.  CC )
16692recnd 9674 . . . . . . . . . . . . 13  |-  ( ( ( ( ph  /\  k  e.  ( 0 ... N ) )  /\  k  <  M
)  /\  m  e.  NN )  ->  ( m ^ ( k  -  M ) )  e.  CC )
16744, 166absmuld 13528 . . . . . . . . . . . 12  |-  ( ( ( ( ph  /\  k  e.  ( 0 ... N ) )  /\  k  <  M
)  /\  m  e.  NN )  ->  ( abs `  ( ( A `  k )  x.  (
m ^ ( k  -  M ) ) ) )  =  ( ( abs `  ( A `  k )
)  x.  ( abs `  ( m ^ (
k  -  M ) ) ) ) )
16892, 144absidd 13496 . . . . . . . . . . . . 13  |-  ( ( ( ( ph  /\  k  e.  ( 0 ... N ) )  /\  k  <  M
)  /\  m  e.  NN )  ->  ( abs `  ( m ^ (
k  -  M ) ) )  =  ( m ^ ( k  -  M ) ) )
169168oveq2d 6311 . . . . . . . . . . . 12  |-  ( ( ( ( ph  /\  k  e.  ( 0 ... N ) )  /\  k  <  M
)  /\  m  e.  NN )  ->  ( ( abs `  ( A `
 k ) )  x.  ( abs `  (
m ^ ( k  -  M ) ) ) )  =  ( ( abs `  ( A `  k )
)  x.  ( m ^ ( k  -  M ) ) ) )
170167, 169eqtrd 2487 . . . . . . . . . . 11  |-  ( ( ( ( ph  /\  k  e.  ( 0 ... N ) )  /\  k  <  M
)  /\  m  e.  NN )  ->  ( abs `  ( ( A `  k )  x.  (
m ^ ( k  -  M ) ) ) )  =  ( ( abs `  ( A `  k )
)  x.  ( m ^ ( k  -  M ) ) ) )
171153adantl 468 . . . . . . . . . . . 12  |-  ( ( ( ( ph  /\  k  e.  ( 0 ... N ) )  /\  k  <  M
)  /\  m  e.  NN )  ->  ( ( n  e.  NN  |->  ( ( A `  k
)  x.  ( n ^ ( k  -  M ) ) ) ) `  m )  =  ( ( A `
 k )  x.  ( m ^ (
k  -  M ) ) ) )
172171fveq2d 5874 . . . . . . . . . . 11  |-  ( ( ( ( ph  /\  k  e.  ( 0 ... N ) )  /\  k  <  M
)  /\  m  e.  NN )  ->  ( abs `  ( ( n  e.  NN  |->  ( ( A `
 k )  x.  ( n ^ (
k  -  M ) ) ) ) `  m ) )  =  ( abs `  (
( A `  k
)  x.  ( m ^ ( k  -  M ) ) ) ) )
173170, 172, 433eqtr4rd 2498 . . . . . . . . . 10  |-  ( ( ( ( ph  /\  k  e.  ( 0 ... N ) )  /\  k  <  M
)  /\  m  e.  NN )  ->  ( ( n  e.  NN  |->  ( ( abs `  ( A `  k )
)  x.  ( n ^ ( k  -  M ) ) ) ) `  m )  =  ( abs `  (
( n  e.  NN  |->  ( ( A `  k )  x.  (
n ^ ( k  -  M ) ) ) ) `  m
) ) )
1741, 4, 149, 29, 165, 173climabs0 13661 . . . . . . . . 9  |-  ( ( ( ph  /\  k  e.  ( 0 ... N
) )  /\  k  <  M )  ->  (
( n  e.  NN  |->  ( ( A `  k )  x.  (
n ^ ( k  -  M ) ) ) )  ~~>  0  <->  (
n  e.  NN  |->  ( ( abs `  ( A `  k )
)  x.  ( n ^ ( k  -  M ) ) ) )  ~~>  0 ) )
175147, 174mpbird 236 . . . . . . . 8  |-  ( ( ( ph  /\  k  e.  ( 0 ... N
) )  /\  k  <  M )  ->  (
n  e.  NN  |->  ( ( A `  k
)  x.  ( n ^ ( k  -  M ) ) ) )  ~~>  0 )
176113adantr 467 . . . . . . . . . . 11  |-  ( ( ( ph  /\  k  e.  ( 0 ... N
) )  /\  k  <  M )  ->  k  e.  RR )
177 simpr 463 . . . . . . . . . . 11  |-  ( ( ( ph  /\  k  e.  ( 0 ... N
) )  /\  k  <  M )  ->  k  <  M )
178176, 177ltned 9776 . . . . . . . . . 10  |-  ( ( ( ph  /\  k  e.  ( 0 ... N
) )  /\  k  <  M )  ->  k  =/=  M )
179 elsn 3984 . . . . . . . . . . 11  |-  ( k  e.  { M }  <->  k  =  M )
180179necon3bbii 2673 . . . . . . . . . 10  |-  ( -.  k  e.  { M } 
<->  k  =/=  M )
181178, 180sylibr 216 . . . . . . . . 9  |-  ( ( ( ph  /\  k  e.  ( 0 ... N
) )  /\  k  <  M )  ->  -.  k  e.  { M } )
182181iffalsed 3894 . . . . . . . 8  |-  ( ( ( ph  /\  k  e.  ( 0 ... N
) )  /\  k  <  M )  ->  if ( k  e.  { M } ,  ( A `
 k ) ,  0 )  =  0 )
183175, 182breqtrrd 4432 . . . . . . 7  |-  ( ( ( ph  /\  k  e.  ( 0 ... N
) )  /\  k  <  M )  ->  (
n  e.  NN  |->  ( ( A `  k
)  x.  ( n ^ ( k  -  M ) ) ) )  ~~>  if ( k  e.  { M } ,  ( A `  k ) ,  0 ) )
184 nncn 10624 . . . . . . . . . . . . . . 15  |-  ( n  e.  NN  ->  n  e.  CC )
185184ad2antlr 734 . . . . . . . . . . . . . 14  |-  ( ( ( ( ( ph  /\  k  e.  ( 0 ... N ) )  /\  M  <_  k
)  /\  n  e.  NN )  /\  ( A `  k )  =  0 )  ->  n  e.  CC )
186 nnne0 10649 . . . . . . . . . . . . . . 15  |-  ( n  e.  NN  ->  n  =/=  0 )
187186ad2antlr 734 . . . . . . . . . . . . . 14  |-  ( ( ( ( ( ph  /\  k  e.  ( 0 ... N ) )  /\  M  <_  k
)  /\  n  e.  NN )  /\  ( A `  k )  =  0 )  ->  n  =/=  0 )
18889ad3antrrr 737 . . . . . . . . . . . . . 14  |-  ( ( ( ( ( ph  /\  k  e.  ( 0 ... N ) )  /\  M  <_  k
)  /\  n  e.  NN )  /\  ( A `  k )  =  0 )  -> 
( k  -  M
)  e.  ZZ )
189185, 187, 188expclzd 12428 . . . . . . . . . . . . 13  |-  ( ( ( ( ( ph  /\  k  e.  ( 0 ... N ) )  /\  M  <_  k
)  /\  n  e.  NN )  /\  ( A `  k )  =  0 )  -> 
( n ^ (
k  -  M ) )  e.  CC )
190189mul02d 9836 . . . . . . . . . . . 12  |-  ( ( ( ( ( ph  /\  k  e.  ( 0 ... N ) )  /\  M  <_  k
)  /\  n  e.  NN )  /\  ( A `  k )  =  0 )  -> 
( 0  x.  (
n ^ ( k  -  M ) ) )  =  0 )
191 simpr 463 . . . . . . . . . . . . 13  |-  ( ( ( ( ( ph  /\  k  e.  ( 0 ... N ) )  /\  M  <_  k
)  /\  n  e.  NN )  /\  ( A `  k )  =  0 )  -> 
( A `  k
)  =  0 )
192191oveq1d 6310 . . . . . . . . . . . 12  |-  ( ( ( ( ( ph  /\  k  e.  ( 0 ... N ) )  /\  M  <_  k
)  /\  n  e.  NN )  /\  ( A `  k )  =  0 )  -> 
( ( A `  k )  x.  (
n ^ ( k  -  M ) ) )  =  ( 0  x.  ( n ^
( k  -  M
) ) ) )
193191ifeq1d 3901 . . . . . . . . . . . . 13  |-  ( ( ( ( ( ph  /\  k  e.  ( 0 ... N ) )  /\  M  <_  k
)  /\  n  e.  NN )  /\  ( A `  k )  =  0 )  ->  if ( k  e.  { M } ,  ( A `
 k ) ,  0 )  =  if ( k  e.  { M } ,  0 ,  0 ) )
194 ifid 3920 . . . . . . . . . . . . 13  |-  if ( k  e.  { M } ,  0 , 
0 )  =  0
195193, 194syl6eq 2503 . . . . . . . . . . . 12  |-  ( ( ( ( ( ph  /\  k  e.  ( 0 ... N ) )  /\  M  <_  k
)  /\  n  e.  NN )  /\  ( A `  k )  =  0 )  ->  if ( k  e.  { M } ,  ( A `
 k ) ,  0 )  =  0 )
196190, 192, 1953eqtr4d 2497 . . . . . . . . . . 11  |-  ( ( ( ( ( ph  /\  k  e.  ( 0 ... N ) )  /\  M  <_  k
)  /\  n  e.  NN )  /\  ( A `  k )  =  0 )  -> 
( ( A `  k )  x.  (
n ^ ( k  -  M ) ) )  =  if ( k  e.  { M } ,  ( A `  k ) ,  0 ) )
19721adantr 467 . . . . . . . . . . . . . 14  |-  ( ( ( ph  /\  k  e.  ( 0 ... N
) )  /\  M  <_  k )  ->  ( A `  k )  e.  CC )
198197ad2antrr 733 . . . . . . . . . . . . 13  |-  ( ( ( ( ( ph  /\  k  e.  ( 0 ... N ) )  /\  M  <_  k
)  /\  n  e.  NN )  /\  ( A `  k )  =/=  0 )  ->  ( A `  k )  e.  CC )
199198mulid1d 9665 . . . . . . . . . . . 12  |-  ( ( ( ( ( ph  /\  k  e.  ( 0 ... N ) )  /\  M  <_  k
)  /\  n  e.  NN )  /\  ( A `  k )  =/=  0 )  ->  (
( A `  k
)  x.  1 )  =  ( A `  k ) )
200 nn0ssre 10880 . . . . . . . . . . . . . . . . . . . . . . . 24  |-  NN0  C_  RR
20152, 200syl6ss 3446 . . . . . . . . . . . . . . . . . . . . . . 23  |-  ( ph  ->  ( `' A "
( S  \  {
0 } ) ) 
C_  RR )
202201ad2antrr 733 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( ( ( ph  /\  k  e.  ( 0 ... N
) )  /\  ( A `  k )  =/=  0 )  ->  ( `' A " ( S 
\  { 0 } ) )  C_  RR )
20356ad2antrr 733 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( ( ( ph  /\  k  e.  ( 0 ... N
) )  /\  ( A `  k )  =/=  0 )  ->  ( `' A " ( S 
\  { 0 } ) )  =/=  (/) )
20482ad2antrr 733 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( ( ( ph  /\  k  e.  ( 0 ... N
) )  /\  ( A `  k )  =/=  0 )  ->  E. x  e.  RR  A. z  e.  ( `' A "
( S  \  {
0 } ) ) z  <_  x )
20519ad2antlr 734 . . . . . . . . . . . . . . . . . . . . . . 23  |-  ( ( ( ph  /\  k  e.  ( 0 ... N
) )  /\  ( A `  k )  =/=  0 )  ->  k  e.  NN0 )
206 ffvelrn 6025 . . . . . . . . . . . . . . . . . . . . . . . . . . 27  |-  ( ( A : NN0 --> ( S  u.  { 0 } )  /\  k  e. 
NN0 )  ->  ( A `  k )  e.  ( S  u.  {
0 } ) )
20717, 19, 206syl2an 480 . . . . . . . . . . . . . . . . . . . . . . . . . 26  |-  ( (
ph  /\  k  e.  ( 0 ... N
) )  ->  ( A `  k )  e.  ( S  u.  {
0 } ) )
208207anim1i 572 . . . . . . . . . . . . . . . . . . . . . . . . 25  |-  ( ( ( ph  /\  k  e.  ( 0 ... N
) )  /\  ( A `  k )  =/=  0 )  ->  (
( A `  k
)  e.  ( S  u.  { 0 } )  /\  ( A `
 k )  =/=  0 ) )
209 eldifsn 4100 . . . . . . . . . . . . . . . . . . . . . . . . 25  |-  ( ( A `  k )  e.  ( ( S  u.  { 0 } )  \  { 0 } )  <->  ( ( A `  k )  e.  ( S  u.  {
0 } )  /\  ( A `  k )  =/=  0 ) )
210208, 209sylibr 216 . . . . . . . . . . . . . . . . . . . . . . . 24  |-  ( ( ( ph  /\  k  e.  ( 0 ... N
) )  /\  ( A `  k )  =/=  0 )  ->  ( A `  k )  e.  ( ( S  u.  { 0 } )  \  { 0 } ) )
211 difun2 3849 . . . . . . . . . . . . . . . . . . . . . . . 24  |-  ( ( S  u.  { 0 } )  \  {
0 } )  =  ( S  \  {
0 } )
212210, 211syl6eleq 2541 . . . . . . . . . . . . . . . . . . . . . . 23  |-  ( ( ( ph  /\  k  e.  ( 0 ... N
) )  /\  ( A `  k )  =/=  0 )  ->  ( A `  k )  e.  ( S  \  {
0 } ) )
213 elpreima 6007 . . . . . . . . . . . . . . . . . . . . . . . . 25  |-  ( A  Fn  NN0  ->  ( k  e.  ( `' A " ( S  \  {
0 } ) )  <-> 
( k  e.  NN0  /\  ( A `  k
)  e.  ( S 
\  { 0 } ) ) ) )
21466, 213syl 17 . . . . . . . . . . . . . . . . . . . . . . . 24  |-  ( ph  ->  ( k  e.  ( `' A " ( S 
\  { 0 } ) )  <->  ( k  e.  NN0  /\  ( A `
 k )  e.  ( S  \  {
0 } ) ) ) )
215214ad2antrr 733 . . . . . . . . . . . . . . . . . . . . . . 23  |-  ( ( ( ph  /\  k  e.  ( 0 ... N
) )  /\  ( A `  k )  =/=  0 )  ->  (
k  e.  ( `' A " ( S 
\  { 0 } ) )  <->  ( k  e.  NN0  /\  ( A `
 k )  e.  ( S  \  {
0 } ) ) ) )
216205, 212, 215mpbir2and 934 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( ( ( ph  /\  k  e.  ( 0 ... N
) )  /\  ( A `  k )  =/=  0 )  ->  k  e.  ( `' A "
( S  \  {
0 } ) ) )
217 suprub 10577 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( ( ( ( `' A " ( S  \  {
0 } ) ) 
C_  RR  /\  ( `' A " ( S 
\  { 0 } ) )  =/=  (/)  /\  E. x  e.  RR  A. z  e.  ( `' A "
( S  \  {
0 } ) ) z  <_  x )  /\  k  e.  ( `' A " ( S 
\  { 0 } ) ) )  -> 
k  <_  sup (
( `' A "
( S  \  {
0 } ) ) ,  RR ,  <  ) )
218202, 203, 204, 216, 217syl31anc 1272 . . . . . . . . . . . . . . . . . . . . 21  |-  ( ( ( ph  /\  k  e.  ( 0 ... N
) )  /\  ( A `  k )  =/=  0 )  ->  k  <_  sup ( ( `' A " ( S 
\  { 0 } ) ) ,  RR ,  <  ) )
219218, 53syl6breqr 4446 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( ( ph  /\  k  e.  ( 0 ... N
) )  /\  ( A `  k )  =/=  0 )  ->  k  <_  M )
220219adantlr 722 . . . . . . . . . . . . . . . . . . 19  |-  ( ( ( ( ph  /\  k  e.  ( 0 ... N ) )  /\  M  <_  k
)  /\  ( A `  k )  =/=  0
)  ->  k  <_  M )
221220adantlr 722 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( ( ( ph  /\  k  e.  ( 0 ... N ) )  /\  M  <_  k
)  /\  n  e.  NN )  /\  ( A `  k )  =/=  0 )  ->  k  <_  M )
222 simpllr 770 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( ( ( ph  /\  k  e.  ( 0 ... N ) )  /\  M  <_  k
)  /\  n  e.  NN )  /\  ( A `  k )  =/=  0 )  ->  M  <_  k )
223113ad3antrrr 737 . . . . . . . . . . . . . . . . . . 19  |-  ( ( ( ( ( ph  /\  k  e.  ( 0 ... N ) )  /\  M  <_  k
)  /\  n  e.  NN )  /\  ( A `  k )  =/=  0 )  ->  k  e.  RR )
224116ad3antrrr 737 . . . . . . . . . . . . . . . . . . 19  |-  ( ( ( ( ( ph  /\  k  e.  ( 0 ... N ) )  /\  M  <_  k
)  /\  n  e.  NN )  /\  ( A `  k )  =/=  0 )  ->  M  e.  RR )
225223, 224letri3d 9782 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( ( ( ph  /\  k  e.  ( 0 ... N ) )  /\  M  <_  k
)  /\  n  e.  NN )  /\  ( A `  k )  =/=  0 )  ->  (
k  =  M  <->  ( k  <_  M  /\  M  <_ 
k ) ) )
226221, 222, 225mpbir2and 934 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ( ( ph  /\  k  e.  ( 0 ... N ) )  /\  M  <_  k
)  /\  n  e.  NN )  /\  ( A `  k )  =/=  0 )  ->  k  =  M )
227226oveq1d 6310 . . . . . . . . . . . . . . . 16  |-  ( ( ( ( ( ph  /\  k  e.  ( 0 ... N ) )  /\  M  <_  k
)  /\  n  e.  NN )  /\  ( A `  k )  =/=  0 )  ->  (
k  -  M )  =  ( M  -  M ) )
228122ad3antrrr 737 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ( ( ph  /\  k  e.  ( 0 ... N ) )  /\  M  <_  k
)  /\  n  e.  NN )  /\  ( A `  k )  =/=  0 )  ->  M  e.  CC )
229228subidd 9979 . . . . . . . . . . . . . . . 16  |-  ( ( ( ( ( ph  /\  k  e.  ( 0 ... N ) )  /\  M  <_  k
)  /\  n  e.  NN )  /\  ( A `  k )  =/=  0 )  ->  ( M  -  M )  =  0 )
230227, 229eqtrd 2487 . . . . . . . . . . . . . . 15  |-  ( ( ( ( ( ph  /\  k  e.  ( 0 ... N ) )  /\  M  <_  k
)  /\  n  e.  NN )  /\  ( A `  k )  =/=  0 )  ->  (
k  -  M )  =  0 )
231230oveq2d 6311 . . . . . . . . . . . . . 14  |-  ( ( ( ( ( ph  /\  k  e.  ( 0 ... N ) )  /\  M  <_  k
)  /\  n  e.  NN )  /\  ( A `  k )  =/=  0 )  ->  (
n ^ ( k  -  M ) )  =  ( n ^
0 ) )
232184ad2antlr 734 . . . . . . . . . . . . . . 15  |-  ( ( ( ( ( ph  /\  k  e.  ( 0 ... N ) )  /\  M  <_  k
)  /\  n  e.  NN )  /\  ( A `  k )  =/=  0 )  ->  n  e.  CC )
233232exp0d 12417 . . . . . . . . . . . . . 14  |-  ( ( ( ( ( ph  /\  k  e.  ( 0 ... N ) )  /\  M  <_  k
)  /\  n  e.  NN )  /\  ( A `  k )  =/=  0 )  ->  (
n ^ 0 )  =  1 )
234231, 233eqtrd 2487 . . . . . . . . . . . . 13  |-  ( ( ( ( ( ph  /\  k  e.  ( 0 ... N ) )  /\  M  <_  k
)  /\  n  e.  NN )  /\  ( A `  k )  =/=  0 )  ->  (
n ^ ( k  -  M ) )  =  1 )
235234oveq2d 6311 . . . . . . . . . . . 12  |-  ( ( ( ( ( ph  /\  k  e.  ( 0 ... N ) )  /\  M  <_  k
)  /\  n  e.  NN )  /\  ( A `  k )  =/=  0 )  ->  (
( A `  k
)  x.  ( n ^ ( k  -  M ) ) )  =  ( ( A `
 k )  x.  1 ) )
236226, 179sylibr 216 . . . . . . . . . . . . 13  |-  ( ( ( ( ( ph  /\  k  e.  ( 0 ... N ) )  /\  M  <_  k
)  /\  n  e.  NN )  /\  ( A `  k )  =/=  0 )  ->  k  e.  { M } )
237236iftrued 3891 . . . . . . . . . . . 12  |-  ( ( ( ( ( ph  /\  k  e.  ( 0 ... N ) )  /\  M  <_  k
)  /\  n  e.  NN )  /\  ( A `  k )  =/=  0 )  ->  if ( k  e.  { M } ,  ( A `
 k ) ,  0 )  =  ( A `  k ) )
238199, 235, 2373eqtr4d 2497 . . . . . . . . . . 11  |-  ( ( ( ( ( ph  /\  k  e.  ( 0 ... N ) )  /\  M  <_  k
)  /\  n  e.  NN )  /\  ( A `  k )  =/=  0 )  ->  (
( A `  k
)  x.  ( n ^ ( k  -  M ) ) )  =  if ( k  e.  { M } ,  ( A `  k ) ,  0 ) )
239196, 238pm2.61dane 2713 . . . . . . . . . 10  |-  ( ( ( ( ph  /\  k  e.  ( 0 ... N ) )  /\  M  <_  k
)  /\  n  e.  NN )  ->  ( ( A `  k )  x.  ( n ^
( k  -  M
) ) )  =  if ( k  e. 
{ M } , 
( A `  k
) ,  0 ) )
240239mpteq2dva 4492 . . . . . . . . 9  |-  ( ( ( ph  /\  k  e.  ( 0 ... N
) )  /\  M  <_  k )  ->  (
n  e.  NN  |->  ( ( A `  k
)  x.  ( n ^ ( k  -  M ) ) ) )  =  ( n  e.  NN  |->  if ( k  e.  { M } ,  ( A `  k ) ,  0 ) ) )
241 fconstmpt 4881 . . . . . . . . 9  |-  ( NN 
X.  { if ( k  e.  { M } ,  ( A `  k ) ,  0 ) } )  =  ( n  e.  NN  |->  if ( k  e.  { M } ,  ( A `
 k ) ,  0 ) )
242240, 241syl6eqr 2505 . . . . . . . 8  |-  ( ( ( ph  /\  k  e.  ( 0 ... N
) )  /\  M  <_  k )  ->  (
n  e.  NN  |->  ( ( A `  k
)  x.  ( n ^ ( k  -  M ) ) ) )  =  ( NN 
X.  { if ( k  e.  { M } ,  ( A `  k ) ,  0 ) } ) )
243 ifcl 3925 . . . . . . . . . 10  |-  ( ( ( A `  k
)  e.  CC  /\  0  e.  CC )  ->  if ( k  e. 
{ M } , 
( A `  k
) ,  0 )  e.  CC )
244197, 7, 243sylancl 669 . . . . . . . . 9  |-  ( ( ( ph  /\  k  e.  ( 0 ... N
) )  /\  M  <_  k )  ->  if ( k  e.  { M } ,  ( A `
 k ) ,  0 )  e.  CC )
245 1z 10974 . . . . . . . . 9  |-  1  e.  ZZ
2461eqimss2i 3489 . . . . . . . . . 10  |-  ( ZZ>= ` 
1 )  C_  NN
247246, 27climconst2 13624 . . . . . . . . 9  |-  ( ( if ( k  e. 
{ M } , 
( A `  k
) ,  0 )  e.  CC  /\  1  e.  ZZ )  ->  ( NN  X.  { if ( k  e.  { M } ,  ( A `  k ) ,  0 ) } )  ~~>  if ( k  e.  { M } ,  ( A `  k ) ,  0 ) )
248244, 245, 247sylancl 669 . . . . . . . 8  |-  ( ( ( ph  /\  k  e.  ( 0 ... N
) )  /\  M  <_  k )  ->  ( NN  X.  { if ( k  e.  { M } ,  ( A `  k ) ,  0 ) } )  ~~>  if ( k  e.  { M } ,  ( A `  k ) ,  0 ) )
249242, 248eqbrtrd 4426 . . . . . . 7  |-  ( ( ( ph  /\  k  e.  ( 0 ... N
) )  /\  M  <_  k )  ->  (
n  e.  NN  |->  ( ( A `  k
)  x.  ( n ^ ( k  -  M ) ) ) )  ~~>  if ( k  e.  { M } ,  ( A `  k ) ,  0 ) )
250183, 249, 113, 116ltlecasei 9747 . . . . . 6  |-  ( (
ph  /\  k  e.  ( 0 ... N
) )  ->  (
n  e.  NN  |->  ( ( A `  k
)  x.  ( n ^ ( k  -  M ) ) ) )  ~~>  if ( k  e.  { M } ,  ( A `  k ) ,  0 ) )
251 snex 4644 . . . . . . . 8  |-  { 0 }  e.  _V
25227, 251xpex 6600 . . . . . . 7  |-  ( NN 
X.  { 0 } )  e.  _V
253252a1i 11 . . . . . 6  |-  ( ph  ->  ( NN  X.  {
0 } )  e. 
_V )
254164anasss 653 . . . . . 6  |-  ( (
ph  /\  ( k  e.  ( 0 ... N
)  /\  m  e.  NN ) )  ->  (
( n  e.  NN  |->  ( ( A `  k )  x.  (
n ^ ( k  -  M ) ) ) ) `  m
)  e.  CC )
255 plyeq0.5 . . . . . . . . . . . 12  |-  ( ph  ->  0p  =  ( z  e.  CC  |->  sum_ k  e.  ( 0 ... N ) ( ( A `  k
)  x.  ( z ^ k ) ) ) )
256255fveq1d 5872 . . . . . . . . . . 11  |-  ( ph  ->  ( 0p `  m )  =  ( ( z  e.  CC  |->  sum_ k  e.  ( 0 ... N ) ( ( A `  k
)  x.  ( z ^ k ) ) ) `  m ) )
257256adantr 467 . . . . . . . . . 10  |-  ( (
ph  /\  m  e.  NN )  ->  ( 0p `  m )  =  ( ( z  e.  CC  |->  sum_ k  e.  ( 0 ... N
) ( ( A `
 k )  x.  ( z ^ k
) ) ) `  m ) )
258132adantl 468 . . . . . . . . . . 11  |-  ( (
ph  /\  m  e.  NN )  ->  m  e.  CC )
259 0pval 22641 . . . . . . . . . . 11  |-  ( m  e.  CC  ->  (
0p `  m
)  =  0 )
260258, 259syl 17 . . . . . . . . . 10  |-  ( (
ph  /\  m  e.  NN )  ->  ( 0p `  m )  =  0 )
261 oveq1 6302 . . . . . . . . . . . . . 14  |-  ( z  =  m  ->  (
z ^ k )  =  ( m ^
k ) )
262261oveq2d 6311 . . . . . . . . . . . . 13  |-  ( z  =  m  ->  (
( A `  k
)  x.  ( z ^ k ) )  =  ( ( A `
 k )  x.  ( m ^ k
) ) )
263262sumeq2sdv 13782 . . . . . . . . . . . 12  |-  ( z  =  m  ->  sum_ k  e.  ( 0 ... N
) ( ( A `
 k )  x.  ( z ^ k
) )  =  sum_ k  e.  ( 0 ... N ) ( ( A `  k
)  x.  ( m ^ k ) ) )
264 eqid 2453 . . . . . . . . . . . 12  |-  ( z  e.  CC  |->  sum_ k  e.  ( 0 ... N
) ( ( A `
 k )  x.  ( z ^ k
) ) )  =  ( z  e.  CC  |->  sum_ k  e.  ( 0 ... N ) ( ( A `  k
)  x.  ( z ^ k ) ) )
265 sumex 13766 . . . . . . . . . . . 12  |-  sum_ k  e.  ( 0 ... N
) ( ( A `
 k )  x.  ( m ^ k
) )  e.  _V
266263, 264, 265fvmpt 5953 . . . . . . . . . . 11  |-  ( m  e.  CC  ->  (
( z  e.  CC  |->  sum_ k  e.  ( 0 ... N ) ( ( A `  k
)  x.  ( z ^ k ) ) ) `  m )  =  sum_ k  e.  ( 0 ... N ) ( ( A `  k )  x.  (
m ^ k ) ) )
267258, 266syl 17 . . . . . . . . . 10  |-  ( (
ph  /\  m  e.  NN )  ->  ( ( z  e.  CC  |->  sum_ k  e.  ( 0 ... N ) ( ( A `  k
)  x.  ( z ^ k ) ) ) `  m )  =  sum_ k  e.  ( 0 ... N ) ( ( A `  k )  x.  (
m ^ k ) ) )
268257, 260, 2673eqtr3d 2495 . . . . . . . . 9  |-  ( (
ph  /\  m  e.  NN )  ->  0  = 
sum_ k  e.  ( 0 ... N ) ( ( A `  k )  x.  (
m ^ k ) ) )
269268oveq1d 6310 . . . . . . . 8  |-  ( (
ph  /\  m  e.  NN )  ->  ( 0  /  ( m ^ M ) )  =  ( sum_ k  e.  ( 0 ... N ) ( ( A `  k )  x.  (
m ^ k ) )  /  ( m ^ M ) ) )
270 expcl 12297 . . . . . . . . . 10  |-  ( ( m  e.  CC  /\  M  e.  NN0 )  -> 
( m ^ M
)  e.  CC )
271132, 86, 270syl2anr 481 . . . . . . . . 9  |-  ( (
ph  /\  m  e.  NN )  ->  ( m ^ M )  e.  CC )
272139adantl 468 . . . . . . . . . 10  |-  ( (
ph  /\  m  e.  NN )  ->  m  =/=  0 )
273258, 272, 159expne0d 12429 . . . . . . . . 9  |-  ( (
ph  /\  m  e.  NN )  ->  ( m ^ M )  =/=  0 )
274271, 273div0d 10389 . . . . . . . 8  |-  ( (
ph  /\  m  e.  NN )  ->  ( 0  /  ( m ^ M ) )  =  0 )
275 fzfid 12193 . . . . . . . . 9  |-  ( (
ph  /\  m  e.  NN )  ->  ( 0 ... N )  e. 
Fin )
276 expcl 12297 . . . . . . . . . . 11  |-  ( ( m  e.  CC  /\  k  e.  NN0 )  -> 
( m ^ k
)  e.  CC )
277258, 19, 276syl2an 480 . . . . . . . . . 10  |-  ( ( ( ph  /\  m  e.  NN )  /\  k  e.  ( 0 ... N
) )  ->  (
m ^ k )  e.  CC )
278156, 277mulcld 9668 . . . . . . . . 9  |-  ( ( ( ph  /\  m  e.  NN )  /\  k  e.  ( 0 ... N
) )  ->  (
( A `  k
)  x.  ( m ^ k ) )  e.  CC )
279275, 271, 278, 273fsumdivc 13859 . . . . . . . 8  |-  ( (
ph  /\  m  e.  NN )  ->  ( sum_ k  e.  ( 0 ... N ) ( ( A `  k
)  x.  ( m ^ k ) )  /  ( m ^ M ) )  = 
sum_ k  e.  ( 0 ... N ) ( ( ( A `
 k )  x.  ( m ^ k
) )  /  (
m ^ M ) ) )
280269, 274, 2793eqtr3d 2495 . . . . . . 7  |-  ( (
ph  /\  m  e.  NN )  ->  0  = 
sum_ k  e.  ( 0 ... N ) ( ( ( A `
 k )  x.  ( m ^ k
) )  /  (
m ^ M ) ) )
281 fvconst2g 6123 . . . . . . . 8  |-  ( ( 0  e.  CC  /\  m  e.  NN )  ->  ( ( NN  X.  { 0 } ) `
 m )  =  0 )
2828, 281sylan 474 . . . . . . 7  |-  ( (
ph  /\  m  e.  NN )  ->  ( ( NN  X.  { 0 } ) `  m
)  =  0 )
283159adantr 467 . . . . . . . . . . 11  |-  ( ( ( ph  /\  m  e.  NN )  /\  k  e.  ( 0 ... N
) )  ->  M  e.  ZZ )
28448adantl 468 . . . . . . . . . . 11  |-  ( ( ( ph  /\  m  e.  NN )  /\  k  e.  ( 0 ... N
) )  ->  k  e.  ZZ )
285157, 158, 283, 284expsubd 12434 . . . . . . . . . 10  |-  ( ( ( ph  /\  m  e.  NN )  /\  k  e.  ( 0 ... N
) )  ->  (
m ^ ( k  -  M ) )  =  ( ( m ^ k )  / 
( m ^ M
) ) )
286285oveq2d 6311 . . . . . . . . 9  |-  ( ( ( ph  /\  m  e.  NN )  /\  k  e.  ( 0 ... N
) )  ->  (
( A `  k
)  x.  ( m ^ ( k  -  M ) ) )  =  ( ( A `
 k )  x.  ( ( m ^
k )  /  (
m ^ M ) ) ) )
287271adantr 467 . . . . . . . . . 10  |-  ( ( ( ph  /\  m  e.  NN )  /\  k  e.  ( 0 ... N
) )  ->  (
m ^ M )  e.  CC )
288273adantr 467 . . . . . . . . . 10  |-  ( ( ( ph  /\  m  e.  NN )  /\  k  e.  ( 0 ... N
) )  ->  (
m ^ M )  =/=  0 )
289156, 277, 287, 288divassd 10425 . . . . . . . . 9  |-  ( ( ( ph  /\  m  e.  NN )  /\  k  e.  ( 0 ... N
) )  ->  (
( ( A `  k )  x.  (
m ^ k ) )  /  ( m ^ M ) )  =  ( ( A `
 k )  x.  ( ( m ^
k )  /  (
m ^ M ) ) ) )
290286, 154, 2893eqtr4d 2497 . . . . . . . 8  |-  ( ( ( ph  /\  m  e.  NN )  /\  k  e.  ( 0 ... N
) )  ->  (
( n  e.  NN  |->  ( ( A `  k )  x.  (
n ^ ( k  -  M ) ) ) ) `  m
)  =  ( ( ( A `  k
)  x.  ( m ^ k ) )  /  ( m ^ M ) ) )
291290sumeq2dv 13781 . . . . . . 7  |-  ( (
ph  /\  m  e.  NN )  ->  sum_ k  e.  ( 0 ... N
) ( ( n  e.  NN  |->  ( ( A `  k )  x.  ( n ^
( k  -  M
) ) ) ) `
 m )  = 
sum_ k  e.  ( 0 ... N ) ( ( ( A `
 k )  x.  ( m ^ k
) )  /  (
m ^ M ) ) )
292280, 282, 2913eqtr4d 2497 . . . . . 6  |-  ( (
ph  /\  m  e.  NN )  ->  ( ( NN  X.  { 0 } ) `  m
)  =  sum_ k  e.  ( 0 ... N
) ( ( n  e.  NN  |->  ( ( A `  k )  x.  ( n ^
( k  -  M
) ) ) ) `
 m ) )
2931, 2, 3, 250, 253, 254, 292climfsum 13892 . . . . 5  |-  ( ph  ->  ( NN  X.  {
0 } )  ~~>  sum_ k  e.  ( 0 ... N
) if ( k  e.  { M } ,  ( A `  k ) ,  0 ) )
294 suprleub 10580 . . . . . . . . . . . 12  |-  ( ( ( ( `' A " ( S  \  {
0 } ) ) 
C_  RR  /\  ( `' A " ( S 
\  { 0 } ) )  =/=  (/)  /\  E. x  e.  RR  A. z  e.  ( `' A "
( S  \  {
0 } ) ) z  <_  x )  /\  N  e.  RR )  ->  ( sup (
( `' A "
( S  \  {
0 } ) ) ,  RR ,  <  )  <_  N  <->  A. z  e.  ( `' A "
( S  \  {
0 } ) ) z  <_  N )
)
295201, 56, 82, 58, 294syl31anc 1272 . . . . . . . . . . 11  |-  ( ph  ->  ( sup ( ( `' A " ( S 
\  { 0 } ) ) ,  RR ,  <  )  <_  N  <->  A. z  e.  ( `' A " ( S 
\  { 0 } ) ) z  <_  N ) )
29678, 295mpbird 236 . . . . . . . . . 10  |-  ( ph  ->  sup ( ( `' A " ( S 
\  { 0 } ) ) ,  RR ,  <  )  <_  N
)
29753, 296syl5eqbr 4439 . . . . . . . . 9  |-  ( ph  ->  M  <_  N )
298 nn0uz 11200 . . . . . . . . . . 11  |-  NN0  =  ( ZZ>= `  0 )
29986, 298syl6eleq 2541 . . . . . . . . . 10  |-  ( ph  ->  M  e.  ( ZZ>= ` 
0 ) )
30057nn0zd 11045 . . . . . . . . . 10  |-  ( ph  ->  N  e.  ZZ )
301 elfz5 11799 . . . . . . . . . 10  |-  ( ( M  e.  ( ZZ>= ` 
0 )  /\  N  e.  ZZ )  ->  ( M  e.  ( 0 ... N )  <->  M  <_  N ) )
302299, 300, 301syl2anc 667 . . . . . . . . 9  |-  ( ph  ->  ( M  e.  ( 0 ... N )  <-> 
M  <_  N )
)
303297, 302mpbird 236 . . . . . . . 8  |-  ( ph  ->  M  e.  ( 0 ... N ) )
304303snssd 4120 . . . . . . 7  |-  ( ph  ->  { M }  C_  ( 0 ... N
) )
30518, 86ffvelrnd 6028 . . . . . . . . 9  |-  ( ph  ->  ( A `  M
)  e.  CC )
306 elsni 3995 . . . . . . . . . . 11  |-  ( k  e.  { M }  ->  k  =  M )
307306fveq2d 5874 . . . . . . . . . 10  |-  ( k  e.  { M }  ->  ( A `  k
)  =  ( A `
 M ) )
308307eleq1d 2515 . . . . . . . . 9  |-  ( k  e.  { M }  ->  ( ( A `  k )  e.  CC  <->  ( A `  M )  e.  CC ) )
309305, 308syl5ibrcom 226 . . . . . . . 8  |-  ( ph  ->  ( k  e.  { M }  ->  ( A `
 k )  e.  CC ) )
310309ralrimiv 2802 . . . . . . 7  |-  ( ph  ->  A. k  e.  { M }  ( A `  k )  e.  CC )
3113olcd 395 . . . . . . 7  |-  ( ph  ->  ( ( 0 ... N )  C_  ( ZZ>=
`  0 )  \/  ( 0 ... N
)  e.  Fin )
)
312 sumss2 13804 . . . . . . 7  |-  ( ( ( { M }  C_  ( 0 ... N
)  /\  A. k  e.  { M }  ( A `  k )  e.  CC )  /\  (
( 0 ... N
)  C_  ( ZZ>= ` 
0 )  \/  (
0 ... N )  e. 
Fin ) )  ->  sum_ k  e.  { M }  ( A `  k )  =  sum_ k  e.  ( 0 ... N ) if ( k  e.  { M } ,  ( A `
 k ) ,  0 ) )
313304, 310, 311, 312syl21anc 1268 . . . . . 6  |-  ( ph  -> 
sum_ k  e.  { M }  ( A `  k )  =  sum_ k  e.  ( 0 ... N ) if ( k  e.  { M } ,  ( A `
 k ) ,  0 ) )
314 ltso 9719 . . . . . . . . 9  |-  <  Or  RR
315314supex 7982 . . . . . . . 8  |-  sup (
( `' A "
( S  \  {
0 } ) ) ,  RR ,  <  )  e.  _V
31653, 315eqeltri 2527 . . . . . . 7  |-  M  e. 
_V
317 fveq2 5870 . . . . . . . 8  |-  ( k  =  M  ->  ( A `  k )  =  ( A `  M ) )
318317sumsn 13819 . . . . . . 7  |-  ( ( M  e.  _V  /\  ( A `  M )  e.  CC )  ->  sum_ k  e.  { M }  ( A `  k )  =  ( A `  M ) )
319316, 305, 318sylancr 670 . . . . . 6  |-  ( ph  -> 
sum_ k  e.  { M }  ( A `  k )  =  ( A `  M ) )
320313, 319eqtr3d 2489 . . . . 5  |-  ( ph  -> 
sum_ k  e.  ( 0 ... N ) if ( k  e. 
{ M } , 
( A `  k
) ,  0 )  =  ( A `  M ) )
321293, 320breqtrd 4430 . . . 4  |-  ( ph  ->  ( NN  X.  {
0 } )  ~~>  ( A `
 M ) )
322246, 27climconst2 13624 . . . . 5  |-  ( ( 0  e.  CC  /\  1  e.  ZZ )  ->  ( NN  X.  {
0 } )  ~~>  0 )
3237, 245, 322mp2an 679 . . . 4  |-  ( NN 
X.  { 0 } )  ~~>  0
324 climuni 13628 . . . 4  |-  ( ( ( NN  X.  {
0 } )  ~~>  ( A `
 M )  /\  ( NN  X.  { 0 } )  ~~>  0 )  ->  ( A `  M )  =  0 )
325321, 323, 324sylancl 669 . . 3  |-  ( ph  ->  ( A `  M
)  =  0 )
326 fvex 5880 . . . 4  |-  ( A `
 M )  e. 
_V
327326elsnc 3994 . . 3  |-  ( ( A `  M )  e.  { 0 }  <-> 
( A `  M
)  =  0 )
328325, 327sylibr 216 . 2  |-  ( ph  ->  ( A `  M
)  e.  { 0 } )
329 elpreima 6007 . . . . . 6  |-  ( A  Fn  NN0  ->  ( M  e.  ( `' A " ( S  \  {
0 } ) )  <-> 
( M  e.  NN0  /\  ( A `  M
)  e.  ( S 
\  { 0 } ) ) ) )
33066, 329syl 17 . . . . 5  |-  ( ph  ->  ( M  e.  ( `' A " ( S 
\  { 0 } ) )  <->  ( M  e.  NN0  /\  ( A `
 M )  e.  ( S  \  {
0 } ) ) ) )
33185, 330mpbid 214 . . . 4  |-  ( ph  ->  ( M  e.  NN0  /\  ( A `  M
)  e.  ( S 
\  { 0 } ) ) )
332331simprd 465 . . 3  |-  ( ph  ->  ( A `  M
)  e.  ( S 
\  { 0 } ) )
333332eldifbd 3419 . 2  |-  ( ph  ->  -.  ( A `  M )  e.  {
0 } )
334328, 333pm2.65i 177 1  |-  -.  ph
Colors of variables: wff setvar class
Syntax hints:   -. wn 3    -> wi 4    <-> wb 188    \/ wo 370    /\ wa 371    = wceq 1446    e. wcel 1889    =/= wne 2624   A.wral 2739   E.wrex 2740   _Vcvv 3047    \ cdif 3403    u. cun 3404    C_ wss 3406   (/)c0 3733   ifcif 3883   {csn 3970   class class class wbr 4405    |-> cmpt 4464    X. cxp 4835   `'ccnv 4836   dom cdm 4837   "cima 4840    Fn wfn 5580   -->wf 5581   ` cfv 5585  (class class class)co 6295    ^m cmap 7477   Fincfn 7574   supcsup 7959   CCcc 9542   RRcr 9543   0cc0 9544   1c1 9545    + caddc 9547    x. cmul 9549    < clt 9680    <_ cle 9681    - cmin 9865   -ucneg 9866    / cdiv 10276   NNcn 10616   NN0cn0 10876   ZZcz 10944   ZZ>=cuz 11166   RR+crp 11309   ...cfz 11791   ^cexp 12279   abscabs 13309    ~~> cli 13560   sum_csu 13764   0pc0p 22639
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1671  ax-4 1684  ax-5 1760  ax-6 1807  ax-7 1853  ax-8 1891  ax-9 1898  ax-10 1917  ax-11 1922  ax-12 1935  ax-13 2093  ax-ext 2433  ax-rep 4518  ax-sep 4528  ax-nul 4537  ax-pow 4584  ax-pr 4642  ax-un 6588  ax-inf2 8151  ax-cnex 9600  ax-resscn 9601  ax-1cn 9602  ax-icn 9603  ax-addcl 9604  ax-addrcl 9605  ax-mulcl 9606  ax-mulrcl 9607  ax-mulcom 9608  ax-addass 9609  ax-mulass 9610  ax-distr 9611  ax-i2m1 9612  ax-1ne0 9613  ax-1rid 9614  ax-rnegex 9615  ax-rrecex 9616  ax-cnre 9617  ax-pre-lttri 9618  ax-pre-lttrn 9619  ax-pre-ltadd 9620  ax-pre-mulgt0 9621  ax-pre-sup 9622  ax-addf 9623
This theorem depends on definitions:  df-bi 189  df-or 372  df-an 373  df-3or 987  df-3an 988  df-tru 1449  df-fal 1452  df-ex 1666  df-nf 1670  df-sb 1800  df-eu 2305  df-mo 2306  df-clab 2440  df-cleq 2446  df-clel 2449  df-nfc 2583  df-ne 2626  df-nel 2627  df-ral 2744  df-rex 2745  df-reu 2746  df-rmo 2747  df-rab 2748  df-v 3049  df-sbc 3270  df-csb 3366  df-dif 3409  df-un 3411  df-in 3413  df-ss 3420  df-pss 3422  df-nul 3734  df-if 3884  df-pw 3955  df-sn 3971  df-pr 3973  df-tp 3975  df-op 3977  df-uni 4202  df-int 4238  df-iun 4283  df-br 4406  df-opab 4465  df-mpt 4466  df-tr 4501  df-eprel 4748  df-id 4752  df-po 4758  df-so 4759  df-fr 4796  df-se 4797  df-we 4798  df-xp 4843  df-rel 4844  df-cnv 4845  df-co 4846  df-dm 4847  df-rn 4848  df-res 4849  df-ima 4850  df-pred 5383  df-ord 5429  df-on 5430  df-lim 5431  df-suc 5432  df-iota 5549  df-fun 5587  df-fn 5588  df-f 5589  df-f1 5590  df-fo 5591  df-f1o 5592  df-fv 5593  df-isom 5594  df-riota 6257  df-ov 6298  df-oprab 6299  df-mpt2 6300  df-om 6698  df-1st 6798  df-2nd 6799  df-wrecs 7033  df-recs 7095  df-rdg 7133  df-1o 7187  df-oadd 7191  df-er 7368  df-map 7479  df-pm 7480  df-en 7575  df-dom 7576  df-sdom 7577  df-fin 7578  df-sup 7961  df-inf 7962  df-oi 8030  df-card 8378  df-pnf 9682  df-mnf 9683  df-xr 9684  df-ltxr 9685  df-le 9686  df-sub 9867  df-neg 9868  df-div 10277  df-nn 10617  df-2 10675  df-3 10676  df-n0 10877  df-z 10945  df-uz 11167  df-rp 11310  df-fz 11792  df-fzo 11923  df-fl 12035  df-seq 12221  df-exp 12280  df-hash 12523  df-cj 13174  df-re 13175  df-im 13176  df-sqrt 13310  df-abs 13311  df-clim 13564  df-rlim 13565  df-sum 13765  df-0p 22640
This theorem is referenced by:  plyeq0  23177
  Copyright terms: Public domain W3C validator