MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  plyco Structured version   Unicode version

Theorem plyco 22366
Description: The composition of two polynomials is a polynomial. (Contributed by Mario Carneiro, 23-Jul-2014.) (Revised by Mario Carneiro, 23-Aug-2014.)
Hypotheses
Ref Expression
plyco.1  |-  ( ph  ->  F  e.  (Poly `  S ) )
plyco.2  |-  ( ph  ->  G  e.  (Poly `  S ) )
plyco.3  |-  ( (
ph  /\  ( x  e.  S  /\  y  e.  S ) )  -> 
( x  +  y )  e.  S )
plyco.4  |-  ( (
ph  /\  ( x  e.  S  /\  y  e.  S ) )  -> 
( x  x.  y
)  e.  S )
Assertion
Ref Expression
plyco  |-  ( ph  ->  ( F  o.  G
)  e.  (Poly `  S ) )
Distinct variable groups:    x, y, F    x, G, y    ph, x, y    x, S, y

Proof of Theorem plyco
Dummy variables  k 
d  z are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 plyco.2 . . . . 5  |-  ( ph  ->  G  e.  (Poly `  S ) )
2 plyf 22323 . . . . 5  |-  ( G  e.  (Poly `  S
)  ->  G : CC
--> CC )
31, 2syl 16 . . . 4  |-  ( ph  ->  G : CC --> CC )
43ffvelrnda 6012 . . 3  |-  ( (
ph  /\  z  e.  CC )  ->  ( G `
 z )  e.  CC )
53feqmptd 5911 . . 3  |-  ( ph  ->  G  =  ( z  e.  CC  |->  ( G `
 z ) ) )
6 plyco.1 . . . 4  |-  ( ph  ->  F  e.  (Poly `  S ) )
7 eqid 2460 . . . . 5  |-  (coeff `  F )  =  (coeff `  F )
8 eqid 2460 . . . . 5  |-  (deg `  F )  =  (deg
`  F )
97, 8coeid 22363 . . . 4  |-  ( F  e.  (Poly `  S
)  ->  F  =  ( x  e.  CC  |->  sum_ k  e.  ( 0 ... (deg `  F
) ) ( ( (coeff `  F ) `  k )  x.  (
x ^ k ) ) ) )
106, 9syl 16 . . 3  |-  ( ph  ->  F  =  ( x  e.  CC  |->  sum_ k  e.  ( 0 ... (deg `  F ) ) ( ( (coeff `  F
) `  k )  x.  ( x ^ k
) ) ) )
11 oveq1 6282 . . . . 5  |-  ( x  =  ( G `  z )  ->  (
x ^ k )  =  ( ( G `
 z ) ^
k ) )
1211oveq2d 6291 . . . 4  |-  ( x  =  ( G `  z )  ->  (
( (coeff `  F
) `  k )  x.  ( x ^ k
) )  =  ( ( (coeff `  F
) `  k )  x.  ( ( G `  z ) ^ k
) ) )
1312sumeq2sdv 13475 . . 3  |-  ( x  =  ( G `  z )  ->  sum_ k  e.  ( 0 ... (deg `  F ) ) ( ( (coeff `  F
) `  k )  x.  ( x ^ k
) )  =  sum_ k  e.  ( 0 ... (deg `  F
) ) ( ( (coeff `  F ) `  k )  x.  (
( G `  z
) ^ k ) ) )
144, 5, 10, 13fmptco 6045 . 2  |-  ( ph  ->  ( F  o.  G
)  =  ( z  e.  CC  |->  sum_ k  e.  ( 0 ... (deg `  F ) ) ( ( (coeff `  F
) `  k )  x.  ( ( G `  z ) ^ k
) ) ) )
15 dgrcl 22358 . . . 4  |-  ( F  e.  (Poly `  S
)  ->  (deg `  F
)  e.  NN0 )
166, 15syl 16 . . 3  |-  ( ph  ->  (deg `  F )  e.  NN0 )
17 oveq2 6283 . . . . . . . 8  |-  ( x  =  0  ->  (
0 ... x )  =  ( 0 ... 0
) )
1817sumeq1d 13472 . . . . . . 7  |-  ( x  =  0  ->  sum_ k  e.  ( 0 ... x
) ( ( (coeff `  F ) `  k
)  x.  ( ( G `  z ) ^ k ) )  =  sum_ k  e.  ( 0 ... 0 ) ( ( (coeff `  F ) `  k
)  x.  ( ( G `  z ) ^ k ) ) )
1918mpteq2dv 4527 . . . . . 6  |-  ( x  =  0  ->  (
z  e.  CC  |->  sum_ k  e.  ( 0 ... x ) ( ( (coeff `  F
) `  k )  x.  ( ( G `  z ) ^ k
) ) )  =  ( z  e.  CC  |->  sum_ k  e.  ( 0 ... 0 ) ( ( (coeff `  F
) `  k )  x.  ( ( G `  z ) ^ k
) ) ) )
2019eleq1d 2529 . . . . 5  |-  ( x  =  0  ->  (
( z  e.  CC  |->  sum_ k  e.  ( 0 ... x ) ( ( (coeff `  F
) `  k )  x.  ( ( G `  z ) ^ k
) ) )  e.  (Poly `  S )  <->  ( z  e.  CC  |->  sum_ k  e.  ( 0 ... 0 ) ( ( (coeff `  F
) `  k )  x.  ( ( G `  z ) ^ k
) ) )  e.  (Poly `  S )
) )
2120imbi2d 316 . . . 4  |-  ( x  =  0  ->  (
( ph  ->  ( z  e.  CC  |->  sum_ k  e.  ( 0 ... x
) ( ( (coeff `  F ) `  k
)  x.  ( ( G `  z ) ^ k ) ) )  e.  (Poly `  S ) )  <->  ( ph  ->  ( z  e.  CC  |->  sum_ k  e.  ( 0 ... 0 ) ( ( (coeff `  F
) `  k )  x.  ( ( G `  z ) ^ k
) ) )  e.  (Poly `  S )
) ) )
22 oveq2 6283 . . . . . . . 8  |-  ( x  =  d  ->  (
0 ... x )  =  ( 0 ... d
) )
2322sumeq1d 13472 . . . . . . 7  |-  ( x  =  d  ->  sum_ k  e.  ( 0 ... x
) ( ( (coeff `  F ) `  k
)  x.  ( ( G `  z ) ^ k ) )  =  sum_ k  e.  ( 0 ... d ) ( ( (coeff `  F ) `  k
)  x.  ( ( G `  z ) ^ k ) ) )
2423mpteq2dv 4527 . . . . . 6  |-  ( x  =  d  ->  (
z  e.  CC  |->  sum_ k  e.  ( 0 ... x ) ( ( (coeff `  F
) `  k )  x.  ( ( G `  z ) ^ k
) ) )  =  ( z  e.  CC  |->  sum_ k  e.  ( 0 ... d ) ( ( (coeff `  F
) `  k )  x.  ( ( G `  z ) ^ k
) ) ) )
2524eleq1d 2529 . . . . 5  |-  ( x  =  d  ->  (
( z  e.  CC  |->  sum_ k  e.  ( 0 ... x ) ( ( (coeff `  F
) `  k )  x.  ( ( G `  z ) ^ k
) ) )  e.  (Poly `  S )  <->  ( z  e.  CC  |->  sum_ k  e.  ( 0 ... d ) ( ( (coeff `  F
) `  k )  x.  ( ( G `  z ) ^ k
) ) )  e.  (Poly `  S )
) )
2625imbi2d 316 . . . 4  |-  ( x  =  d  ->  (
( ph  ->  ( z  e.  CC  |->  sum_ k  e.  ( 0 ... x
) ( ( (coeff `  F ) `  k
)  x.  ( ( G `  z ) ^ k ) ) )  e.  (Poly `  S ) )  <->  ( ph  ->  ( z  e.  CC  |->  sum_ k  e.  ( 0 ... d ) ( ( (coeff `  F
) `  k )  x.  ( ( G `  z ) ^ k
) ) )  e.  (Poly `  S )
) ) )
27 oveq2 6283 . . . . . . . 8  |-  ( x  =  ( d  +  1 )  ->  (
0 ... x )  =  ( 0 ... (
d  +  1 ) ) )
2827sumeq1d 13472 . . . . . . 7  |-  ( x  =  ( d  +  1 )  ->  sum_ k  e.  ( 0 ... x
) ( ( (coeff `  F ) `  k
)  x.  ( ( G `  z ) ^ k ) )  =  sum_ k  e.  ( 0 ... ( d  +  1 ) ) ( ( (coeff `  F ) `  k
)  x.  ( ( G `  z ) ^ k ) ) )
2928mpteq2dv 4527 . . . . . 6  |-  ( x  =  ( d  +  1 )  ->  (
z  e.  CC  |->  sum_ k  e.  ( 0 ... x ) ( ( (coeff `  F
) `  k )  x.  ( ( G `  z ) ^ k
) ) )  =  ( z  e.  CC  |->  sum_ k  e.  ( 0 ... ( d  +  1 ) ) ( ( (coeff `  F
) `  k )  x.  ( ( G `  z ) ^ k
) ) ) )
3029eleq1d 2529 . . . . 5  |-  ( x  =  ( d  +  1 )  ->  (
( z  e.  CC  |->  sum_ k  e.  ( 0 ... x ) ( ( (coeff `  F
) `  k )  x.  ( ( G `  z ) ^ k
) ) )  e.  (Poly `  S )  <->  ( z  e.  CC  |->  sum_ k  e.  ( 0 ... ( d  +  1 ) ) ( ( (coeff `  F
) `  k )  x.  ( ( G `  z ) ^ k
) ) )  e.  (Poly `  S )
) )
3130imbi2d 316 . . . 4  |-  ( x  =  ( d  +  1 )  ->  (
( ph  ->  ( z  e.  CC  |->  sum_ k  e.  ( 0 ... x
) ( ( (coeff `  F ) `  k
)  x.  ( ( G `  z ) ^ k ) ) )  e.  (Poly `  S ) )  <->  ( ph  ->  ( z  e.  CC  |->  sum_ k  e.  ( 0 ... ( d  +  1 ) ) ( ( (coeff `  F
) `  k )  x.  ( ( G `  z ) ^ k
) ) )  e.  (Poly `  S )
) ) )
32 oveq2 6283 . . . . . . . 8  |-  ( x  =  (deg `  F
)  ->  ( 0 ... x )  =  ( 0 ... (deg `  F ) ) )
3332sumeq1d 13472 . . . . . . 7  |-  ( x  =  (deg `  F
)  ->  sum_ k  e.  ( 0 ... x
) ( ( (coeff `  F ) `  k
)  x.  ( ( G `  z ) ^ k ) )  =  sum_ k  e.  ( 0 ... (deg `  F ) ) ( ( (coeff `  F
) `  k )  x.  ( ( G `  z ) ^ k
) ) )
3433mpteq2dv 4527 . . . . . 6  |-  ( x  =  (deg `  F
)  ->  ( z  e.  CC  |->  sum_ k  e.  ( 0 ... x ) ( ( (coeff `  F ) `  k
)  x.  ( ( G `  z ) ^ k ) ) )  =  ( z  e.  CC  |->  sum_ k  e.  ( 0 ... (deg `  F ) ) ( ( (coeff `  F
) `  k )  x.  ( ( G `  z ) ^ k
) ) ) )
3534eleq1d 2529 . . . . 5  |-  ( x  =  (deg `  F
)  ->  ( (
z  e.  CC  |->  sum_ k  e.  ( 0 ... x ) ( ( (coeff `  F
) `  k )  x.  ( ( G `  z ) ^ k
) ) )  e.  (Poly `  S )  <->  ( z  e.  CC  |->  sum_ k  e.  ( 0 ... (deg `  F
) ) ( ( (coeff `  F ) `  k )  x.  (
( G `  z
) ^ k ) ) )  e.  (Poly `  S ) ) )
3635imbi2d 316 . . . 4  |-  ( x  =  (deg `  F
)  ->  ( ( ph  ->  ( z  e.  CC  |->  sum_ k  e.  ( 0 ... x ) ( ( (coeff `  F ) `  k
)  x.  ( ( G `  z ) ^ k ) ) )  e.  (Poly `  S ) )  <->  ( ph  ->  ( z  e.  CC  |->  sum_ k  e.  ( 0 ... (deg `  F
) ) ( ( (coeff `  F ) `  k )  x.  (
( G `  z
) ^ k ) ) )  e.  (Poly `  S ) ) ) )
37 0z 10864 . . . . . . . . 9  |-  0  e.  ZZ
384exp0d 12259 . . . . . . . . . . . 12  |-  ( (
ph  /\  z  e.  CC )  ->  ( ( G `  z ) ^ 0 )  =  1 )
3938oveq2d 6291 . . . . . . . . . . 11  |-  ( (
ph  /\  z  e.  CC )  ->  ( ( (coeff `  F ) `  0 )  x.  ( ( G `  z ) ^ 0 ) )  =  ( ( (coeff `  F
) `  0 )  x.  1 ) )
40 plybss 22319 . . . . . . . . . . . . . . . 16  |-  ( F  e.  (Poly `  S
)  ->  S  C_  CC )
416, 40syl 16 . . . . . . . . . . . . . . 15  |-  ( ph  ->  S  C_  CC )
42 0cnd 9578 . . . . . . . . . . . . . . . 16  |-  ( ph  ->  0  e.  CC )
4342snssd 4165 . . . . . . . . . . . . . . 15  |-  ( ph  ->  { 0 }  C_  CC )
4441, 43unssd 3673 . . . . . . . . . . . . . 14  |-  ( ph  ->  ( S  u.  {
0 } )  C_  CC )
457coef 22355 . . . . . . . . . . . . . . . 16  |-  ( F  e.  (Poly `  S
)  ->  (coeff `  F
) : NN0 --> ( S  u.  { 0 } ) )
466, 45syl 16 . . . . . . . . . . . . . . 15  |-  ( ph  ->  (coeff `  F ) : NN0 --> ( S  u.  { 0 } ) )
47 0nn0 10799 . . . . . . . . . . . . . . 15  |-  0  e.  NN0
48 ffvelrn 6010 . . . . . . . . . . . . . . 15  |-  ( ( (coeff `  F ) : NN0 --> ( S  u.  { 0 } )  /\  0  e.  NN0 )  -> 
( (coeff `  F
) `  0 )  e.  ( S  u.  {
0 } ) )
4946, 47, 48sylancl 662 . . . . . . . . . . . . . 14  |-  ( ph  ->  ( (coeff `  F
) `  0 )  e.  ( S  u.  {
0 } ) )
5044, 49sseldd 3498 . . . . . . . . . . . . 13  |-  ( ph  ->  ( (coeff `  F
) `  0 )  e.  CC )
5150adantr 465 . . . . . . . . . . . 12  |-  ( (
ph  /\  z  e.  CC )  ->  ( (coeff `  F ) `  0
)  e.  CC )
5251mulid1d 9602 . . . . . . . . . . 11  |-  ( (
ph  /\  z  e.  CC )  ->  ( ( (coeff `  F ) `  0 )  x.  1 )  =  ( (coeff `  F ) `  0 ) )
5339, 52eqtrd 2501 . . . . . . . . . 10  |-  ( (
ph  /\  z  e.  CC )  ->  ( ( (coeff `  F ) `  0 )  x.  ( ( G `  z ) ^ 0 ) )  =  ( (coeff `  F ) `  0 ) )
5453, 51eqeltrd 2548 . . . . . . . . 9  |-  ( (
ph  /\  z  e.  CC )  ->  ( ( (coeff `  F ) `  0 )  x.  ( ( G `  z ) ^ 0 ) )  e.  CC )
55 fveq2 5857 . . . . . . . . . . 11  |-  ( k  =  0  ->  (
(coeff `  F ) `  k )  =  ( (coeff `  F ) `  0 ) )
56 oveq2 6283 . . . . . . . . . . 11  |-  ( k  =  0  ->  (
( G `  z
) ^ k )  =  ( ( G `
 z ) ^
0 ) )
5755, 56oveq12d 6293 . . . . . . . . . 10  |-  ( k  =  0  ->  (
( (coeff `  F
) `  k )  x.  ( ( G `  z ) ^ k
) )  =  ( ( (coeff `  F
) `  0 )  x.  ( ( G `  z ) ^ 0 ) ) )
5857fsum1 13513 . . . . . . . . 9  |-  ( ( 0  e.  ZZ  /\  ( ( (coeff `  F ) `  0
)  x.  ( ( G `  z ) ^ 0 ) )  e.  CC )  ->  sum_ k  e.  ( 0 ... 0 ) ( ( (coeff `  F
) `  k )  x.  ( ( G `  z ) ^ k
) )  =  ( ( (coeff `  F
) `  0 )  x.  ( ( G `  z ) ^ 0 ) ) )
5937, 54, 58sylancr 663 . . . . . . . 8  |-  ( (
ph  /\  z  e.  CC )  ->  sum_ k  e.  ( 0 ... 0
) ( ( (coeff `  F ) `  k
)  x.  ( ( G `  z ) ^ k ) )  =  ( ( (coeff `  F ) `  0
)  x.  ( ( G `  z ) ^ 0 ) ) )
6059, 53eqtrd 2501 . . . . . . 7  |-  ( (
ph  /\  z  e.  CC )  ->  sum_ k  e.  ( 0 ... 0
) ( ( (coeff `  F ) `  k
)  x.  ( ( G `  z ) ^ k ) )  =  ( (coeff `  F ) `  0
) )
6160mpteq2dva 4526 . . . . . 6  |-  ( ph  ->  ( z  e.  CC  |->  sum_ k  e.  ( 0 ... 0 ) ( ( (coeff `  F
) `  k )  x.  ( ( G `  z ) ^ k
) ) )  =  ( z  e.  CC  |->  ( (coeff `  F ) `  0 ) ) )
62 fconstmpt 5035 . . . . . 6  |-  ( CC 
X.  { ( (coeff `  F ) `  0
) } )  =  ( z  e.  CC  |->  ( (coeff `  F ) `  0 ) )
6361, 62syl6eqr 2519 . . . . 5  |-  ( ph  ->  ( z  e.  CC  |->  sum_ k  e.  ( 0 ... 0 ) ( ( (coeff `  F
) `  k )  x.  ( ( G `  z ) ^ k
) ) )  =  ( CC  X.  {
( (coeff `  F
) `  0 ) } ) )
64 plyconst 22331 . . . . . . 7  |-  ( ( ( S  u.  {
0 } )  C_  CC  /\  ( (coeff `  F ) `  0
)  e.  ( S  u.  { 0 } ) )  ->  ( CC  X.  { ( (coeff `  F ) `  0
) } )  e.  (Poly `  ( S  u.  { 0 } ) ) )
6544, 49, 64syl2anc 661 . . . . . 6  |-  ( ph  ->  ( CC  X.  {
( (coeff `  F
) `  0 ) } )  e.  (Poly `  ( S  u.  {
0 } ) ) )
66 plyun0 22322 . . . . . 6  |-  (Poly `  ( S  u.  { 0 } ) )  =  (Poly `  S )
6765, 66syl6eleq 2558 . . . . 5  |-  ( ph  ->  ( CC  X.  {
( (coeff `  F
) `  0 ) } )  e.  (Poly `  S ) )
6863, 67eqeltrd 2548 . . . 4  |-  ( ph  ->  ( z  e.  CC  |->  sum_ k  e.  ( 0 ... 0 ) ( ( (coeff `  F
) `  k )  x.  ( ( G `  z ) ^ k
) ) )  e.  (Poly `  S )
)
69 simprr 756 . . . . . . . . 9  |-  ( (
ph  /\  ( d  e.  NN0  /\  ( z  e.  CC  |->  sum_ k  e.  ( 0 ... d
) ( ( (coeff `  F ) `  k
)  x.  ( ( G `  z ) ^ k ) ) )  e.  (Poly `  S ) ) )  ->  ( z  e.  CC  |->  sum_ k  e.  ( 0 ... d ) ( ( (coeff `  F ) `  k
)  x.  ( ( G `  z ) ^ k ) ) )  e.  (Poly `  S ) )
7044adantr 465 . . . . . . . . . . . . 13  |-  ( (
ph  /\  d  e.  NN0 )  ->  ( S  u.  { 0 } ) 
C_  CC )
71 peano2nn0 10825 . . . . . . . . . . . . . 14  |-  ( d  e.  NN0  ->  ( d  +  1 )  e. 
NN0 )
72 ffvelrn 6010 . . . . . . . . . . . . . 14  |-  ( ( (coeff `  F ) : NN0 --> ( S  u.  { 0 } )  /\  ( d  +  1 )  e.  NN0 )  ->  ( (coeff `  F
) `  ( d  +  1 ) )  e.  ( S  u.  { 0 } ) )
7346, 71, 72syl2an 477 . . . . . . . . . . . . 13  |-  ( (
ph  /\  d  e.  NN0 )  ->  ( (coeff `  F ) `  (
d  +  1 ) )  e.  ( S  u.  { 0 } ) )
74 plyconst 22331 . . . . . . . . . . . . 13  |-  ( ( ( S  u.  {
0 } )  C_  CC  /\  ( (coeff `  F ) `  (
d  +  1 ) )  e.  ( S  u.  { 0 } ) )  ->  ( CC  X.  { ( (coeff `  F ) `  (
d  +  1 ) ) } )  e.  (Poly `  ( S  u.  { 0 } ) ) )
7570, 73, 74syl2anc 661 . . . . . . . . . . . 12  |-  ( (
ph  /\  d  e.  NN0 )  ->  ( CC  X.  { ( (coeff `  F ) `  (
d  +  1 ) ) } )  e.  (Poly `  ( S  u.  { 0 } ) ) )
7675, 66syl6eleq 2558 . . . . . . . . . . 11  |-  ( (
ph  /\  d  e.  NN0 )  ->  ( CC  X.  { ( (coeff `  F ) `  (
d  +  1 ) ) } )  e.  (Poly `  S )
)
77 nn0p1nn 10824 . . . . . . . . . . . . 13  |-  ( d  e.  NN0  ->  ( d  +  1 )  e.  NN )
78 oveq2 6283 . . . . . . . . . . . . . . . . 17  |-  ( x  =  1  ->  (
( G `  z
) ^ x )  =  ( ( G `
 z ) ^
1 ) )
7978mpteq2dv 4527 . . . . . . . . . . . . . . . 16  |-  ( x  =  1  ->  (
z  e.  CC  |->  ( ( G `  z
) ^ x ) )  =  ( z  e.  CC  |->  ( ( G `  z ) ^ 1 ) ) )
8079eleq1d 2529 . . . . . . . . . . . . . . 15  |-  ( x  =  1  ->  (
( z  e.  CC  |->  ( ( G `  z ) ^ x
) )  e.  (Poly `  S )  <->  ( z  e.  CC  |->  ( ( G `
 z ) ^
1 ) )  e.  (Poly `  S )
) )
8180imbi2d 316 . . . . . . . . . . . . . 14  |-  ( x  =  1  ->  (
( ph  ->  ( z  e.  CC  |->  ( ( G `  z ) ^ x ) )  e.  (Poly `  S
) )  <->  ( ph  ->  ( z  e.  CC  |->  ( ( G `  z ) ^ 1 ) )  e.  (Poly `  S ) ) ) )
82 oveq2 6283 . . . . . . . . . . . . . . . . 17  |-  ( x  =  d  ->  (
( G `  z
) ^ x )  =  ( ( G `
 z ) ^
d ) )
8382mpteq2dv 4527 . . . . . . . . . . . . . . . 16  |-  ( x  =  d  ->  (
z  e.  CC  |->  ( ( G `  z
) ^ x ) )  =  ( z  e.  CC  |->  ( ( G `  z ) ^ d ) ) )
8483eleq1d 2529 . . . . . . . . . . . . . . 15  |-  ( x  =  d  ->  (
( z  e.  CC  |->  ( ( G `  z ) ^ x
) )  e.  (Poly `  S )  <->  ( z  e.  CC  |->  ( ( G `
 z ) ^
d ) )  e.  (Poly `  S )
) )
8584imbi2d 316 . . . . . . . . . . . . . 14  |-  ( x  =  d  ->  (
( ph  ->  ( z  e.  CC  |->  ( ( G `  z ) ^ x ) )  e.  (Poly `  S
) )  <->  ( ph  ->  ( z  e.  CC  |->  ( ( G `  z ) ^ d
) )  e.  (Poly `  S ) ) ) )
86 oveq2 6283 . . . . . . . . . . . . . . . . 17  |-  ( x  =  ( d  +  1 )  ->  (
( G `  z
) ^ x )  =  ( ( G `
 z ) ^
( d  +  1 ) ) )
8786mpteq2dv 4527 . . . . . . . . . . . . . . . 16  |-  ( x  =  ( d  +  1 )  ->  (
z  e.  CC  |->  ( ( G `  z
) ^ x ) )  =  ( z  e.  CC  |->  ( ( G `  z ) ^ ( d  +  1 ) ) ) )
8887eleq1d 2529 . . . . . . . . . . . . . . 15  |-  ( x  =  ( d  +  1 )  ->  (
( z  e.  CC  |->  ( ( G `  z ) ^ x
) )  e.  (Poly `  S )  <->  ( z  e.  CC  |->  ( ( G `
 z ) ^
( d  +  1 ) ) )  e.  (Poly `  S )
) )
8988imbi2d 316 . . . . . . . . . . . . . 14  |-  ( x  =  ( d  +  1 )  ->  (
( ph  ->  ( z  e.  CC  |->  ( ( G `  z ) ^ x ) )  e.  (Poly `  S
) )  <->  ( ph  ->  ( z  e.  CC  |->  ( ( G `  z ) ^ (
d  +  1 ) ) )  e.  (Poly `  S ) ) ) )
904exp1d 12260 . . . . . . . . . . . . . . . . 17  |-  ( (
ph  /\  z  e.  CC )  ->  ( ( G `  z ) ^ 1 )  =  ( G `  z
) )
9190mpteq2dva 4526 . . . . . . . . . . . . . . . 16  |-  ( ph  ->  ( z  e.  CC  |->  ( ( G `  z ) ^ 1 ) )  =  ( z  e.  CC  |->  ( G `  z ) ) )
9291, 5eqtr4d 2504 . . . . . . . . . . . . . . 15  |-  ( ph  ->  ( z  e.  CC  |->  ( ( G `  z ) ^ 1 ) )  =  G )
9392, 1eqeltrd 2548 . . . . . . . . . . . . . 14  |-  ( ph  ->  ( z  e.  CC  |->  ( ( G `  z ) ^ 1 ) )  e.  (Poly `  S ) )
94 simprr 756 . . . . . . . . . . . . . . . . . . 19  |-  ( (
ph  /\  ( d  e.  NN  /\  ( z  e.  CC  |->  ( ( G `  z ) ^ d ) )  e.  (Poly `  S
) ) )  -> 
( z  e.  CC  |->  ( ( G `  z ) ^ d
) )  e.  (Poly `  S ) )
951adantr 465 . . . . . . . . . . . . . . . . . . 19  |-  ( (
ph  /\  ( d  e.  NN  /\  ( z  e.  CC  |->  ( ( G `  z ) ^ d ) )  e.  (Poly `  S
) ) )  ->  G  e.  (Poly `  S
) )
96 plyco.3 . . . . . . . . . . . . . . . . . . . 20  |-  ( (
ph  /\  ( x  e.  S  /\  y  e.  S ) )  -> 
( x  +  y )  e.  S )
9796adantlr 714 . . . . . . . . . . . . . . . . . . 19  |-  ( ( ( ph  /\  (
d  e.  NN  /\  ( z  e.  CC  |->  ( ( G `  z ) ^ d
) )  e.  (Poly `  S ) ) )  /\  ( x  e.  S  /\  y  e.  S ) )  -> 
( x  +  y )  e.  S )
98 plyco.4 . . . . . . . . . . . . . . . . . . . 20  |-  ( (
ph  /\  ( x  e.  S  /\  y  e.  S ) )  -> 
( x  x.  y
)  e.  S )
9998adantlr 714 . . . . . . . . . . . . . . . . . . 19  |-  ( ( ( ph  /\  (
d  e.  NN  /\  ( z  e.  CC  |->  ( ( G `  z ) ^ d
) )  e.  (Poly `  S ) ) )  /\  ( x  e.  S  /\  y  e.  S ) )  -> 
( x  x.  y
)  e.  S )
10094, 95, 97, 99plymul 22343 . . . . . . . . . . . . . . . . . 18  |-  ( (
ph  /\  ( d  e.  NN  /\  ( z  e.  CC  |->  ( ( G `  z ) ^ d ) )  e.  (Poly `  S
) ) )  -> 
( ( z  e.  CC  |->  ( ( G `
 z ) ^
d ) )  oF  x.  G )  e.  (Poly `  S
) )
101100expr 615 . . . . . . . . . . . . . . . . 17  |-  ( (
ph  /\  d  e.  NN )  ->  ( ( z  e.  CC  |->  ( ( G `  z
) ^ d ) )  e.  (Poly `  S )  ->  (
( z  e.  CC  |->  ( ( G `  z ) ^ d
) )  oF  x.  G )  e.  (Poly `  S )
) )
102 cnex 9562 . . . . . . . . . . . . . . . . . . . . 21  |-  CC  e.  _V
103102a1i 11 . . . . . . . . . . . . . . . . . . . 20  |-  ( (
ph  /\  d  e.  NN )  ->  CC  e.  _V )
104 ovex 6300 . . . . . . . . . . . . . . . . . . . . 21  |-  ( ( G `  z ) ^ d )  e. 
_V
105104a1i 11 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( ( ph  /\  d  e.  NN )  /\  z  e.  CC )  ->  (
( G `  z
) ^ d )  e.  _V )
1064adantlr 714 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( ( ph  /\  d  e.  NN )  /\  z  e.  CC )  ->  ( G `  z )  e.  CC )
107 eqidd 2461 . . . . . . . . . . . . . . . . . . . 20  |-  ( (
ph  /\  d  e.  NN )  ->  ( z  e.  CC  |->  ( ( G `  z ) ^ d ) )  =  ( z  e.  CC  |->  ( ( G `
 z ) ^
d ) ) )
1085adantr 465 . . . . . . . . . . . . . . . . . . . 20  |-  ( (
ph  /\  d  e.  NN )  ->  G  =  ( z  e.  CC  |->  ( G `  z ) ) )
109103, 105, 106, 107, 108offval2 6531 . . . . . . . . . . . . . . . . . . 19  |-  ( (
ph  /\  d  e.  NN )  ->  ( ( z  e.  CC  |->  ( ( G `  z
) ^ d ) )  oF  x.  G )  =  ( z  e.  CC  |->  ( ( ( G `  z ) ^ d
)  x.  ( G `
 z ) ) ) )
110 nnnn0 10791 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( d  e.  NN  ->  d  e.  NN0 )
111110ad2antlr 726 . . . . . . . . . . . . . . . . . . . . 21  |-  ( ( ( ph  /\  d  e.  NN )  /\  z  e.  CC )  ->  d  e.  NN0 )
112106, 111expp1d 12266 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( ( ph  /\  d  e.  NN )  /\  z  e.  CC )  ->  (
( G `  z
) ^ ( d  +  1 ) )  =  ( ( ( G `  z ) ^ d )  x.  ( G `  z
) ) )
113112mpteq2dva 4526 . . . . . . . . . . . . . . . . . . 19  |-  ( (
ph  /\  d  e.  NN )  ->  ( z  e.  CC  |->  ( ( G `  z ) ^ ( d  +  1 ) ) )  =  ( z  e.  CC  |->  ( ( ( G `  z ) ^ d )  x.  ( G `  z
) ) ) )
114109, 113eqtr4d 2504 . . . . . . . . . . . . . . . . . 18  |-  ( (
ph  /\  d  e.  NN )  ->  ( ( z  e.  CC  |->  ( ( G `  z
) ^ d ) )  oF  x.  G )  =  ( z  e.  CC  |->  ( ( G `  z
) ^ ( d  +  1 ) ) ) )
115114eleq1d 2529 . . . . . . . . . . . . . . . . 17  |-  ( (
ph  /\  d  e.  NN )  ->  ( ( ( z  e.  CC  |->  ( ( G `  z ) ^ d
) )  oF  x.  G )  e.  (Poly `  S )  <->  ( z  e.  CC  |->  ( ( G `  z
) ^ ( d  +  1 ) ) )  e.  (Poly `  S ) ) )
116101, 115sylibd 214 . . . . . . . . . . . . . . . 16  |-  ( (
ph  /\  d  e.  NN )  ->  ( ( z  e.  CC  |->  ( ( G `  z
) ^ d ) )  e.  (Poly `  S )  ->  (
z  e.  CC  |->  ( ( G `  z
) ^ ( d  +  1 ) ) )  e.  (Poly `  S ) ) )
117116expcom 435 . . . . . . . . . . . . . . 15  |-  ( d  e.  NN  ->  ( ph  ->  ( ( z  e.  CC  |->  ( ( G `  z ) ^ d ) )  e.  (Poly `  S
)  ->  ( z  e.  CC  |->  ( ( G `
 z ) ^
( d  +  1 ) ) )  e.  (Poly `  S )
) ) )
118117a2d 26 . . . . . . . . . . . . . 14  |-  ( d  e.  NN  ->  (
( ph  ->  ( z  e.  CC  |->  ( ( G `  z ) ^ d ) )  e.  (Poly `  S
) )  ->  ( ph  ->  ( z  e.  CC  |->  ( ( G `
 z ) ^
( d  +  1 ) ) )  e.  (Poly `  S )
) ) )
11981, 85, 89, 89, 93, 118nnind 10543 . . . . . . . . . . . . 13  |-  ( ( d  +  1 )  e.  NN  ->  ( ph  ->  ( z  e.  CC  |->  ( ( G `
 z ) ^
( d  +  1 ) ) )  e.  (Poly `  S )
) )
12077, 119syl 16 . . . . . . . . . . . 12  |-  ( d  e.  NN0  ->  ( ph  ->  ( z  e.  CC  |->  ( ( G `  z ) ^ (
d  +  1 ) ) )  e.  (Poly `  S ) ) )
121120impcom 430 . . . . . . . . . . 11  |-  ( (
ph  /\  d  e.  NN0 )  ->  ( z  e.  CC  |->  ( ( G `
 z ) ^
( d  +  1 ) ) )  e.  (Poly `  S )
)
12296adantlr 714 . . . . . . . . . . 11  |-  ( ( ( ph  /\  d  e.  NN0 )  /\  (
x  e.  S  /\  y  e.  S )
)  ->  ( x  +  y )  e.  S )
12398adantlr 714 . . . . . . . . . . 11  |-  ( ( ( ph  /\  d  e.  NN0 )  /\  (
x  e.  S  /\  y  e.  S )
)  ->  ( x  x.  y )  e.  S
)
12476, 121, 122, 123plymul 22343 . . . . . . . . . 10  |-  ( (
ph  /\  d  e.  NN0 )  ->  ( ( CC  X.  { ( (coeff `  F ) `  (
d  +  1 ) ) } )  oF  x.  ( z  e.  CC  |->  ( ( G `  z ) ^ ( d  +  1 ) ) ) )  e.  (Poly `  S ) )
125124adantrr 716 . . . . . . . . 9  |-  ( (
ph  /\  ( d  e.  NN0  /\  ( z  e.  CC  |->  sum_ k  e.  ( 0 ... d
) ( ( (coeff `  F ) `  k
)  x.  ( ( G `  z ) ^ k ) ) )  e.  (Poly `  S ) ) )  ->  ( ( CC 
X.  { ( (coeff `  F ) `  (
d  +  1 ) ) } )  oF  x.  ( z  e.  CC  |->  ( ( G `  z ) ^ ( d  +  1 ) ) ) )  e.  (Poly `  S ) )
12696adantlr 714 . . . . . . . . 9  |-  ( ( ( ph  /\  (
d  e.  NN0  /\  ( z  e.  CC  |->  sum_ k  e.  ( 0 ... d ) ( ( (coeff `  F
) `  k )  x.  ( ( G `  z ) ^ k
) ) )  e.  (Poly `  S )
) )  /\  (
x  e.  S  /\  y  e.  S )
)  ->  ( x  +  y )  e.  S )
12769, 125, 126plyadd 22342 . . . . . . . 8  |-  ( (
ph  /\  ( d  e.  NN0  /\  ( z  e.  CC  |->  sum_ k  e.  ( 0 ... d
) ( ( (coeff `  F ) `  k
)  x.  ( ( G `  z ) ^ k ) ) )  e.  (Poly `  S ) ) )  ->  ( ( z  e.  CC  |->  sum_ k  e.  ( 0 ... d
) ( ( (coeff `  F ) `  k
)  x.  ( ( G `  z ) ^ k ) ) )  oF  +  ( ( CC  X.  { ( (coeff `  F ) `  (
d  +  1 ) ) } )  oF  x.  ( z  e.  CC  |->  ( ( G `  z ) ^ ( d  +  1 ) ) ) ) )  e.  (Poly `  S ) )
128127expr 615 . . . . . . 7  |-  ( (
ph  /\  d  e.  NN0 )  ->  ( (
z  e.  CC  |->  sum_ k  e.  ( 0 ... d ) ( ( (coeff `  F
) `  k )  x.  ( ( G `  z ) ^ k
) ) )  e.  (Poly `  S )  ->  ( ( z  e.  CC  |->  sum_ k  e.  ( 0 ... d ) ( ( (coeff `  F ) `  k
)  x.  ( ( G `  z ) ^ k ) ) )  oF  +  ( ( CC  X.  { ( (coeff `  F ) `  (
d  +  1 ) ) } )  oF  x.  ( z  e.  CC  |->  ( ( G `  z ) ^ ( d  +  1 ) ) ) ) )  e.  (Poly `  S ) ) )
129102a1i 11 . . . . . . . . . 10  |-  ( (
ph  /\  d  e.  NN0 )  ->  CC  e.  _V )
130 sumex 13459 . . . . . . . . . . 11  |-  sum_ k  e.  ( 0 ... d
) ( ( (coeff `  F ) `  k
)  x.  ( ( G `  z ) ^ k ) )  e.  _V
131130a1i 11 . . . . . . . . . 10  |-  ( ( ( ph  /\  d  e.  NN0 )  /\  z  e.  CC )  ->  sum_ k  e.  ( 0 ... d
) ( ( (coeff `  F ) `  k
)  x.  ( ( G `  z ) ^ k ) )  e.  _V )
132 ovex 6300 . . . . . . . . . . 11  |-  ( ( (coeff `  F ) `  ( d  +  1 ) )  x.  (
( G `  z
) ^ ( d  +  1 ) ) )  e.  _V
133132a1i 11 . . . . . . . . . 10  |-  ( ( ( ph  /\  d  e.  NN0 )  /\  z  e.  CC )  ->  (
( (coeff `  F
) `  ( d  +  1 ) )  x.  ( ( G `
 z ) ^
( d  +  1 ) ) )  e. 
_V )
134 eqidd 2461 . . . . . . . . . 10  |-  ( (
ph  /\  d  e.  NN0 )  ->  ( z  e.  CC  |->  sum_ k  e.  ( 0 ... d ) ( ( (coeff `  F ) `  k
)  x.  ( ( G `  z ) ^ k ) ) )  =  ( z  e.  CC  |->  sum_ k  e.  ( 0 ... d
) ( ( (coeff `  F ) `  k
)  x.  ( ( G `  z ) ^ k ) ) ) )
135 fvex 5867 . . . . . . . . . . . 12  |-  ( (coeff `  F ) `  (
d  +  1 ) )  e.  _V
136135a1i 11 . . . . . . . . . . 11  |-  ( ( ( ph  /\  d  e.  NN0 )  /\  z  e.  CC )  ->  (
(coeff `  F ) `  ( d  +  1 ) )  e.  _V )
137 ovex 6300 . . . . . . . . . . . 12  |-  ( ( G `  z ) ^ ( d  +  1 ) )  e. 
_V
138137a1i 11 . . . . . . . . . . 11  |-  ( ( ( ph  /\  d  e.  NN0 )  /\  z  e.  CC )  ->  (
( G `  z
) ^ ( d  +  1 ) )  e.  _V )
139 fconstmpt 5035 . . . . . . . . . . . 12  |-  ( CC 
X.  { ( (coeff `  F ) `  (
d  +  1 ) ) } )  =  ( z  e.  CC  |->  ( (coeff `  F ) `  ( d  +  1 ) ) )
140139a1i 11 . . . . . . . . . . 11  |-  ( (
ph  /\  d  e.  NN0 )  ->  ( CC  X.  { ( (coeff `  F ) `  (
d  +  1 ) ) } )  =  ( z  e.  CC  |->  ( (coeff `  F ) `  ( d  +  1 ) ) ) )
141 eqidd 2461 . . . . . . . . . . 11  |-  ( (
ph  /\  d  e.  NN0 )  ->  ( z  e.  CC  |->  ( ( G `
 z ) ^
( d  +  1 ) ) )  =  ( z  e.  CC  |->  ( ( G `  z ) ^ (
d  +  1 ) ) ) )
142129, 136, 138, 140, 141offval2 6531 . . . . . . . . . 10  |-  ( (
ph  /\  d  e.  NN0 )  ->  ( ( CC  X.  { ( (coeff `  F ) `  (
d  +  1 ) ) } )  oF  x.  ( z  e.  CC  |->  ( ( G `  z ) ^ ( d  +  1 ) ) ) )  =  ( z  e.  CC  |->  ( ( (coeff `  F ) `  ( d  +  1 ) )  x.  (
( G `  z
) ^ ( d  +  1 ) ) ) ) )
143129, 131, 133, 134, 142offval2 6531 . . . . . . . . 9  |-  ( (
ph  /\  d  e.  NN0 )  ->  ( (
z  e.  CC  |->  sum_ k  e.  ( 0 ... d ) ( ( (coeff `  F
) `  k )  x.  ( ( G `  z ) ^ k
) ) )  oF  +  ( ( CC  X.  { ( (coeff `  F ) `  ( d  +  1 ) ) } )  oF  x.  (
z  e.  CC  |->  ( ( G `  z
) ^ ( d  +  1 ) ) ) ) )  =  ( z  e.  CC  |->  ( sum_ k  e.  ( 0 ... d ) ( ( (coeff `  F ) `  k
)  x.  ( ( G `  z ) ^ k ) )  +  ( ( (coeff `  F ) `  (
d  +  1 ) )  x.  ( ( G `  z ) ^ ( d  +  1 ) ) ) ) ) )
144 simplr 754 . . . . . . . . . . . 12  |-  ( ( ( ph  /\  d  e.  NN0 )  /\  z  e.  CC )  ->  d  e.  NN0 )
145 nn0uz 11105 . . . . . . . . . . . 12  |-  NN0  =  ( ZZ>= `  0 )
146144, 145syl6eleq 2558 . . . . . . . . . . 11  |-  ( ( ( ph  /\  d  e.  NN0 )  /\  z  e.  CC )  ->  d  e.  ( ZZ>= `  0 )
)
1477coef3 22357 . . . . . . . . . . . . . . 15  |-  ( F  e.  (Poly `  S
)  ->  (coeff `  F
) : NN0 --> CC )
1486, 147syl 16 . . . . . . . . . . . . . 14  |-  ( ph  ->  (coeff `  F ) : NN0 --> CC )
149148ad2antrr 725 . . . . . . . . . . . . 13  |-  ( ( ( ph  /\  d  e.  NN0 )  /\  z  e.  CC )  ->  (coeff `  F ) : NN0 --> CC )
150 elfznn0 11759 . . . . . . . . . . . . 13  |-  ( k  e.  ( 0 ... ( d  +  1 ) )  ->  k  e.  NN0 )
151 ffvelrn 6010 . . . . . . . . . . . . 13  |-  ( ( (coeff `  F ) : NN0 --> CC  /\  k  e.  NN0 )  ->  (
(coeff `  F ) `  k )  e.  CC )
152149, 150, 151syl2an 477 . . . . . . . . . . . 12  |-  ( ( ( ( ph  /\  d  e.  NN0 )  /\  z  e.  CC )  /\  k  e.  (
0 ... ( d  +  1 ) ) )  ->  ( (coeff `  F ) `  k
)  e.  CC )
1534adantlr 714 . . . . . . . . . . . . 13  |-  ( ( ( ph  /\  d  e.  NN0 )  /\  z  e.  CC )  ->  ( G `  z )  e.  CC )
154 expcl 12140 . . . . . . . . . . . . 13  |-  ( ( ( G `  z
)  e.  CC  /\  k  e.  NN0 )  -> 
( ( G `  z ) ^ k
)  e.  CC )
155153, 150, 154syl2an 477 . . . . . . . . . . . 12  |-  ( ( ( ( ph  /\  d  e.  NN0 )  /\  z  e.  CC )  /\  k  e.  (
0 ... ( d  +  1 ) ) )  ->  ( ( G `
 z ) ^
k )  e.  CC )
156152, 155mulcld 9605 . . . . . . . . . . 11  |-  ( ( ( ( ph  /\  d  e.  NN0 )  /\  z  e.  CC )  /\  k  e.  (
0 ... ( d  +  1 ) ) )  ->  ( ( (coeff `  F ) `  k
)  x.  ( ( G `  z ) ^ k ) )  e.  CC )
157 fveq2 5857 . . . . . . . . . . . 12  |-  ( k  =  ( d  +  1 )  ->  (
(coeff `  F ) `  k )  =  ( (coeff `  F ) `  ( d  +  1 ) ) )
158 oveq2 6283 . . . . . . . . . . . 12  |-  ( k  =  ( d  +  1 )  ->  (
( G `  z
) ^ k )  =  ( ( G `
 z ) ^
( d  +  1 ) ) )
159157, 158oveq12d 6293 . . . . . . . . . . 11  |-  ( k  =  ( d  +  1 )  ->  (
( (coeff `  F
) `  k )  x.  ( ( G `  z ) ^ k
) )  =  ( ( (coeff `  F
) `  ( d  +  1 ) )  x.  ( ( G `
 z ) ^
( d  +  1 ) ) ) )
160146, 156, 159fsump1 13520 . . . . . . . . . 10  |-  ( ( ( ph  /\  d  e.  NN0 )  /\  z  e.  CC )  ->  sum_ k  e.  ( 0 ... (
d  +  1 ) ) ( ( (coeff `  F ) `  k
)  x.  ( ( G `  z ) ^ k ) )  =  ( sum_ k  e.  ( 0 ... d
) ( ( (coeff `  F ) `  k
)  x.  ( ( G `  z ) ^ k ) )  +  ( ( (coeff `  F ) `  (
d  +  1 ) )  x.  ( ( G `  z ) ^ ( d  +  1 ) ) ) ) )
161160mpteq2dva 4526 . . . . . . . . 9  |-  ( (
ph  /\  d  e.  NN0 )  ->  ( z  e.  CC  |->  sum_ k  e.  ( 0 ... ( d  +  1 ) ) ( ( (coeff `  F ) `  k
)  x.  ( ( G `  z ) ^ k ) ) )  =  ( z  e.  CC  |->  ( sum_ k  e.  ( 0 ... d ) ( ( (coeff `  F
) `  k )  x.  ( ( G `  z ) ^ k
) )  +  ( ( (coeff `  F
) `  ( d  +  1 ) )  x.  ( ( G `
 z ) ^
( d  +  1 ) ) ) ) ) )
162143, 161eqtr4d 2504 . . . . . . . 8  |-  ( (
ph  /\  d  e.  NN0 )  ->  ( (
z  e.  CC  |->  sum_ k  e.  ( 0 ... d ) ( ( (coeff `  F
) `  k )  x.  ( ( G `  z ) ^ k
) ) )  oF  +  ( ( CC  X.  { ( (coeff `  F ) `  ( d  +  1 ) ) } )  oF  x.  (
z  e.  CC  |->  ( ( G `  z
) ^ ( d  +  1 ) ) ) ) )  =  ( z  e.  CC  |->  sum_ k  e.  ( 0 ... ( d  +  1 ) ) ( ( (coeff `  F
) `  k )  x.  ( ( G `  z ) ^ k
) ) ) )
163162eleq1d 2529 . . . . . . 7  |-  ( (
ph  /\  d  e.  NN0 )  ->  ( (
( z  e.  CC  |->  sum_ k  e.  ( 0 ... d ) ( ( (coeff `  F
) `  k )  x.  ( ( G `  z ) ^ k
) ) )  oF  +  ( ( CC  X.  { ( (coeff `  F ) `  ( d  +  1 ) ) } )  oF  x.  (
z  e.  CC  |->  ( ( G `  z
) ^ ( d  +  1 ) ) ) ) )  e.  (Poly `  S )  <->  ( z  e.  CC  |->  sum_ k  e.  ( 0 ... ( d  +  1 ) ) ( ( (coeff `  F
) `  k )  x.  ( ( G `  z ) ^ k
) ) )  e.  (Poly `  S )
) )
164128, 163sylibd 214 . . . . . 6  |-  ( (
ph  /\  d  e.  NN0 )  ->  ( (
z  e.  CC  |->  sum_ k  e.  ( 0 ... d ) ( ( (coeff `  F
) `  k )  x.  ( ( G `  z ) ^ k
) ) )  e.  (Poly `  S )  ->  ( z  e.  CC  |->  sum_ k  e.  ( 0 ... ( d  +  1 ) ) ( ( (coeff `  F
) `  k )  x.  ( ( G `  z ) ^ k
) ) )  e.  (Poly `  S )
) )
165164expcom 435 . . . . 5  |-  ( d  e.  NN0  ->  ( ph  ->  ( ( z  e.  CC  |->  sum_ k  e.  ( 0 ... d ) ( ( (coeff `  F ) `  k
)  x.  ( ( G `  z ) ^ k ) ) )  e.  (Poly `  S )  ->  (
z  e.  CC  |->  sum_ k  e.  ( 0 ... ( d  +  1 ) ) ( ( (coeff `  F
) `  k )  x.  ( ( G `  z ) ^ k
) ) )  e.  (Poly `  S )
) ) )
166165a2d 26 . . . 4  |-  ( d  e.  NN0  ->  ( (
ph  ->  ( z  e.  CC  |->  sum_ k  e.  ( 0 ... d ) ( ( (coeff `  F ) `  k
)  x.  ( ( G `  z ) ^ k ) ) )  e.  (Poly `  S ) )  -> 
( ph  ->  ( z  e.  CC  |->  sum_ k  e.  ( 0 ... (
d  +  1 ) ) ( ( (coeff `  F ) `  k
)  x.  ( ( G `  z ) ^ k ) ) )  e.  (Poly `  S ) ) ) )
16721, 26, 31, 36, 68, 166nn0ind 10946 . . 3  |-  ( (deg
`  F )  e. 
NN0  ->  ( ph  ->  ( z  e.  CC  |->  sum_ k  e.  ( 0 ... (deg `  F
) ) ( ( (coeff `  F ) `  k )  x.  (
( G `  z
) ^ k ) ) )  e.  (Poly `  S ) ) )
16816, 167mpcom 36 . 2  |-  ( ph  ->  ( z  e.  CC  |->  sum_ k  e.  ( 0 ... (deg `  F
) ) ( ( (coeff `  F ) `  k )  x.  (
( G `  z
) ^ k ) ) )  e.  (Poly `  S ) )
16914, 168eqeltrd 2548 1  |-  ( ph  ->  ( F  o.  G
)  e.  (Poly `  S ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    /\ wa 369    = wceq 1374    e. wcel 1762   _Vcvv 3106    u. cun 3467    C_ wss 3469   {csn 4020    |-> cmpt 4498    X. cxp 4990    o. ccom 4996   -->wf 5575   ` cfv 5579  (class class class)co 6275    oFcof 6513   CCcc 9479   0cc0 9481   1c1 9482    + caddc 9484    x. cmul 9486   NNcn 10525   NN0cn0 10784   ZZcz 10853   ZZ>=cuz 11071   ...cfz 11661   ^cexp 12122   sum_csu 13457  Polycply 22309  coeffccoe 22311  degcdgr 22312
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1596  ax-4 1607  ax-5 1675  ax-6 1714  ax-7 1734  ax-8 1764  ax-9 1766  ax-10 1781  ax-11 1786  ax-12 1798  ax-13 1961  ax-ext 2438  ax-rep 4551  ax-sep 4561  ax-nul 4569  ax-pow 4618  ax-pr 4679  ax-un 6567  ax-inf2 8047  ax-cnex 9537  ax-resscn 9538  ax-1cn 9539  ax-icn 9540  ax-addcl 9541  ax-addrcl 9542  ax-mulcl 9543  ax-mulrcl 9544  ax-mulcom 9545  ax-addass 9546  ax-mulass 9547  ax-distr 9548  ax-i2m1 9549  ax-1ne0 9550  ax-1rid 9551  ax-rnegex 9552  ax-rrecex 9553  ax-cnre 9554  ax-pre-lttri 9555  ax-pre-lttrn 9556  ax-pre-ltadd 9557  ax-pre-mulgt0 9558  ax-pre-sup 9559  ax-addf 9560
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3or 969  df-3an 970  df-tru 1377  df-fal 1380  df-ex 1592  df-nf 1595  df-sb 1707  df-eu 2272  df-mo 2273  df-clab 2446  df-cleq 2452  df-clel 2455  df-nfc 2610  df-ne 2657  df-nel 2658  df-ral 2812  df-rex 2813  df-reu 2814  df-rmo 2815  df-rab 2816  df-v 3108  df-sbc 3325  df-csb 3429  df-dif 3472  df-un 3474  df-in 3476  df-ss 3483  df-pss 3485  df-nul 3779  df-if 3933  df-pw 4005  df-sn 4021  df-pr 4023  df-tp 4025  df-op 4027  df-uni 4239  df-int 4276  df-iun 4320  df-br 4441  df-opab 4499  df-mpt 4500  df-tr 4534  df-eprel 4784  df-id 4788  df-po 4793  df-so 4794  df-fr 4831  df-se 4832  df-we 4833  df-ord 4874  df-on 4875  df-lim 4876  df-suc 4877  df-xp 4998  df-rel 4999  df-cnv 5000  df-co 5001  df-dm 5002  df-rn 5003  df-res 5004  df-ima 5005  df-iota 5542  df-fun 5581  df-fn 5582  df-f 5583  df-f1 5584  df-fo 5585  df-f1o 5586  df-fv 5587  df-isom 5588  df-riota 6236  df-ov 6278  df-oprab 6279  df-mpt2 6280  df-of 6515  df-om 6672  df-1st 6774  df-2nd 6775  df-recs 7032  df-rdg 7066  df-1o 7120  df-oadd 7124  df-er 7301  df-map 7412  df-pm 7413  df-en 7507  df-dom 7508  df-sdom 7509  df-fin 7510  df-sup 7890  df-oi 7924  df-card 8309  df-pnf 9619  df-mnf 9620  df-xr 9621  df-ltxr 9622  df-le 9623  df-sub 9796  df-neg 9797  df-div 10196  df-nn 10526  df-2 10583  df-3 10584  df-n0 10785  df-z 10854  df-uz 11072  df-rp 11210  df-fz 11662  df-fzo 11782  df-fl 11886  df-seq 12064  df-exp 12123  df-hash 12361  df-cj 12882  df-re 12883  df-im 12884  df-sqr 13018  df-abs 13019  df-clim 13260  df-rlim 13261  df-sum 13458  df-0p 21805  df-ply 22313  df-coe 22315  df-dgr 22316
This theorem is referenced by:  dgrcolem1  22397  dgrcolem2  22398  taylply2  22490  ftalem7  23073
  Copyright terms: Public domain W3C validator