MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  plyeq0lem Structured version   Unicode version

Theorem plyeq0lem 22473
Description: Lemma for plyeq0 22474. If  A is the coefficient function for a nonzero polynomial such that  P ( z )  =  sum_ k  e.  NN0 A ( k )  x.  z ^
k  =  0 for every  z  e.  CC and  A ( M ) is the nonzero leading coefficient, then the function  F ( z )  =  P ( z )  /  z ^ M is a sum of powers of  1  /  z, and so the limit of this function as  z 
~~> +oo is the constant term,  A ( M ). But  F ( z )  =  0 everywhere, so this limit is also equal to zero so that  A ( M )  =  0, a contradiction. (Contributed by Mario Carneiro, 22-Jul-2014.)
Hypotheses
Ref Expression
plyeq0.1  |-  ( ph  ->  S  C_  CC )
plyeq0.2  |-  ( ph  ->  N  e.  NN0 )
plyeq0.3  |-  ( ph  ->  A  e.  ( ( S  u.  { 0 } )  ^m  NN0 ) )
plyeq0.4  |-  ( ph  ->  ( A " ( ZZ>=
`  ( N  + 
1 ) ) )  =  { 0 } )
plyeq0.5  |-  ( ph  ->  0p  =  ( z  e.  CC  |->  sum_ k  e.  ( 0 ... N ) ( ( A `  k
)  x.  ( z ^ k ) ) ) )
plyeq0.6  |-  M  =  sup ( ( `' A " ( S 
\  { 0 } ) ) ,  RR ,  <  )
plyeq0.7  |-  ( ph  ->  ( `' A "
( S  \  {
0 } ) )  =/=  (/) )
Assertion
Ref Expression
plyeq0lem  |-  -.  ph
Distinct variable groups:    z, k, A    k, M    k, N, z    ph, k, z    S, k, z
Allowed substitution hint:    M( z)

Proof of Theorem plyeq0lem
Dummy variables  m  n  x are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 nnuz 11120 . . . . . 6  |-  NN  =  ( ZZ>= `  1 )
2 1zzd 10896 . . . . . 6  |-  ( ph  ->  1  e.  ZZ )
3 fzfid 12057 . . . . . 6  |-  ( ph  ->  ( 0 ... N
)  e.  Fin )
4 1zzd 10896 . . . . . . . . . 10  |-  ( ( ( ph  /\  k  e.  ( 0 ... N
) )  /\  k  <  M )  ->  1  e.  ZZ )
5 plyeq0.3 . . . . . . . . . . . . . . . . 17  |-  ( ph  ->  A  e.  ( ( S  u.  { 0 } )  ^m  NN0 ) )
6 plyeq0.1 . . . . . . . . . . . . . . . . . . . 20  |-  ( ph  ->  S  C_  CC )
7 0cn 9586 . . . . . . . . . . . . . . . . . . . . . 22  |-  0  e.  CC
87a1i 11 . . . . . . . . . . . . . . . . . . . . 21  |-  ( ph  ->  0  e.  CC )
98snssd 4156 . . . . . . . . . . . . . . . . . . . 20  |-  ( ph  ->  { 0 }  C_  CC )
106, 9unssd 3662 . . . . . . . . . . . . . . . . . . 19  |-  ( ph  ->  ( S  u.  {
0 } )  C_  CC )
11 cnex 9571 . . . . . . . . . . . . . . . . . . 19  |-  CC  e.  _V
12 ssexg 4579 . . . . . . . . . . . . . . . . . . 19  |-  ( ( ( S  u.  {
0 } )  C_  CC  /\  CC  e.  _V )  ->  ( S  u.  { 0 } )  e. 
_V )
1310, 11, 12sylancl 662 . . . . . . . . . . . . . . . . . 18  |-  ( ph  ->  ( S  u.  {
0 } )  e. 
_V )
14 nn0ex 10802 . . . . . . . . . . . . . . . . . 18  |-  NN0  e.  _V
15 elmapg 7431 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( S  u.  {
0 } )  e. 
_V  /\  NN0  e.  _V )  ->  ( A  e.  ( ( S  u.  { 0 } )  ^m  NN0 )  <->  A : NN0 --> ( S  u.  { 0 } ) ) )
1613, 14, 15sylancl 662 . . . . . . . . . . . . . . . . 17  |-  ( ph  ->  ( A  e.  ( ( S  u.  {
0 } )  ^m  NN0 )  <->  A : NN0 --> ( S  u.  { 0 } ) ) )
175, 16mpbid 210 . . . . . . . . . . . . . . . 16  |-  ( ph  ->  A : NN0 --> ( S  u.  { 0 } ) )
1817, 10fssd 5726 . . . . . . . . . . . . . . 15  |-  ( ph  ->  A : NN0 --> CC )
19 elfznn0 11774 . . . . . . . . . . . . . . 15  |-  ( k  e.  ( 0 ... N )  ->  k  e.  NN0 )
20 ffvelrn 6010 . . . . . . . . . . . . . . 15  |-  ( ( A : NN0 --> CC  /\  k  e.  NN0 )  -> 
( A `  k
)  e.  CC )
2118, 19, 20syl2an 477 . . . . . . . . . . . . . 14  |-  ( (
ph  /\  k  e.  ( 0 ... N
) )  ->  ( A `  k )  e.  CC )
2221adantr 465 . . . . . . . . . . . . 13  |-  ( ( ( ph  /\  k  e.  ( 0 ... N
) )  /\  k  <  M )  ->  ( A `  k )  e.  CC )
2322abscld 13241 . . . . . . . . . . . 12  |-  ( ( ( ph  /\  k  e.  ( 0 ... N
) )  /\  k  <  M )  ->  ( abs `  ( A `  k ) )  e.  RR )
2423recnd 9620 . . . . . . . . . . 11  |-  ( ( ( ph  /\  k  e.  ( 0 ... N
) )  /\  k  <  M )  ->  ( abs `  ( A `  k ) )  e.  CC )
25 divcnv 13639 . . . . . . . . . . 11  |-  ( ( abs `  ( A `
 k ) )  e.  CC  ->  (
n  e.  NN  |->  ( ( abs `  ( A `  k )
)  /  n ) )  ~~>  0 )
2624, 25syl 16 . . . . . . . . . 10  |-  ( ( ( ph  /\  k  e.  ( 0 ... N
) )  /\  k  <  M )  ->  (
n  e.  NN  |->  ( ( abs `  ( A `  k )
)  /  n ) )  ~~>  0 )
27 nnex 10543 . . . . . . . . . . . 12  |-  NN  e.  _V
2827mptex 6124 . . . . . . . . . . 11  |-  ( n  e.  NN  |->  ( ( abs `  ( A `
 k ) )  x.  ( n ^
( k  -  M
) ) ) )  e.  _V
2928a1i 11 . . . . . . . . . 10  |-  ( ( ( ph  /\  k  e.  ( 0 ... N
) )  /\  k  <  M )  ->  (
n  e.  NN  |->  ( ( abs `  ( A `  k )
)  x.  ( n ^ ( k  -  M ) ) ) )  e.  _V )
30 oveq2 6285 . . . . . . . . . . . . 13  |-  ( n  =  m  ->  (
( abs `  ( A `  k )
)  /  n )  =  ( ( abs `  ( A `  k
) )  /  m
) )
31 eqid 2441 . . . . . . . . . . . . 13  |-  ( n  e.  NN  |->  ( ( abs `  ( A `
 k ) )  /  n ) )  =  ( n  e.  NN  |->  ( ( abs `  ( A `  k
) )  /  n
) )
32 ovex 6305 . . . . . . . . . . . . 13  |-  ( ( abs `  ( A `
 k ) )  /  m )  e. 
_V
3330, 31, 32fvmpt 5937 . . . . . . . . . . . 12  |-  ( m  e.  NN  ->  (
( n  e.  NN  |->  ( ( abs `  ( A `  k )
)  /  n ) ) `  m )  =  ( ( abs `  ( A `  k
) )  /  m
) )
3433adantl 466 . . . . . . . . . . 11  |-  ( ( ( ( ph  /\  k  e.  ( 0 ... N ) )  /\  k  <  M
)  /\  m  e.  NN )  ->  ( ( n  e.  NN  |->  ( ( abs `  ( A `  k )
)  /  n ) ) `  m )  =  ( ( abs `  ( A `  k
) )  /  m
) )
35 nndivre 10572 . . . . . . . . . . . 12  |-  ( ( ( abs `  ( A `  k )
)  e.  RR  /\  m  e.  NN )  ->  ( ( abs `  ( A `  k )
)  /  m )  e.  RR )
3623, 35sylan 471 . . . . . . . . . . 11  |-  ( ( ( ( ph  /\  k  e.  ( 0 ... N ) )  /\  k  <  M
)  /\  m  e.  NN )  ->  ( ( abs `  ( A `
 k ) )  /  m )  e.  RR )
3734, 36eqeltrd 2529 . . . . . . . . . 10  |-  ( ( ( ( ph  /\  k  e.  ( 0 ... N ) )  /\  k  <  M
)  /\  m  e.  NN )  ->  ( ( n  e.  NN  |->  ( ( abs `  ( A `  k )
)  /  n ) ) `  m )  e.  RR )
38 oveq1 6284 . . . . . . . . . . . . . 14  |-  ( n  =  m  ->  (
n ^ ( k  -  M ) )  =  ( m ^
( k  -  M
) ) )
3938oveq2d 6293 . . . . . . . . . . . . 13  |-  ( n  =  m  ->  (
( abs `  ( A `  k )
)  x.  ( n ^ ( k  -  M ) ) )  =  ( ( abs `  ( A `  k
) )  x.  (
m ^ ( k  -  M ) ) ) )
40 eqid 2441 . . . . . . . . . . . . 13  |-  ( n  e.  NN  |->  ( ( abs `  ( A `
 k ) )  x.  ( n ^
( k  -  M
) ) ) )  =  ( n  e.  NN  |->  ( ( abs `  ( A `  k
) )  x.  (
n ^ ( k  -  M ) ) ) )
41 ovex 6305 . . . . . . . . . . . . 13  |-  ( ( abs `  ( A `
 k ) )  x.  ( m ^
( k  -  M
) ) )  e. 
_V
4239, 40, 41fvmpt 5937 . . . . . . . . . . . 12  |-  ( m  e.  NN  ->  (
( n  e.  NN  |->  ( ( abs `  ( A `  k )
)  x.  ( n ^ ( k  -  M ) ) ) ) `  m )  =  ( ( abs `  ( A `  k
) )  x.  (
m ^ ( k  -  M ) ) ) )
4342adantl 466 . . . . . . . . . . 11  |-  ( ( ( ( ph  /\  k  e.  ( 0 ... N ) )  /\  k  <  M
)  /\  m  e.  NN )  ->  ( ( n  e.  NN  |->  ( ( abs `  ( A `  k )
)  x.  ( n ^ ( k  -  M ) ) ) ) `  m )  =  ( ( abs `  ( A `  k
) )  x.  (
m ^ ( k  -  M ) ) ) )
4421ad2antrr 725 . . . . . . . . . . . . 13  |-  ( ( ( ( ph  /\  k  e.  ( 0 ... N ) )  /\  k  <  M
)  /\  m  e.  NN )  ->  ( A `
 k )  e.  CC )
4544abscld 13241 . . . . . . . . . . . 12  |-  ( ( ( ( ph  /\  k  e.  ( 0 ... N ) )  /\  k  <  M
)  /\  m  e.  NN )  ->  ( abs `  ( A `  k
) )  e.  RR )
46 nnrp 11233 . . . . . . . . . . . . . . 15  |-  ( m  e.  NN  ->  m  e.  RR+ )
4746adantl 466 . . . . . . . . . . . . . 14  |-  ( ( ( ( ph  /\  k  e.  ( 0 ... N ) )  /\  k  <  M
)  /\  m  e.  NN )  ->  m  e.  RR+ )
48 elfzelz 11692 . . . . . . . . . . . . . . . 16  |-  ( k  e.  ( 0 ... N )  ->  k  e.  ZZ )
49 cnvimass 5343 . . . . . . . . . . . . . . . . . . 19  |-  ( `' A " ( S 
\  { 0 } ) )  C_  dom  A
50 fdm 5721 . . . . . . . . . . . . . . . . . . . 20  |-  ( A : NN0 --> ( S  u.  { 0 } )  ->  dom  A  = 
NN0 )
5117, 50syl 16 . . . . . . . . . . . . . . . . . . 19  |-  ( ph  ->  dom  A  =  NN0 )
5249, 51syl5sseq 3534 . . . . . . . . . . . . . . . . . 18  |-  ( ph  ->  ( `' A "
( S  \  {
0 } ) ) 
C_  NN0 )
53 plyeq0.6 . . . . . . . . . . . . . . . . . . 19  |-  M  =  sup ( ( `' A " ( S 
\  { 0 } ) ) ,  RR ,  <  )
54 nn0ssz 10886 . . . . . . . . . . . . . . . . . . . . 21  |-  NN0  C_  ZZ
5552, 54syl6ss 3498 . . . . . . . . . . . . . . . . . . . 20  |-  ( ph  ->  ( `' A "
( S  \  {
0 } ) ) 
C_  ZZ )
56 plyeq0.7 . . . . . . . . . . . . . . . . . . . 20  |-  ( ph  ->  ( `' A "
( S  \  {
0 } ) )  =/=  (/) )
57 plyeq0.2 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( ph  ->  N  e.  NN0 )
5857nn0red 10854 . . . . . . . . . . . . . . . . . . . . 21  |-  ( ph  ->  N  e.  RR )
5952sselda 3486 . . . . . . . . . . . . . . . . . . . . . . 23  |-  ( (
ph  /\  z  e.  ( `' A " ( S 
\  { 0 } ) ) )  -> 
z  e.  NN0 )
60 plyeq0.4 . . . . . . . . . . . . . . . . . . . . . . . . 25  |-  ( ph  ->  ( A " ( ZZ>=
`  ( N  + 
1 ) ) )  =  { 0 } )
61 plyco0 22455 . . . . . . . . . . . . . . . . . . . . . . . . . 26  |-  ( ( N  e.  NN0  /\  A : NN0 --> CC )  ->  ( ( A
" ( ZZ>= `  ( N  +  1 ) ) )  =  {
0 }  <->  A. k  e.  NN0  ( ( A `
 k )  =/=  0  ->  k  <_  N ) ) )
6257, 18, 61syl2anc 661 . . . . . . . . . . . . . . . . . . . . . . . . 25  |-  ( ph  ->  ( ( A "
( ZZ>= `  ( N  +  1 ) ) )  =  { 0 }  <->  A. k  e.  NN0  ( ( A `  k )  =/=  0  ->  k  <_  N )
) )
6360, 62mpbid 210 . . . . . . . . . . . . . . . . . . . . . . . 24  |-  ( ph  ->  A. k  e.  NN0  ( ( A `  k )  =/=  0  ->  k  <_  N )
)
6463adantr 465 . . . . . . . . . . . . . . . . . . . . . . 23  |-  ( (
ph  /\  z  e.  ( `' A " ( S 
\  { 0 } ) ) )  ->  A. k  e.  NN0  ( ( A `  k )  =/=  0  ->  k  <_  N )
)
65 ffn 5717 . . . . . . . . . . . . . . . . . . . . . . . . . . 27  |-  ( A : NN0 --> ( S  u.  { 0 } )  ->  A  Fn  NN0 )
6617, 65syl 16 . . . . . . . . . . . . . . . . . . . . . . . . . 26  |-  ( ph  ->  A  Fn  NN0 )
67 elpreima 5988 . . . . . . . . . . . . . . . . . . . . . . . . . 26  |-  ( A  Fn  NN0  ->  ( z  e.  ( `' A " ( S  \  {
0 } ) )  <-> 
( z  e.  NN0  /\  ( A `  z
)  e.  ( S 
\  { 0 } ) ) ) )
6866, 67syl 16 . . . . . . . . . . . . . . . . . . . . . . . . 25  |-  ( ph  ->  ( z  e.  ( `' A " ( S 
\  { 0 } ) )  <->  ( z  e.  NN0  /\  ( A `
 z )  e.  ( S  \  {
0 } ) ) ) )
6968simplbda 624 . . . . . . . . . . . . . . . . . . . . . . . 24  |-  ( (
ph  /\  z  e.  ( `' A " ( S 
\  { 0 } ) ) )  -> 
( A `  z
)  e.  ( S 
\  { 0 } ) )
70 eldifsni 4137 . . . . . . . . . . . . . . . . . . . . . . . 24  |-  ( ( A `  z )  e.  ( S  \  { 0 } )  ->  ( A `  z )  =/=  0
)
7169, 70syl 16 . . . . . . . . . . . . . . . . . . . . . . 23  |-  ( (
ph  /\  z  e.  ( `' A " ( S 
\  { 0 } ) ) )  -> 
( A `  z
)  =/=  0 )
72 fveq2 5852 . . . . . . . . . . . . . . . . . . . . . . . . . 26  |-  ( k  =  z  ->  ( A `  k )  =  ( A `  z ) )
7372neeq1d 2718 . . . . . . . . . . . . . . . . . . . . . . . . 25  |-  ( k  =  z  ->  (
( A `  k
)  =/=  0  <->  ( A `  z )  =/=  0 ) )
74 breq1 4436 . . . . . . . . . . . . . . . . . . . . . . . . 25  |-  ( k  =  z  ->  (
k  <_  N  <->  z  <_  N ) )
7573, 74imbi12d 320 . . . . . . . . . . . . . . . . . . . . . . . 24  |-  ( k  =  z  ->  (
( ( A `  k )  =/=  0  ->  k  <_  N )  <->  ( ( A `  z
)  =/=  0  -> 
z  <_  N )
) )
7675rspcv 3190 . . . . . . . . . . . . . . . . . . . . . . 23  |-  ( z  e.  NN0  ->  ( A. k  e.  NN0  ( ( A `  k )  =/=  0  ->  k  <_  N )  ->  (
( A `  z
)  =/=  0  -> 
z  <_  N )
) )
7759, 64, 71, 76syl3c 61 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( (
ph  /\  z  e.  ( `' A " ( S 
\  { 0 } ) ) )  -> 
z  <_  N )
7877ralrimiva 2855 . . . . . . . . . . . . . . . . . . . . 21  |-  ( ph  ->  A. z  e.  ( `' A " ( S 
\  { 0 } ) ) z  <_  N )
79 breq2 4437 . . . . . . . . . . . . . . . . . . . . . . 23  |-  ( x  =  N  ->  (
z  <_  x  <->  z  <_  N ) )
8079ralbidv 2880 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( x  =  N  ->  ( A. z  e.  ( `' A " ( S 
\  { 0 } ) ) z  <_  x 
<-> 
A. z  e.  ( `' A " ( S 
\  { 0 } ) ) z  <_  N ) )
8180rspcev 3194 . . . . . . . . . . . . . . . . . . . . 21  |-  ( ( N  e.  RR  /\  A. z  e.  ( `' A " ( S 
\  { 0 } ) ) z  <_  N )  ->  E. x  e.  RR  A. z  e.  ( `' A "
( S  \  {
0 } ) ) z  <_  x )
8258, 78, 81syl2anc 661 . . . . . . . . . . . . . . . . . . . 20  |-  ( ph  ->  E. x  e.  RR  A. z  e.  ( `' A " ( S 
\  { 0 } ) ) z  <_  x )
83 suprzcl 10943 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( ( `' A "
( S  \  {
0 } ) ) 
C_  ZZ  /\  ( `' A " ( S 
\  { 0 } ) )  =/=  (/)  /\  E. x  e.  RR  A. z  e.  ( `' A "
( S  \  {
0 } ) ) z  <_  x )  ->  sup ( ( `' A " ( S 
\  { 0 } ) ) ,  RR ,  <  )  e.  ( `' A " ( S 
\  { 0 } ) ) )
8455, 56, 82, 83syl3anc 1227 . . . . . . . . . . . . . . . . . . 19  |-  ( ph  ->  sup ( ( `' A " ( S 
\  { 0 } ) ) ,  RR ,  <  )  e.  ( `' A " ( S 
\  { 0 } ) ) )
8553, 84syl5eqel 2533 . . . . . . . . . . . . . . . . . 18  |-  ( ph  ->  M  e.  ( `' A " ( S 
\  { 0 } ) ) )
8652, 85sseldd 3487 . . . . . . . . . . . . . . . . 17  |-  ( ph  ->  M  e.  NN0 )
8786nn0zd 10967 . . . . . . . . . . . . . . . 16  |-  ( ph  ->  M  e.  ZZ )
88 zsubcl 10907 . . . . . . . . . . . . . . . 16  |-  ( ( k  e.  ZZ  /\  M  e.  ZZ )  ->  ( k  -  M
)  e.  ZZ )
8948, 87, 88syl2anr 478 . . . . . . . . . . . . . . 15  |-  ( (
ph  /\  k  e.  ( 0 ... N
) )  ->  (
k  -  M )  e.  ZZ )
9089ad2antrr 725 . . . . . . . . . . . . . 14  |-  ( ( ( ( ph  /\  k  e.  ( 0 ... N ) )  /\  k  <  M
)  /\  m  e.  NN )  ->  ( k  -  M )  e.  ZZ )
9147, 90rpexpcld 12307 . . . . . . . . . . . . 13  |-  ( ( ( ( ph  /\  k  e.  ( 0 ... N ) )  /\  k  <  M
)  /\  m  e.  NN )  ->  ( m ^ ( k  -  M ) )  e.  RR+ )
9291rpred 11260 . . . . . . . . . . . 12  |-  ( ( ( ( ph  /\  k  e.  ( 0 ... N ) )  /\  k  <  M
)  /\  m  e.  NN )  ->  ( m ^ ( k  -  M ) )  e.  RR )
9345, 92remulcld 9622 . . . . . . . . . . 11  |-  ( ( ( ( ph  /\  k  e.  ( 0 ... N ) )  /\  k  <  M
)  /\  m  e.  NN )  ->  ( ( abs `  ( A `
 k ) )  x.  ( m ^
( k  -  M
) ) )  e.  RR )
9443, 93eqeltrd 2529 . . . . . . . . . 10  |-  ( ( ( ( ph  /\  k  e.  ( 0 ... N ) )  /\  k  <  M
)  /\  m  e.  NN )  ->  ( ( n  e.  NN  |->  ( ( abs `  ( A `  k )
)  x.  ( n ^ ( k  -  M ) ) ) ) `  m )  e.  RR )
95 nnrecre 10573 . . . . . . . . . . . . 13  |-  ( m  e.  NN  ->  (
1  /  m )  e.  RR )
9695adantl 466 . . . . . . . . . . . 12  |-  ( ( ( ( ph  /\  k  e.  ( 0 ... N ) )  /\  k  <  M
)  /\  m  e.  NN )  ->  ( 1  /  m )  e.  RR )
9722absge0d 13249 . . . . . . . . . . . . 13  |-  ( ( ( ph  /\  k  e.  ( 0 ... N
) )  /\  k  <  M )  ->  0  <_  ( abs `  ( A `  k )
) )
9897adantr 465 . . . . . . . . . . . 12  |-  ( ( ( ( ph  /\  k  e.  ( 0 ... N ) )  /\  k  <  M
)  /\  m  e.  NN )  ->  0  <_ 
( abs `  ( A `  k )
) )
99 nnre 10544 . . . . . . . . . . . . . . 15  |-  ( m  e.  NN  ->  m  e.  RR )
10099adantl 466 . . . . . . . . . . . . . 14  |-  ( ( ( ( ph  /\  k  e.  ( 0 ... N ) )  /\  k  <  M
)  /\  m  e.  NN )  ->  m  e.  RR )
101 nnge1 10563 . . . . . . . . . . . . . . 15  |-  ( m  e.  NN  ->  1  <_  m )
102101adantl 466 . . . . . . . . . . . . . 14  |-  ( ( ( ( ph  /\  k  e.  ( 0 ... N ) )  /\  k  <  M
)  /\  m  e.  NN )  ->  1  <_  m )
103 1red 9609 . . . . . . . . . . . . . . . 16  |-  ( ( ( ( ph  /\  k  e.  ( 0 ... N ) )  /\  k  <  M
)  /\  m  e.  NN )  ->  1  e.  RR )
10490zred 10969 . . . . . . . . . . . . . . . 16  |-  ( ( ( ( ph  /\  k  e.  ( 0 ... N ) )  /\  k  <  M
)  /\  m  e.  NN )  ->  ( k  -  M )  e.  RR )
105 simplr 754 . . . . . . . . . . . . . . . . . . 19  |-  ( ( ( ( ph  /\  k  e.  ( 0 ... N ) )  /\  k  <  M
)  /\  m  e.  NN )  ->  k  < 
M )
10648adantl 466 . . . . . . . . . . . . . . . . . . . . 21  |-  ( (
ph  /\  k  e.  ( 0 ... N
) )  ->  k  e.  ZZ )
107106ad2antrr 725 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( ( ( ph  /\  k  e.  ( 0 ... N ) )  /\  k  <  M
)  /\  m  e.  NN )  ->  k  e.  ZZ )
10887ad3antrrr 729 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( ( ( ph  /\  k  e.  ( 0 ... N ) )  /\  k  <  M
)  /\  m  e.  NN )  ->  M  e.  ZZ )
109 zltp1le 10914 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( k  e.  ZZ  /\  M  e.  ZZ )  ->  ( k  <  M  <->  ( k  +  1 )  <_  M ) )
110107, 108, 109syl2anc 661 . . . . . . . . . . . . . . . . . . 19  |-  ( ( ( ( ph  /\  k  e.  ( 0 ... N ) )  /\  k  <  M
)  /\  m  e.  NN )  ->  ( k  <  M  <->  ( k  +  1 )  <_  M ) )
111105, 110mpbid 210 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( ( ph  /\  k  e.  ( 0 ... N ) )  /\  k  <  M
)  /\  m  e.  NN )  ->  ( k  +  1 )  <_  M )
11219adantl 466 . . . . . . . . . . . . . . . . . . . . 21  |-  ( (
ph  /\  k  e.  ( 0 ... N
) )  ->  k  e.  NN0 )
113112nn0red 10854 . . . . . . . . . . . . . . . . . . . 20  |-  ( (
ph  /\  k  e.  ( 0 ... N
) )  ->  k  e.  RR )
114113ad2antrr 725 . . . . . . . . . . . . . . . . . . 19  |-  ( ( ( ( ph  /\  k  e.  ( 0 ... N ) )  /\  k  <  M
)  /\  m  e.  NN )  ->  k  e.  RR )
11586adantr 465 . . . . . . . . . . . . . . . . . . . . 21  |-  ( (
ph  /\  k  e.  ( 0 ... N
) )  ->  M  e.  NN0 )
116115nn0red 10854 . . . . . . . . . . . . . . . . . . . 20  |-  ( (
ph  /\  k  e.  ( 0 ... N
) )  ->  M  e.  RR )
117116ad2antrr 725 . . . . . . . . . . . . . . . . . . 19  |-  ( ( ( ( ph  /\  k  e.  ( 0 ... N ) )  /\  k  <  M
)  /\  m  e.  NN )  ->  M  e.  RR )
118114, 103, 117leaddsub2d 10155 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( ( ph  /\  k  e.  ( 0 ... N ) )  /\  k  <  M
)  /\  m  e.  NN )  ->  ( ( k  +  1 )  <_  M  <->  1  <_  ( M  -  k ) ) )
119111, 118mpbid 210 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ( ph  /\  k  e.  ( 0 ... N ) )  /\  k  <  M
)  /\  m  e.  NN )  ->  1  <_ 
( M  -  k
) )
120113recnd 9620 . . . . . . . . . . . . . . . . . . 19  |-  ( (
ph  /\  k  e.  ( 0 ... N
) )  ->  k  e.  CC )
121120ad2antrr 725 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( ( ph  /\  k  e.  ( 0 ... N ) )  /\  k  <  M
)  /\  m  e.  NN )  ->  k  e.  CC )
122116recnd 9620 . . . . . . . . . . . . . . . . . . 19  |-  ( (
ph  /\  k  e.  ( 0 ... N
) )  ->  M  e.  CC )
123122ad2antrr 725 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( ( ph  /\  k  e.  ( 0 ... N ) )  /\  k  <  M
)  /\  m  e.  NN )  ->  M  e.  CC )
124121, 123negsubdi2d 9947 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ( ph  /\  k  e.  ( 0 ... N ) )  /\  k  <  M
)  /\  m  e.  NN )  ->  -u (
k  -  M )  =  ( M  -  k ) )
125119, 124breqtrrd 4459 . . . . . . . . . . . . . . . 16  |-  ( ( ( ( ph  /\  k  e.  ( 0 ... N ) )  /\  k  <  M
)  /\  m  e.  NN )  ->  1  <_  -u ( k  -  M
) )
126103, 104, 125lenegcon2d 10136 . . . . . . . . . . . . . . 15  |-  ( ( ( ( ph  /\  k  e.  ( 0 ... N ) )  /\  k  <  M
)  /\  m  e.  NN )  ->  ( k  -  M )  <_  -u 1 )
127 neg1z 10901 . . . . . . . . . . . . . . . 16  |-  -u 1  e.  ZZ
128 eluz 11098 . . . . . . . . . . . . . . . 16  |-  ( ( ( k  -  M
)  e.  ZZ  /\  -u 1  e.  ZZ )  ->  ( -u 1  e.  ( ZZ>= `  ( k  -  M ) )  <->  ( k  -  M )  <_  -u 1
) )
12990, 127, 128sylancl 662 . . . . . . . . . . . . . . 15  |-  ( ( ( ( ph  /\  k  e.  ( 0 ... N ) )  /\  k  <  M
)  /\  m  e.  NN )  ->  ( -u
1  e.  ( ZZ>= `  ( k  -  M
) )  <->  ( k  -  M )  <_  -u 1
) )
130126, 129mpbird 232 . . . . . . . . . . . . . 14  |-  ( ( ( ( ph  /\  k  e.  ( 0 ... N ) )  /\  k  <  M
)  /\  m  e.  NN )  ->  -u 1  e.  ( ZZ>= `  ( k  -  M ) ) )
131100, 102, 130leexp2ad 12316 . . . . . . . . . . . . 13  |-  ( ( ( ( ph  /\  k  e.  ( 0 ... N ) )  /\  k  <  M
)  /\  m  e.  NN )  ->  ( m ^ ( k  -  M ) )  <_ 
( m ^ -u 1
) )
132 nncn 10545 . . . . . . . . . . . . . . 15  |-  ( m  e.  NN  ->  m  e.  CC )
133132adantl 466 . . . . . . . . . . . . . 14  |-  ( ( ( ( ph  /\  k  e.  ( 0 ... N ) )  /\  k  <  M
)  /\  m  e.  NN )  ->  m  e.  CC )
134 expn1 12150 . . . . . . . . . . . . . 14  |-  ( m  e.  CC  ->  (
m ^ -u 1
)  =  ( 1  /  m ) )
135133, 134syl 16 . . . . . . . . . . . . 13  |-  ( ( ( ( ph  /\  k  e.  ( 0 ... N ) )  /\  k  <  M
)  /\  m  e.  NN )  ->  ( m ^ -u 1 )  =  ( 1  /  m ) )
136131, 135breqtrd 4457 . . . . . . . . . . . 12  |-  ( ( ( ( ph  /\  k  e.  ( 0 ... N ) )  /\  k  <  M
)  /\  m  e.  NN )  ->  ( m ^ ( k  -  M ) )  <_ 
( 1  /  m
) )
13792, 96, 45, 98, 136lemul2ad 10487 . . . . . . . . . . 11  |-  ( ( ( ( ph  /\  k  e.  ( 0 ... N ) )  /\  k  <  M
)  /\  m  e.  NN )  ->  ( ( abs `  ( A `
 k ) )  x.  ( m ^
( k  -  M
) ) )  <_ 
( ( abs `  ( A `  k )
)  x.  ( 1  /  m ) ) )
13824adantr 465 . . . . . . . . . . . . 13  |-  ( ( ( ( ph  /\  k  e.  ( 0 ... N ) )  /\  k  <  M
)  /\  m  e.  NN )  ->  ( abs `  ( A `  k
) )  e.  CC )
139 nnne0 10569 . . . . . . . . . . . . . 14  |-  ( m  e.  NN  ->  m  =/=  0 )
140139adantl 466 . . . . . . . . . . . . 13  |-  ( ( ( ( ph  /\  k  e.  ( 0 ... N ) )  /\  k  <  M
)  /\  m  e.  NN )  ->  m  =/=  0 )
141138, 133, 140divrecd 10324 . . . . . . . . . . . 12  |-  ( ( ( ( ph  /\  k  e.  ( 0 ... N ) )  /\  k  <  M
)  /\  m  e.  NN )  ->  ( ( abs `  ( A `
 k ) )  /  m )  =  ( ( abs `  ( A `  k )
)  x.  ( 1  /  m ) ) )
14234, 141eqtrd 2482 . . . . . . . . . . 11  |-  ( ( ( ( ph  /\  k  e.  ( 0 ... N ) )  /\  k  <  M
)  /\  m  e.  NN )  ->  ( ( n  e.  NN  |->  ( ( abs `  ( A `  k )
)  /  n ) ) `  m )  =  ( ( abs `  ( A `  k
) )  x.  (
1  /  m ) ) )
143137, 43, 1423brtr4d 4463 . . . . . . . . . 10  |-  ( ( ( ( ph  /\  k  e.  ( 0 ... N ) )  /\  k  <  M
)  /\  m  e.  NN )  ->  ( ( n  e.  NN  |->  ( ( abs `  ( A `  k )
)  x.  ( n ^ ( k  -  M ) ) ) ) `  m )  <_  ( ( n  e.  NN  |->  ( ( abs `  ( A `
 k ) )  /  n ) ) `
 m ) )
14491rpge0d 11264 . . . . . . . . . . . 12  |-  ( ( ( ( ph  /\  k  e.  ( 0 ... N ) )  /\  k  <  M
)  /\  m  e.  NN )  ->  0  <_ 
( m ^ (
k  -  M ) ) )
14545, 92, 98, 144mulge0d 10130 . . . . . . . . . . 11  |-  ( ( ( ( ph  /\  k  e.  ( 0 ... N ) )  /\  k  <  M
)  /\  m  e.  NN )  ->  0  <_ 
( ( abs `  ( A `  k )
)  x.  ( m ^ ( k  -  M ) ) ) )
146145, 43breqtrrd 4459 . . . . . . . . . 10  |-  ( ( ( ( ph  /\  k  e.  ( 0 ... N ) )  /\  k  <  M
)  /\  m  e.  NN )  ->  0  <_ 
( ( n  e.  NN  |->  ( ( abs `  ( A `  k
) )  x.  (
n ^ ( k  -  M ) ) ) ) `  m
) )
1471, 4, 26, 29, 37, 94, 143, 146climsqz2 13438 . . . . . . . . 9  |-  ( ( ( ph  /\  k  e.  ( 0 ... N
) )  /\  k  <  M )  ->  (
n  e.  NN  |->  ( ( abs `  ( A `  k )
)  x.  ( n ^ ( k  -  M ) ) ) )  ~~>  0 )
14827mptex 6124 . . . . . . . . . . 11  |-  ( n  e.  NN  |->  ( ( A `  k )  x.  ( n ^
( k  -  M
) ) ) )  e.  _V
149148a1i 11 . . . . . . . . . 10  |-  ( ( ( ph  /\  k  e.  ( 0 ... N
) )  /\  k  <  M )  ->  (
n  e.  NN  |->  ( ( A `  k
)  x.  ( n ^ ( k  -  M ) ) ) )  e.  _V )
15038oveq2d 6293 . . . . . . . . . . . . . . 15  |-  ( n  =  m  ->  (
( A `  k
)  x.  ( n ^ ( k  -  M ) ) )  =  ( ( A `
 k )  x.  ( m ^ (
k  -  M ) ) ) )
151 eqid 2441 . . . . . . . . . . . . . . 15  |-  ( n  e.  NN  |->  ( ( A `  k )  x.  ( n ^
( k  -  M
) ) ) )  =  ( n  e.  NN  |->  ( ( A `
 k )  x.  ( n ^ (
k  -  M ) ) ) )
152 ovex 6305 . . . . . . . . . . . . . . 15  |-  ( ( A `  k )  x.  ( m ^
( k  -  M
) ) )  e. 
_V
153150, 151, 152fvmpt 5937 . . . . . . . . . . . . . 14  |-  ( m  e.  NN  ->  (
( n  e.  NN  |->  ( ( A `  k )  x.  (
n ^ ( k  -  M ) ) ) ) `  m
)  =  ( ( A `  k )  x.  ( m ^
( k  -  M
) ) ) )
154153ad2antlr 726 . . . . . . . . . . . . 13  |-  ( ( ( ph  /\  m  e.  NN )  /\  k  e.  ( 0 ... N
) )  ->  (
( n  e.  NN  |->  ( ( A `  k )  x.  (
n ^ ( k  -  M ) ) ) ) `  m
)  =  ( ( A `  k )  x.  ( m ^
( k  -  M
) ) ) )
15518adantr 465 . . . . . . . . . . . . . . 15  |-  ( (
ph  /\  m  e.  NN )  ->  A : NN0
--> CC )
156155, 19, 20syl2an 477 . . . . . . . . . . . . . 14  |-  ( ( ( ph  /\  m  e.  NN )  /\  k  e.  ( 0 ... N
) )  ->  ( A `  k )  e.  CC )
157132ad2antlr 726 . . . . . . . . . . . . . . 15  |-  ( ( ( ph  /\  m  e.  NN )  /\  k  e.  ( 0 ... N
) )  ->  m  e.  CC )
158139ad2antlr 726 . . . . . . . . . . . . . . 15  |-  ( ( ( ph  /\  m  e.  NN )  /\  k  e.  ( 0 ... N
) )  ->  m  =/=  0 )
15987adantr 465 . . . . . . . . . . . . . . . 16  |-  ( (
ph  /\  m  e.  NN )  ->  M  e.  ZZ )
16048, 159, 88syl2anr 478 . . . . . . . . . . . . . . 15  |-  ( ( ( ph  /\  m  e.  NN )  /\  k  e.  ( 0 ... N
) )  ->  (
k  -  M )  e.  ZZ )
161157, 158, 160expclzd 12289 . . . . . . . . . . . . . 14  |-  ( ( ( ph  /\  m  e.  NN )  /\  k  e.  ( 0 ... N
) )  ->  (
m ^ ( k  -  M ) )  e.  CC )
162156, 161mulcld 9614 . . . . . . . . . . . . 13  |-  ( ( ( ph  /\  m  e.  NN )  /\  k  e.  ( 0 ... N
) )  ->  (
( A `  k
)  x.  ( m ^ ( k  -  M ) ) )  e.  CC )
163154, 162eqeltrd 2529 . . . . . . . . . . . 12  |-  ( ( ( ph  /\  m  e.  NN )  /\  k  e.  ( 0 ... N
) )  ->  (
( n  e.  NN  |->  ( ( A `  k )  x.  (
n ^ ( k  -  M ) ) ) ) `  m
)  e.  CC )
164163an32s 802 . . . . . . . . . . 11  |-  ( ( ( ph  /\  k  e.  ( 0 ... N
) )  /\  m  e.  NN )  ->  (
( n  e.  NN  |->  ( ( A `  k )  x.  (
n ^ ( k  -  M ) ) ) ) `  m
)  e.  CC )
165164adantlr 714 . . . . . . . . . 10  |-  ( ( ( ( ph  /\  k  e.  ( 0 ... N ) )  /\  k  <  M
)  /\  m  e.  NN )  ->  ( ( n  e.  NN  |->  ( ( A `  k
)  x.  ( n ^ ( k  -  M ) ) ) ) `  m )  e.  CC )
16692recnd 9620 . . . . . . . . . . . . 13  |-  ( ( ( ( ph  /\  k  e.  ( 0 ... N ) )  /\  k  <  M
)  /\  m  e.  NN )  ->  ( m ^ ( k  -  M ) )  e.  CC )
16744, 166absmuld 13259 . . . . . . . . . . . 12  |-  ( ( ( ( ph  /\  k  e.  ( 0 ... N ) )  /\  k  <  M
)  /\  m  e.  NN )  ->  ( abs `  ( ( A `  k )  x.  (
m ^ ( k  -  M ) ) ) )  =  ( ( abs `  ( A `  k )
)  x.  ( abs `  ( m ^ (
k  -  M ) ) ) ) )
16892, 144absidd 13228 . . . . . . . . . . . . 13  |-  ( ( ( ( ph  /\  k  e.  ( 0 ... N ) )  /\  k  <  M
)  /\  m  e.  NN )  ->  ( abs `  ( m ^ (
k  -  M ) ) )  =  ( m ^ ( k  -  M ) ) )
169168oveq2d 6293 . . . . . . . . . . . 12  |-  ( ( ( ( ph  /\  k  e.  ( 0 ... N ) )  /\  k  <  M
)  /\  m  e.  NN )  ->  ( ( abs `  ( A `
 k ) )  x.  ( abs `  (
m ^ ( k  -  M ) ) ) )  =  ( ( abs `  ( A `  k )
)  x.  ( m ^ ( k  -  M ) ) ) )
170167, 169eqtrd 2482 . . . . . . . . . . 11  |-  ( ( ( ( ph  /\  k  e.  ( 0 ... N ) )  /\  k  <  M
)  /\  m  e.  NN )  ->  ( abs `  ( ( A `  k )  x.  (
m ^ ( k  -  M ) ) ) )  =  ( ( abs `  ( A `  k )
)  x.  ( m ^ ( k  -  M ) ) ) )
171153adantl 466 . . . . . . . . . . . 12  |-  ( ( ( ( ph  /\  k  e.  ( 0 ... N ) )  /\  k  <  M
)  /\  m  e.  NN )  ->  ( ( n  e.  NN  |->  ( ( A `  k
)  x.  ( n ^ ( k  -  M ) ) ) ) `  m )  =  ( ( A `
 k )  x.  ( m ^ (
k  -  M ) ) ) )
172171fveq2d 5856 . . . . . . . . . . 11  |-  ( ( ( ( ph  /\  k  e.  ( 0 ... N ) )  /\  k  <  M
)  /\  m  e.  NN )  ->  ( abs `  ( ( n  e.  NN  |->  ( ( A `
 k )  x.  ( n ^ (
k  -  M ) ) ) ) `  m ) )  =  ( abs `  (
( A `  k
)  x.  ( m ^ ( k  -  M ) ) ) ) )
173170, 172, 433eqtr4rd 2493 . . . . . . . . . 10  |-  ( ( ( ( ph  /\  k  e.  ( 0 ... N ) )  /\  k  <  M
)  /\  m  e.  NN )  ->  ( ( n  e.  NN  |->  ( ( abs `  ( A `  k )
)  x.  ( n ^ ( k  -  M ) ) ) ) `  m )  =  ( abs `  (
( n  e.  NN  |->  ( ( A `  k )  x.  (
n ^ ( k  -  M ) ) ) ) `  m
) ) )
1741, 4, 149, 29, 165, 173climabs0 13382 . . . . . . . . 9  |-  ( ( ( ph  /\  k  e.  ( 0 ... N
) )  /\  k  <  M )  ->  (
( n  e.  NN  |->  ( ( A `  k )  x.  (
n ^ ( k  -  M ) ) ) )  ~~>  0  <->  (
n  e.  NN  |->  ( ( abs `  ( A `  k )
)  x.  ( n ^ ( k  -  M ) ) ) )  ~~>  0 ) )
175147, 174mpbird 232 . . . . . . . 8  |-  ( ( ( ph  /\  k  e.  ( 0 ... N
) )  /\  k  <  M )  ->  (
n  e.  NN  |->  ( ( A `  k
)  x.  ( n ^ ( k  -  M ) ) ) )  ~~>  0 )
176113adantr 465 . . . . . . . . . . 11  |-  ( ( ( ph  /\  k  e.  ( 0 ... N
) )  /\  k  <  M )  ->  k  e.  RR )
177 simpr 461 . . . . . . . . . . 11  |-  ( ( ( ph  /\  k  e.  ( 0 ... N
) )  /\  k  <  M )  ->  k  <  M )
178176, 177ltned 9719 . . . . . . . . . 10  |-  ( ( ( ph  /\  k  e.  ( 0 ... N
) )  /\  k  <  M )  ->  k  =/=  M )
179 elsn 4024 . . . . . . . . . . 11  |-  ( k  e.  { M }  <->  k  =  M )
180179necon3bbii 2702 . . . . . . . . . 10  |-  ( -.  k  e.  { M } 
<->  k  =/=  M )
181178, 180sylibr 212 . . . . . . . . 9  |-  ( ( ( ph  /\  k  e.  ( 0 ... N
) )  /\  k  <  M )  ->  -.  k  e.  { M } )
182181iffalsed 3933 . . . . . . . 8  |-  ( ( ( ph  /\  k  e.  ( 0 ... N
) )  /\  k  <  M )  ->  if ( k  e.  { M } ,  ( A `
 k ) ,  0 )  =  0 )
183175, 182breqtrrd 4459 . . . . . . 7  |-  ( ( ( ph  /\  k  e.  ( 0 ... N
) )  /\  k  <  M )  ->  (
n  e.  NN  |->  ( ( A `  k
)  x.  ( n ^ ( k  -  M ) ) ) )  ~~>  if ( k  e.  { M } ,  ( A `  k ) ,  0 ) )
184 nncn 10545 . . . . . . . . . . . . . . 15  |-  ( n  e.  NN  ->  n  e.  CC )
185184ad2antlr 726 . . . . . . . . . . . . . 14  |-  ( ( ( ( ( ph  /\  k  e.  ( 0 ... N ) )  /\  M  <_  k
)  /\  n  e.  NN )  /\  ( A `  k )  =  0 )  ->  n  e.  CC )
186 nnne0 10569 . . . . . . . . . . . . . . 15  |-  ( n  e.  NN  ->  n  =/=  0 )
187186ad2antlr 726 . . . . . . . . . . . . . 14  |-  ( ( ( ( ( ph  /\  k  e.  ( 0 ... N ) )  /\  M  <_  k
)  /\  n  e.  NN )  /\  ( A `  k )  =  0 )  ->  n  =/=  0 )
18889ad3antrrr 729 . . . . . . . . . . . . . 14  |-  ( ( ( ( ( ph  /\  k  e.  ( 0 ... N ) )  /\  M  <_  k
)  /\  n  e.  NN )  /\  ( A `  k )  =  0 )  -> 
( k  -  M
)  e.  ZZ )
189185, 187, 188expclzd 12289 . . . . . . . . . . . . 13  |-  ( ( ( ( ( ph  /\  k  e.  ( 0 ... N ) )  /\  M  <_  k
)  /\  n  e.  NN )  /\  ( A `  k )  =  0 )  -> 
( n ^ (
k  -  M ) )  e.  CC )
190189mul02d 9776 . . . . . . . . . . . 12  |-  ( ( ( ( ( ph  /\  k  e.  ( 0 ... N ) )  /\  M  <_  k
)  /\  n  e.  NN )  /\  ( A `  k )  =  0 )  -> 
( 0  x.  (
n ^ ( k  -  M ) ) )  =  0 )
191 simpr 461 . . . . . . . . . . . . 13  |-  ( ( ( ( ( ph  /\  k  e.  ( 0 ... N ) )  /\  M  <_  k
)  /\  n  e.  NN )  /\  ( A `  k )  =  0 )  -> 
( A `  k
)  =  0 )
192191oveq1d 6292 . . . . . . . . . . . 12  |-  ( ( ( ( ( ph  /\  k  e.  ( 0 ... N ) )  /\  M  <_  k
)  /\  n  e.  NN )  /\  ( A `  k )  =  0 )  -> 
( ( A `  k )  x.  (
n ^ ( k  -  M ) ) )  =  ( 0  x.  ( n ^
( k  -  M
) ) ) )
193191ifeq1d 3940 . . . . . . . . . . . . 13  |-  ( ( ( ( ( ph  /\  k  e.  ( 0 ... N ) )  /\  M  <_  k
)  /\  n  e.  NN )  /\  ( A `  k )  =  0 )  ->  if ( k  e.  { M } ,  ( A `
 k ) ,  0 )  =  if ( k  e.  { M } ,  0 ,  0 ) )
194 ifid 3959 . . . . . . . . . . . . 13  |-  if ( k  e.  { M } ,  0 , 
0 )  =  0
195193, 194syl6eq 2498 . . . . . . . . . . . 12  |-  ( ( ( ( ( ph  /\  k  e.  ( 0 ... N ) )  /\  M  <_  k
)  /\  n  e.  NN )  /\  ( A `  k )  =  0 )  ->  if ( k  e.  { M } ,  ( A `
 k ) ,  0 )  =  0 )
196190, 192, 1953eqtr4d 2492 . . . . . . . . . . 11  |-  ( ( ( ( ( ph  /\  k  e.  ( 0 ... N ) )  /\  M  <_  k
)  /\  n  e.  NN )  /\  ( A `  k )  =  0 )  -> 
( ( A `  k )  x.  (
n ^ ( k  -  M ) ) )  =  if ( k  e.  { M } ,  ( A `  k ) ,  0 ) )
19721adantr 465 . . . . . . . . . . . . . 14  |-  ( ( ( ph  /\  k  e.  ( 0 ... N
) )  /\  M  <_  k )  ->  ( A `  k )  e.  CC )
198197ad2antrr 725 . . . . . . . . . . . . 13  |-  ( ( ( ( ( ph  /\  k  e.  ( 0 ... N ) )  /\  M  <_  k
)  /\  n  e.  NN )  /\  ( A `  k )  =/=  0 )  ->  ( A `  k )  e.  CC )
199198mulid1d 9611 . . . . . . . . . . . 12  |-  ( ( ( ( ( ph  /\  k  e.  ( 0 ... N ) )  /\  M  <_  k
)  /\  n  e.  NN )  /\  ( A `  k )  =/=  0 )  ->  (
( A `  k
)  x.  1 )  =  ( A `  k ) )
200 nn0ssre 10800 . . . . . . . . . . . . . . . . . . . . . . . 24  |-  NN0  C_  RR
20152, 200syl6ss 3498 . . . . . . . . . . . . . . . . . . . . . . 23  |-  ( ph  ->  ( `' A "
( S  \  {
0 } ) ) 
C_  RR )
202201ad2antrr 725 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( ( ( ph  /\  k  e.  ( 0 ... N
) )  /\  ( A `  k )  =/=  0 )  ->  ( `' A " ( S 
\  { 0 } ) )  C_  RR )
20356ad2antrr 725 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( ( ( ph  /\  k  e.  ( 0 ... N
) )  /\  ( A `  k )  =/=  0 )  ->  ( `' A " ( S 
\  { 0 } ) )  =/=  (/) )
20482ad2antrr 725 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( ( ( ph  /\  k  e.  ( 0 ... N
) )  /\  ( A `  k )  =/=  0 )  ->  E. x  e.  RR  A. z  e.  ( `' A "
( S  \  {
0 } ) ) z  <_  x )
20519ad2antlr 726 . . . . . . . . . . . . . . . . . . . . . . 23  |-  ( ( ( ph  /\  k  e.  ( 0 ... N
) )  /\  ( A `  k )  =/=  0 )  ->  k  e.  NN0 )
206 ffvelrn 6010 . . . . . . . . . . . . . . . . . . . . . . . . . . 27  |-  ( ( A : NN0 --> ( S  u.  { 0 } )  /\  k  e. 
NN0 )  ->  ( A `  k )  e.  ( S  u.  {
0 } ) )
20717, 19, 206syl2an 477 . . . . . . . . . . . . . . . . . . . . . . . . . 26  |-  ( (
ph  /\  k  e.  ( 0 ... N
) )  ->  ( A `  k )  e.  ( S  u.  {
0 } ) )
208207anim1i 568 . . . . . . . . . . . . . . . . . . . . . . . . 25  |-  ( ( ( ph  /\  k  e.  ( 0 ... N
) )  /\  ( A `  k )  =/=  0 )  ->  (
( A `  k
)  e.  ( S  u.  { 0 } )  /\  ( A `
 k )  =/=  0 ) )
209 eldifsn 4136 . . . . . . . . . . . . . . . . . . . . . . . . 25  |-  ( ( A `  k )  e.  ( ( S  u.  { 0 } )  \  { 0 } )  <->  ( ( A `  k )  e.  ( S  u.  {
0 } )  /\  ( A `  k )  =/=  0 ) )
210208, 209sylibr 212 . . . . . . . . . . . . . . . . . . . . . . . 24  |-  ( ( ( ph  /\  k  e.  ( 0 ... N
) )  /\  ( A `  k )  =/=  0 )  ->  ( A `  k )  e.  ( ( S  u.  { 0 } )  \  { 0 } ) )
211 difun2 3889 . . . . . . . . . . . . . . . . . . . . . . . 24  |-  ( ( S  u.  { 0 } )  \  {
0 } )  =  ( S  \  {
0 } )
212210, 211syl6eleq 2539 . . . . . . . . . . . . . . . . . . . . . . 23  |-  ( ( ( ph  /\  k  e.  ( 0 ... N
) )  /\  ( A `  k )  =/=  0 )  ->  ( A `  k )  e.  ( S  \  {
0 } ) )
213 elpreima 5988 . . . . . . . . . . . . . . . . . . . . . . . . 25  |-  ( A  Fn  NN0  ->  ( k  e.  ( `' A " ( S  \  {
0 } ) )  <-> 
( k  e.  NN0  /\  ( A `  k
)  e.  ( S 
\  { 0 } ) ) ) )
21466, 213syl 16 . . . . . . . . . . . . . . . . . . . . . . . 24  |-  ( ph  ->  ( k  e.  ( `' A " ( S 
\  { 0 } ) )  <->  ( k  e.  NN0  /\  ( A `
 k )  e.  ( S  \  {
0 } ) ) ) )
215214ad2antrr 725 . . . . . . . . . . . . . . . . . . . . . . 23  |-  ( ( ( ph  /\  k  e.  ( 0 ... N
) )  /\  ( A `  k )  =/=  0 )  ->  (
k  e.  ( `' A " ( S 
\  { 0 } ) )  <->  ( k  e.  NN0  /\  ( A `
 k )  e.  ( S  \  {
0 } ) ) ) )
216205, 212, 215mpbir2and 920 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( ( ( ph  /\  k  e.  ( 0 ... N
) )  /\  ( A `  k )  =/=  0 )  ->  k  e.  ( `' A "
( S  \  {
0 } ) ) )
217 suprub 10505 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( ( ( ( `' A " ( S  \  {
0 } ) ) 
C_  RR  /\  ( `' A " ( S 
\  { 0 } ) )  =/=  (/)  /\  E. x  e.  RR  A. z  e.  ( `' A "
( S  \  {
0 } ) ) z  <_  x )  /\  k  e.  ( `' A " ( S 
\  { 0 } ) ) )  -> 
k  <_  sup (
( `' A "
( S  \  {
0 } ) ) ,  RR ,  <  ) )
218202, 203, 204, 216, 217syl31anc 1230 . . . . . . . . . . . . . . . . . . . . 21  |-  ( ( ( ph  /\  k  e.  ( 0 ... N
) )  /\  ( A `  k )  =/=  0 )  ->  k  <_  sup ( ( `' A " ( S 
\  { 0 } ) ) ,  RR ,  <  ) )
219218, 53syl6breqr 4473 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( ( ph  /\  k  e.  ( 0 ... N
) )  /\  ( A `  k )  =/=  0 )  ->  k  <_  M )
220219adantlr 714 . . . . . . . . . . . . . . . . . . 19  |-  ( ( ( ( ph  /\  k  e.  ( 0 ... N ) )  /\  M  <_  k
)  /\  ( A `  k )  =/=  0
)  ->  k  <_  M )
221220adantlr 714 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( ( ( ph  /\  k  e.  ( 0 ... N ) )  /\  M  <_  k
)  /\  n  e.  NN )  /\  ( A `  k )  =/=  0 )  ->  k  <_  M )
222 simpllr 758 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( ( ( ph  /\  k  e.  ( 0 ... N ) )  /\  M  <_  k
)  /\  n  e.  NN )  /\  ( A `  k )  =/=  0 )  ->  M  <_  k )
223113ad3antrrr 729 . . . . . . . . . . . . . . . . . . 19  |-  ( ( ( ( ( ph  /\  k  e.  ( 0 ... N ) )  /\  M  <_  k
)  /\  n  e.  NN )  /\  ( A `  k )  =/=  0 )  ->  k  e.  RR )
224116ad3antrrr 729 . . . . . . . . . . . . . . . . . . 19  |-  ( ( ( ( ( ph  /\  k  e.  ( 0 ... N ) )  /\  M  <_  k
)  /\  n  e.  NN )  /\  ( A `  k )  =/=  0 )  ->  M  e.  RR )
225223, 224letri3d 9725 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( ( ( ph  /\  k  e.  ( 0 ... N ) )  /\  M  <_  k
)  /\  n  e.  NN )  /\  ( A `  k )  =/=  0 )  ->  (
k  =  M  <->  ( k  <_  M  /\  M  <_ 
k ) ) )
226221, 222, 225mpbir2and 920 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ( ( ph  /\  k  e.  ( 0 ... N ) )  /\  M  <_  k
)  /\  n  e.  NN )  /\  ( A `  k )  =/=  0 )  ->  k  =  M )
227226oveq1d 6292 . . . . . . . . . . . . . . . 16  |-  ( ( ( ( ( ph  /\  k  e.  ( 0 ... N ) )  /\  M  <_  k
)  /\  n  e.  NN )  /\  ( A `  k )  =/=  0 )  ->  (
k  -  M )  =  ( M  -  M ) )
228122ad3antrrr 729 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ( ( ph  /\  k  e.  ( 0 ... N ) )  /\  M  <_  k
)  /\  n  e.  NN )  /\  ( A `  k )  =/=  0 )  ->  M  e.  CC )
229228subidd 9919 . . . . . . . . . . . . . . . 16  |-  ( ( ( ( ( ph  /\  k  e.  ( 0 ... N ) )  /\  M  <_  k
)  /\  n  e.  NN )  /\  ( A `  k )  =/=  0 )  ->  ( M  -  M )  =  0 )
230227, 229eqtrd 2482 . . . . . . . . . . . . . . 15  |-  ( ( ( ( ( ph  /\  k  e.  ( 0 ... N ) )  /\  M  <_  k
)  /\  n  e.  NN )  /\  ( A `  k )  =/=  0 )  ->  (
k  -  M )  =  0 )
231230oveq2d 6293 . . . . . . . . . . . . . 14  |-  ( ( ( ( ( ph  /\  k  e.  ( 0 ... N ) )  /\  M  <_  k
)  /\  n  e.  NN )  /\  ( A `  k )  =/=  0 )  ->  (
n ^ ( k  -  M ) )  =  ( n ^
0 ) )
232184ad2antlr 726 . . . . . . . . . . . . . . 15  |-  ( ( ( ( ( ph  /\  k  e.  ( 0 ... N ) )  /\  M  <_  k
)  /\  n  e.  NN )  /\  ( A `  k )  =/=  0 )  ->  n  e.  CC )
233232exp0d 12278 . . . . . . . . . . . . . 14  |-  ( ( ( ( ( ph  /\  k  e.  ( 0 ... N ) )  /\  M  <_  k
)  /\  n  e.  NN )  /\  ( A `  k )  =/=  0 )  ->  (
n ^ 0 )  =  1 )
234231, 233eqtrd 2482 . . . . . . . . . . . . 13  |-  ( ( ( ( ( ph  /\  k  e.  ( 0 ... N ) )  /\  M  <_  k
)  /\  n  e.  NN )  /\  ( A `  k )  =/=  0 )  ->  (
n ^ ( k  -  M ) )  =  1 )
235234oveq2d 6293 . . . . . . . . . . . 12  |-  ( ( ( ( ( ph  /\  k  e.  ( 0 ... N ) )  /\  M  <_  k
)  /\  n  e.  NN )  /\  ( A `  k )  =/=  0 )  ->  (
( A `  k
)  x.  ( n ^ ( k  -  M ) ) )  =  ( ( A `
 k )  x.  1 ) )
236226, 179sylibr 212 . . . . . . . . . . . . 13  |-  ( ( ( ( ( ph  /\  k  e.  ( 0 ... N ) )  /\  M  <_  k
)  /\  n  e.  NN )  /\  ( A `  k )  =/=  0 )  ->  k  e.  { M } )
237236iftrued 3930 . . . . . . . . . . . 12  |-  ( ( ( ( ( ph  /\  k  e.  ( 0 ... N ) )  /\  M  <_  k
)  /\  n  e.  NN )  /\  ( A `  k )  =/=  0 )  ->  if ( k  e.  { M } ,  ( A `
 k ) ,  0 )  =  ( A `  k ) )
238199, 235, 2373eqtr4d 2492 . . . . . . . . . . 11  |-  ( ( ( ( ( ph  /\  k  e.  ( 0 ... N ) )  /\  M  <_  k
)  /\  n  e.  NN )  /\  ( A `  k )  =/=  0 )  ->  (
( A `  k
)  x.  ( n ^ ( k  -  M ) ) )  =  if ( k  e.  { M } ,  ( A `  k ) ,  0 ) )
239196, 238pm2.61dane 2759 . . . . . . . . . 10  |-  ( ( ( ( ph  /\  k  e.  ( 0 ... N ) )  /\  M  <_  k
)  /\  n  e.  NN )  ->  ( ( A `  k )  x.  ( n ^
( k  -  M
) ) )  =  if ( k  e. 
{ M } , 
( A `  k
) ,  0 ) )
240239mpteq2dva 4519 . . . . . . . . 9  |-  ( ( ( ph  /\  k  e.  ( 0 ... N
) )  /\  M  <_  k )  ->  (
n  e.  NN  |->  ( ( A `  k
)  x.  ( n ^ ( k  -  M ) ) ) )  =  ( n  e.  NN  |->  if ( k  e.  { M } ,  ( A `  k ) ,  0 ) ) )
241 fconstmpt 5029 . . . . . . . . 9  |-  ( NN 
X.  { if ( k  e.  { M } ,  ( A `  k ) ,  0 ) } )  =  ( n  e.  NN  |->  if ( k  e.  { M } ,  ( A `
 k ) ,  0 ) )
242240, 241syl6eqr 2500 . . . . . . . 8  |-  ( ( ( ph  /\  k  e.  ( 0 ... N
) )  /\  M  <_  k )  ->  (
n  e.  NN  |->  ( ( A `  k
)  x.  ( n ^ ( k  -  M ) ) ) )  =  ( NN 
X.  { if ( k  e.  { M } ,  ( A `  k ) ,  0 ) } ) )
243 ifcl 3964 . . . . . . . . . 10  |-  ( ( ( A `  k
)  e.  CC  /\  0  e.  CC )  ->  if ( k  e. 
{ M } , 
( A `  k
) ,  0 )  e.  CC )
244197, 7, 243sylancl 662 . . . . . . . . 9  |-  ( ( ( ph  /\  k  e.  ( 0 ... N
) )  /\  M  <_  k )  ->  if ( k  e.  { M } ,  ( A `
 k ) ,  0 )  e.  CC )
245 1z 10895 . . . . . . . . 9  |-  1  e.  ZZ
2461eqimss2i 3541 . . . . . . . . . 10  |-  ( ZZ>= ` 
1 )  C_  NN
247246, 27climconst2 13345 . . . . . . . . 9  |-  ( ( if ( k  e. 
{ M } , 
( A `  k
) ,  0 )  e.  CC  /\  1  e.  ZZ )  ->  ( NN  X.  { if ( k  e.  { M } ,  ( A `  k ) ,  0 ) } )  ~~>  if ( k  e.  { M } ,  ( A `  k ) ,  0 ) )
248244, 245, 247sylancl 662 . . . . . . . 8  |-  ( ( ( ph  /\  k  e.  ( 0 ... N
) )  /\  M  <_  k )  ->  ( NN  X.  { if ( k  e.  { M } ,  ( A `  k ) ,  0 ) } )  ~~>  if ( k  e.  { M } ,  ( A `  k ) ,  0 ) )
249242, 248eqbrtrd 4453 . . . . . . 7  |-  ( ( ( ph  /\  k  e.  ( 0 ... N
) )  /\  M  <_  k )  ->  (
n  e.  NN  |->  ( ( A `  k
)  x.  ( n ^ ( k  -  M ) ) ) )  ~~>  if ( k  e.  { M } ,  ( A `  k ) ,  0 ) )
250183, 249, 113, 116ltlecasei 9690 . . . . . 6  |-  ( (
ph  /\  k  e.  ( 0 ... N
) )  ->  (
n  e.  NN  |->  ( ( A `  k
)  x.  ( n ^ ( k  -  M ) ) ) )  ~~>  if ( k  e.  { M } ,  ( A `  k ) ,  0 ) )
251 snex 4674 . . . . . . . 8  |-  { 0 }  e.  _V
25227, 251xpex 6585 . . . . . . 7  |-  ( NN 
X.  { 0 } )  e.  _V
253252a1i 11 . . . . . 6  |-  ( ph  ->  ( NN  X.  {
0 } )  e. 
_V )
254164anasss 647 . . . . . 6  |-  ( (
ph  /\  ( k  e.  ( 0 ... N
)  /\  m  e.  NN ) )  ->  (
( n  e.  NN  |->  ( ( A `  k )  x.  (
n ^ ( k  -  M ) ) ) ) `  m
)  e.  CC )
255 plyeq0.5 . . . . . . . . . . . 12  |-  ( ph  ->  0p  =  ( z  e.  CC  |->  sum_ k  e.  ( 0 ... N ) ( ( A `  k
)  x.  ( z ^ k ) ) ) )
256255fveq1d 5854 . . . . . . . . . . 11  |-  ( ph  ->  ( 0p `  m )  =  ( ( z  e.  CC  |->  sum_ k  e.  ( 0 ... N ) ( ( A `  k
)  x.  ( z ^ k ) ) ) `  m ) )
257256adantr 465 . . . . . . . . . 10  |-  ( (
ph  /\  m  e.  NN )  ->  ( 0p `  m )  =  ( ( z  e.  CC  |->  sum_ k  e.  ( 0 ... N
) ( ( A `
 k )  x.  ( z ^ k
) ) ) `  m ) )
258132adantl 466 . . . . . . . . . . 11  |-  ( (
ph  /\  m  e.  NN )  ->  m  e.  CC )
259 0pval 21944 . . . . . . . . . . 11  |-  ( m  e.  CC  ->  (
0p `  m
)  =  0 )
260258, 259syl 16 . . . . . . . . . 10  |-  ( (
ph  /\  m  e.  NN )  ->  ( 0p `  m )  =  0 )
261 oveq1 6284 . . . . . . . . . . . . . 14  |-  ( z  =  m  ->  (
z ^ k )  =  ( m ^
k ) )
262261oveq2d 6293 . . . . . . . . . . . . 13  |-  ( z  =  m  ->  (
( A `  k
)  x.  ( z ^ k ) )  =  ( ( A `
 k )  x.  ( m ^ k
) ) )
263262sumeq2sdv 13500 . . . . . . . . . . . 12  |-  ( z  =  m  ->  sum_ k  e.  ( 0 ... N
) ( ( A `
 k )  x.  ( z ^ k
) )  =  sum_ k  e.  ( 0 ... N ) ( ( A `  k
)  x.  ( m ^ k ) ) )
264 eqid 2441 . . . . . . . . . . . 12  |-  ( z  e.  CC  |->  sum_ k  e.  ( 0 ... N
) ( ( A `
 k )  x.  ( z ^ k
) ) )  =  ( z  e.  CC  |->  sum_ k  e.  ( 0 ... N ) ( ( A `  k
)  x.  ( z ^ k ) ) )
265 sumex 13484 . . . . . . . . . . . 12  |-  sum_ k  e.  ( 0 ... N
) ( ( A `
 k )  x.  ( m ^ k
) )  e.  _V
266263, 264, 265fvmpt 5937 . . . . . . . . . . 11  |-  ( m  e.  CC  ->  (
( z  e.  CC  |->  sum_ k  e.  ( 0 ... N ) ( ( A `  k
)  x.  ( z ^ k ) ) ) `  m )  =  sum_ k  e.  ( 0 ... N ) ( ( A `  k )  x.  (
m ^ k ) ) )
267258, 266syl 16 . . . . . . . . . 10  |-  ( (
ph  /\  m  e.  NN )  ->  ( ( z  e.  CC  |->  sum_ k  e.  ( 0 ... N ) ( ( A `  k
)  x.  ( z ^ k ) ) ) `  m )  =  sum_ k  e.  ( 0 ... N ) ( ( A `  k )  x.  (
m ^ k ) ) )
268257, 260, 2673eqtr3d 2490 . . . . . . . . 9  |-  ( (
ph  /\  m  e.  NN )  ->  0  = 
sum_ k  e.  ( 0 ... N ) ( ( A `  k )  x.  (
m ^ k ) ) )
269268oveq1d 6292 . . . . . . . 8  |-  ( (
ph  /\  m  e.  NN )  ->  ( 0  /  ( m ^ M ) )  =  ( sum_ k  e.  ( 0 ... N ) ( ( A `  k )  x.  (
m ^ k ) )  /  ( m ^ M ) ) )
270 expcl 12158 . . . . . . . . . 10  |-  ( ( m  e.  CC  /\  M  e.  NN0 )  -> 
( m ^ M
)  e.  CC )
271132, 86, 270syl2anr 478 . . . . . . . . 9  |-  ( (
ph  /\  m  e.  NN )  ->  ( m ^ M )  e.  CC )
272139adantl 466 . . . . . . . . . 10  |-  ( (
ph  /\  m  e.  NN )  ->  m  =/=  0 )
273258, 272, 159expne0d 12290 . . . . . . . . 9  |-  ( (
ph  /\  m  e.  NN )  ->  ( m ^ M )  =/=  0 )
274271, 273div0d 10320 . . . . . . . 8  |-  ( (
ph  /\  m  e.  NN )  ->  ( 0  /  ( m ^ M ) )  =  0 )
275 fzfid 12057 . . . . . . . . 9  |-  ( (
ph  /\  m  e.  NN )  ->  ( 0 ... N )  e. 
Fin )
276 expcl 12158 . . . . . . . . . . 11  |-  ( ( m  e.  CC  /\  k  e.  NN0 )  -> 
( m ^ k
)  e.  CC )
277258, 19, 276syl2an 477 . . . . . . . . . 10  |-  ( ( ( ph  /\  m  e.  NN )  /\  k  e.  ( 0 ... N
) )  ->  (
m ^ k )  e.  CC )
278156, 277mulcld 9614 . . . . . . . . 9  |-  ( ( ( ph  /\  m  e.  NN )  /\  k  e.  ( 0 ... N
) )  ->  (
( A `  k
)  x.  ( m ^ k ) )  e.  CC )
279275, 271, 278, 273fsumdivc 13575 . . . . . . . 8  |-  ( (
ph  /\  m  e.  NN )  ->  ( sum_ k  e.  ( 0 ... N ) ( ( A `  k
)  x.  ( m ^ k ) )  /  ( m ^ M ) )  = 
sum_ k  e.  ( 0 ... N ) ( ( ( A `
 k )  x.  ( m ^ k
) )  /  (
m ^ M ) ) )
280269, 274, 2793eqtr3d 2490 . . . . . . 7  |-  ( (
ph  /\  m  e.  NN )  ->  0  = 
sum_ k  e.  ( 0 ... N ) ( ( ( A `
 k )  x.  ( m ^ k
) )  /  (
m ^ M ) ) )
281 fvconst2g 6105 . . . . . . . 8  |-  ( ( 0  e.  CC  /\  m  e.  NN )  ->  ( ( NN  X.  { 0 } ) `
 m )  =  0 )
2828, 281sylan 471 . . . . . . 7  |-  ( (
ph  /\  m  e.  NN )  ->  ( ( NN  X.  { 0 } ) `  m
)  =  0 )
283159adantr 465 . . . . . . . . . . 11  |-  ( ( ( ph  /\  m  e.  NN )  /\  k  e.  ( 0 ... N
) )  ->  M  e.  ZZ )
28448adantl 466 . . . . . . . . . . 11  |-  ( ( ( ph  /\  m  e.  NN )  /\  k  e.  ( 0 ... N
) )  ->  k  e.  ZZ )
285157, 158, 283, 284expsubd 12295 . . . . . . . . . 10  |-  ( ( ( ph  /\  m  e.  NN )  /\  k  e.  ( 0 ... N
) )  ->  (
m ^ ( k  -  M ) )  =  ( ( m ^ k )  / 
( m ^ M
) ) )
286285oveq2d 6293 . . . . . . . . 9  |-  ( ( ( ph  /\  m  e.  NN )  /\  k  e.  ( 0 ... N
) )  ->  (
( A `  k
)  x.  ( m ^ ( k  -  M ) ) )  =  ( ( A `
 k )  x.  ( ( m ^
k )  /  (
m ^ M ) ) ) )
287271adantr 465 . . . . . . . . . 10  |-  ( ( ( ph  /\  m  e.  NN )  /\  k  e.  ( 0 ... N
) )  ->  (
m ^ M )  e.  CC )
288273adantr 465 . . . . . . . . . 10  |-  ( ( ( ph  /\  m  e.  NN )  /\  k  e.  ( 0 ... N
) )  ->  (
m ^ M )  =/=  0 )
289156, 277, 287, 288divassd 10356 . . . . . . . . 9  |-  ( ( ( ph  /\  m  e.  NN )  /\  k  e.  ( 0 ... N
) )  ->  (
( ( A `  k )  x.  (
m ^ k ) )  /  ( m ^ M ) )  =  ( ( A `
 k )  x.  ( ( m ^
k )  /  (
m ^ M ) ) ) )
290286, 154, 2893eqtr4d 2492 . . . . . . . 8  |-  ( ( ( ph  /\  m  e.  NN )  /\  k  e.  ( 0 ... N
) )  ->  (
( n  e.  NN  |->  ( ( A `  k )  x.  (
n ^ ( k  -  M ) ) ) ) `  m
)  =  ( ( ( A `  k
)  x.  ( m ^ k ) )  /  ( m ^ M ) ) )
291290sumeq2dv 13499 . . . . . . 7  |-  ( (
ph  /\  m  e.  NN )  ->  sum_ k  e.  ( 0 ... N
) ( ( n  e.  NN  |->  ( ( A `  k )  x.  ( n ^
( k  -  M
) ) ) ) `
 m )  = 
sum_ k  e.  ( 0 ... N ) ( ( ( A `
 k )  x.  ( m ^ k
) )  /  (
m ^ M ) ) )
292280, 282, 2913eqtr4d 2492 . . . . . 6  |-  ( (
ph  /\  m  e.  NN )  ->  ( ( NN  X.  { 0 } ) `  m
)  =  sum_ k  e.  ( 0 ... N
) ( ( n  e.  NN  |->  ( ( A `  k )  x.  ( n ^
( k  -  M
) ) ) ) `
 m ) )
2931, 2, 3, 250, 253, 254, 292climfsum 13608 . . . . 5  |-  ( ph  ->  ( NN  X.  {
0 } )  ~~>  sum_ k  e.  ( 0 ... N
) if ( k  e.  { M } ,  ( A `  k ) ,  0 ) )
294 suprleub 10508 . . . . . . . . . . . 12  |-  ( ( ( ( `' A " ( S  \  {
0 } ) ) 
C_  RR  /\  ( `' A " ( S 
\  { 0 } ) )  =/=  (/)  /\  E. x  e.  RR  A. z  e.  ( `' A "
( S  \  {
0 } ) ) z  <_  x )  /\  N  e.  RR )  ->  ( sup (
( `' A "
( S  \  {
0 } ) ) ,  RR ,  <  )  <_  N  <->  A. z  e.  ( `' A "
( S  \  {
0 } ) ) z  <_  N )
)
295201, 56, 82, 58, 294syl31anc 1230 . . . . . . . . . . 11  |-  ( ph  ->  ( sup ( ( `' A " ( S 
\  { 0 } ) ) ,  RR ,  <  )  <_  N  <->  A. z  e.  ( `' A " ( S 
\  { 0 } ) ) z  <_  N ) )
29678, 295mpbird 232 . . . . . . . . . 10  |-  ( ph  ->  sup ( ( `' A " ( S 
\  { 0 } ) ) ,  RR ,  <  )  <_  N
)
29753, 296syl5eqbr 4466 . . . . . . . . 9  |-  ( ph  ->  M  <_  N )
298 nn0uz 11119 . . . . . . . . . . 11  |-  NN0  =  ( ZZ>= `  0 )
29986, 298syl6eleq 2539 . . . . . . . . . 10  |-  ( ph  ->  M  e.  ( ZZ>= ` 
0 ) )
30057nn0zd 10967 . . . . . . . . . 10  |-  ( ph  ->  N  e.  ZZ )
301 elfz5 11684 . . . . . . . . . 10  |-  ( ( M  e.  ( ZZ>= ` 
0 )  /\  N  e.  ZZ )  ->  ( M  e.  ( 0 ... N )  <->  M  <_  N ) )
302299, 300, 301syl2anc 661 . . . . . . . . 9  |-  ( ph  ->  ( M  e.  ( 0 ... N )  <-> 
M  <_  N )
)
303297, 302mpbird 232 . . . . . . . 8  |-  ( ph  ->  M  e.  ( 0 ... N ) )
304303snssd 4156 . . . . . . 7  |-  ( ph  ->  { M }  C_  ( 0 ... N
) )
30518, 86ffvelrnd 6013 . . . . . . . . 9  |-  ( ph  ->  ( A `  M
)  e.  CC )
306 elsni 4035 . . . . . . . . . . 11  |-  ( k  e.  { M }  ->  k  =  M )
307306fveq2d 5856 . . . . . . . . . 10  |-  ( k  e.  { M }  ->  ( A `  k
)  =  ( A `
 M ) )
308307eleq1d 2510 . . . . . . . . 9  |-  ( k  e.  { M }  ->  ( ( A `  k )  e.  CC  <->  ( A `  M )  e.  CC ) )
309305, 308syl5ibrcom 222 . . . . . . . 8  |-  ( ph  ->  ( k  e.  { M }  ->  ( A `
 k )  e.  CC ) )
310309ralrimiv 2853 . . . . . . 7  |-  ( ph  ->  A. k  e.  { M }  ( A `  k )  e.  CC )
3113olcd 393 . . . . . . 7  |-  ( ph  ->  ( ( 0 ... N )  C_  ( ZZ>=
`  0 )  \/  ( 0 ... N
)  e.  Fin )
)
312 sumss2 13522 . . . . . . 7  |-  ( ( ( { M }  C_  ( 0 ... N
)  /\  A. k  e.  { M }  ( A `  k )  e.  CC )  /\  (
( 0 ... N
)  C_  ( ZZ>= ` 
0 )  \/  (
0 ... N )  e. 
Fin ) )  ->  sum_ k  e.  { M }  ( A `  k )  =  sum_ k  e.  ( 0 ... N ) if ( k  e.  { M } ,  ( A `
 k ) ,  0 ) )
313304, 310, 311, 312syl21anc 1226 . . . . . 6  |-  ( ph  -> 
sum_ k  e.  { M }  ( A `  k )  =  sum_ k  e.  ( 0 ... N ) if ( k  e.  { M } ,  ( A `
 k ) ,  0 ) )
314 ltso 9663 . . . . . . . . 9  |-  <  Or  RR
315314supex 7921 . . . . . . . 8  |-  sup (
( `' A "
( S  \  {
0 } ) ) ,  RR ,  <  )  e.  _V
31653, 315eqeltri 2525 . . . . . . 7  |-  M  e. 
_V
317 fveq2 5852 . . . . . . . 8  |-  ( k  =  M  ->  ( A `  k )  =  ( A `  M ) )
318317sumsn 13537 . . . . . . 7  |-  ( ( M  e.  _V  /\  ( A `  M )  e.  CC )  ->  sum_ k  e.  { M }  ( A `  k )  =  ( A `  M ) )
319316, 305, 318sylancr 663 . . . . . 6  |-  ( ph  -> 
sum_ k  e.  { M }  ( A `  k )  =  ( A `  M ) )
320313, 319eqtr3d 2484 . . . . 5  |-  ( ph  -> 
sum_ k  e.  ( 0 ... N ) if ( k  e. 
{ M } , 
( A `  k
) ,  0 )  =  ( A `  M ) )
321293, 320breqtrd 4457 . . . 4  |-  ( ph  ->  ( NN  X.  {
0 } )  ~~>  ( A `
 M ) )
322246, 27climconst2 13345 . . . . 5  |-  ( ( 0  e.  CC  /\  1  e.  ZZ )  ->  ( NN  X.  {
0 } )  ~~>  0 )
3237, 245, 322mp2an 672 . . . 4  |-  ( NN 
X.  { 0 } )  ~~>  0
324 climuni 13349 . . . 4  |-  ( ( ( NN  X.  {
0 } )  ~~>  ( A `
 M )  /\  ( NN  X.  { 0 } )  ~~>  0 )  ->  ( A `  M )  =  0 )
325321, 323, 324sylancl 662 . . 3  |-  ( ph  ->  ( A `  M
)  =  0 )
326 fvex 5862 . . . 4  |-  ( A `
 M )  e. 
_V
327326elsnc 4034 . . 3  |-  ( ( A `  M )  e.  { 0 }  <-> 
( A `  M
)  =  0 )
328325, 327sylibr 212 . 2  |-  ( ph  ->  ( A `  M
)  e.  { 0 } )
329 elpreima 5988 . . . . . 6  |-  ( A  Fn  NN0  ->  ( M  e.  ( `' A " ( S  \  {
0 } ) )  <-> 
( M  e.  NN0  /\  ( A `  M
)  e.  ( S 
\  { 0 } ) ) ) )
33066, 329syl 16 . . . . 5  |-  ( ph  ->  ( M  e.  ( `' A " ( S 
\  { 0 } ) )  <->  ( M  e.  NN0  /\  ( A `
 M )  e.  ( S  \  {
0 } ) ) ) )
33185, 330mpbid 210 . . . 4  |-  ( ph  ->  ( M  e.  NN0  /\  ( A `  M
)  e.  ( S 
\  { 0 } ) ) )
332331simprd 463 . . 3  |-  ( ph  ->  ( A `  M
)  e.  ( S 
\  { 0 } ) )
333332eldifbd 3471 . 2  |-  ( ph  ->  -.  ( A `  M )  e.  {
0 } )
334328, 333pm2.65i 173 1  |-  -.  ph
Colors of variables: wff setvar class
Syntax hints:   -. wn 3    -> wi 4    <-> wb 184    \/ wo 368    /\ wa 369    = wceq 1381    e. wcel 1802    =/= wne 2636   A.wral 2791   E.wrex 2792   _Vcvv 3093    \ cdif 3455    u. cun 3456    C_ wss 3458   (/)c0 3767   ifcif 3922   {csn 4010   class class class wbr 4433    |-> cmpt 4491    X. cxp 4983   `'ccnv 4984   dom cdm 4985   "cima 4988    Fn wfn 5569   -->wf 5570   ` cfv 5574  (class class class)co 6277    ^m cmap 7418   Fincfn 7514   supcsup 7898   CCcc 9488   RRcr 9489   0cc0 9490   1c1 9491    + caddc 9493    x. cmul 9495    < clt 9626    <_ cle 9627    - cmin 9805   -ucneg 9806    / cdiv 10207   NNcn 10537   NN0cn0 10796   ZZcz 10865   ZZ>=cuz 11085   RR+crp 11224   ...cfz 11676   ^cexp 12140   abscabs 13041    ~~> cli 13281   sum_csu 13482   0pc0p 21942
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1603  ax-4 1616  ax-5 1689  ax-6 1732  ax-7 1774  ax-8 1804  ax-9 1806  ax-10 1821  ax-11 1826  ax-12 1838  ax-13 1983  ax-ext 2419  ax-rep 4544  ax-sep 4554  ax-nul 4562  ax-pow 4611  ax-pr 4672  ax-un 6573  ax-inf2 8056  ax-cnex 9546  ax-resscn 9547  ax-1cn 9548  ax-icn 9549  ax-addcl 9550  ax-addrcl 9551  ax-mulcl 9552  ax-mulrcl 9553  ax-mulcom 9554  ax-addass 9555  ax-mulass 9556  ax-distr 9557  ax-i2m1 9558  ax-1ne0 9559  ax-1rid 9560  ax-rnegex 9561  ax-rrecex 9562  ax-cnre 9563  ax-pre-lttri 9564  ax-pre-lttrn 9565  ax-pre-ltadd 9566  ax-pre-mulgt0 9567  ax-pre-sup 9568  ax-addf 9569
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3or 973  df-3an 974  df-tru 1384  df-fal 1387  df-ex 1598  df-nf 1602  df-sb 1725  df-eu 2270  df-mo 2271  df-clab 2427  df-cleq 2433  df-clel 2436  df-nfc 2591  df-ne 2638  df-nel 2639  df-ral 2796  df-rex 2797  df-reu 2798  df-rmo 2799  df-rab 2800  df-v 3095  df-sbc 3312  df-csb 3418  df-dif 3461  df-un 3463  df-in 3465  df-ss 3472  df-pss 3474  df-nul 3768  df-if 3923  df-pw 3995  df-sn 4011  df-pr 4013  df-tp 4015  df-op 4017  df-uni 4231  df-int 4268  df-iun 4313  df-br 4434  df-opab 4492  df-mpt 4493  df-tr 4527  df-eprel 4777  df-id 4781  df-po 4786  df-so 4787  df-fr 4824  df-se 4825  df-we 4826  df-ord 4867  df-on 4868  df-lim 4869  df-suc 4870  df-xp 4991  df-rel 4992  df-cnv 4993  df-co 4994  df-dm 4995  df-rn 4996  df-res 4997  df-ima 4998  df-iota 5537  df-fun 5576  df-fn 5577  df-f 5578  df-f1 5579  df-fo 5580  df-f1o 5581  df-fv 5582  df-isom 5583  df-riota 6238  df-ov 6280  df-oprab 6281  df-mpt2 6282  df-om 6682  df-1st 6781  df-2nd 6782  df-recs 7040  df-rdg 7074  df-1o 7128  df-oadd 7132  df-er 7309  df-map 7420  df-pm 7421  df-en 7515  df-dom 7516  df-sdom 7517  df-fin 7518  df-sup 7899  df-oi 7933  df-card 8318  df-pnf 9628  df-mnf 9629  df-xr 9630  df-ltxr 9631  df-le 9632  df-sub 9807  df-neg 9808  df-div 10208  df-nn 10538  df-2 10595  df-3 10596  df-n0 10797  df-z 10866  df-uz 11086  df-rp 11225  df-fz 11677  df-fzo 11799  df-fl 11903  df-seq 12082  df-exp 12141  df-hash 12380  df-cj 12906  df-re 12907  df-im 12908  df-sqrt 13042  df-abs 13043  df-clim 13285  df-rlim 13286  df-sum 13483  df-0p 21943
This theorem is referenced by:  plyeq0  22474
  Copyright terms: Public domain W3C validator