MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  plycj Structured version   Visualization version   Unicode version

Theorem plycj 23280
Description: The double conjugation of a polynomial is a polynomial. (The single conjugation is not because our definition of polynomial includes only holomorphic functions, i.e. no dependence on  ( * `  z ) independently of  z.) (Contributed by Mario Carneiro, 24-Jul-2014.)
Hypotheses
Ref Expression
plycj.1  |-  N  =  (deg `  F )
plycj.2  |-  G  =  ( ( *  o.  F )  o.  *
)
plycj.3  |-  ( (
ph  /\  x  e.  S )  ->  (
* `  x )  e.  S )
plycj.4  |-  ( ph  ->  F  e.  (Poly `  S ) )
Assertion
Ref Expression
plycj  |-  ( ph  ->  G  e.  (Poly `  S ) )
Distinct variable groups:    x, F    x, N    ph, x    x, S
Allowed substitution hint:    G( x)

Proof of Theorem plycj
Dummy variables  k 
z are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 plycj.4 . . . 4  |-  ( ph  ->  F  e.  (Poly `  S ) )
2 plycj.1 . . . . 5  |-  N  =  (deg `  F )
3 plycj.2 . . . . 5  |-  G  =  ( ( *  o.  F )  o.  *
)
4 eqid 2462 . . . . 5  |-  (coeff `  F )  =  (coeff `  F )
52, 3, 4plycjlem 23279 . . . 4  |-  ( F  e.  (Poly `  S
)  ->  G  =  ( z  e.  CC  |->  sum_ k  e.  ( 0 ... N ) ( ( ( *  o.  (coeff `  F )
) `  k )  x.  ( z ^ k
) ) ) )
61, 5syl 17 . . 3  |-  ( ph  ->  G  =  ( z  e.  CC  |->  sum_ k  e.  ( 0 ... N
) ( ( ( *  o.  (coeff `  F ) ) `  k )  x.  (
z ^ k ) ) ) )
7 plybss 23197 . . . . . 6  |-  ( F  e.  (Poly `  S
)  ->  S  C_  CC )
81, 7syl 17 . . . . 5  |-  ( ph  ->  S  C_  CC )
9 0cnd 9662 . . . . . 6  |-  ( ph  ->  0  e.  CC )
109snssd 4130 . . . . 5  |-  ( ph  ->  { 0 }  C_  CC )
118, 10unssd 3622 . . . 4  |-  ( ph  ->  ( S  u.  {
0 } )  C_  CC )
12 dgrcl 23236 . . . . . 6  |-  ( F  e.  (Poly `  S
)  ->  (deg `  F
)  e.  NN0 )
131, 12syl 17 . . . . 5  |-  ( ph  ->  (deg `  F )  e.  NN0 )
142, 13syl5eqel 2544 . . . 4  |-  ( ph  ->  N  e.  NN0 )
154coef 23233 . . . . . . 7  |-  ( F  e.  (Poly `  S
)  ->  (coeff `  F
) : NN0 --> ( S  u.  { 0 } ) )
161, 15syl 17 . . . . . 6  |-  ( ph  ->  (coeff `  F ) : NN0 --> ( S  u.  { 0 } ) )
17 elfznn0 11916 . . . . . 6  |-  ( k  e.  ( 0 ... N )  ->  k  e.  NN0 )
18 fvco3 5965 . . . . . 6  |-  ( ( (coeff `  F ) : NN0 --> ( S  u.  { 0 } )  /\  k  e.  NN0 )  -> 
( ( *  o.  (coeff `  F )
) `  k )  =  ( * `  ( (coeff `  F ) `  k ) ) )
1916, 17, 18syl2an 484 . . . . 5  |-  ( (
ph  /\  k  e.  ( 0 ... N
) )  ->  (
( *  o.  (coeff `  F ) ) `  k )  =  ( * `  ( (coeff `  F ) `  k
) ) )
20 ffvelrn 6043 . . . . . . 7  |-  ( ( (coeff `  F ) : NN0 --> ( S  u.  { 0 } )  /\  k  e.  NN0 )  -> 
( (coeff `  F
) `  k )  e.  ( S  u.  {
0 } ) )
2116, 17, 20syl2an 484 . . . . . 6  |-  ( (
ph  /\  k  e.  ( 0 ... N
) )  ->  (
(coeff `  F ) `  k )  e.  ( S  u.  { 0 } ) )
22 plycj.3 . . . . . . . . . . 11  |-  ( (
ph  /\  x  e.  S )  ->  (
* `  x )  e.  S )
2322ralrimiva 2814 . . . . . . . . . 10  |-  ( ph  ->  A. x  e.  S  ( * `  x
)  e.  S )
24 fveq2 5888 . . . . . . . . . . . 12  |-  ( x  =  ( (coeff `  F ) `  k
)  ->  ( * `  x )  =  ( * `  ( (coeff `  F ) `  k
) ) )
2524eleq1d 2524 . . . . . . . . . . 11  |-  ( x  =  ( (coeff `  F ) `  k
)  ->  ( (
* `  x )  e.  S  <->  ( * `  ( (coeff `  F ) `  k ) )  e.  S ) )
2625rspccv 3159 . . . . . . . . . 10  |-  ( A. x  e.  S  (
* `  x )  e.  S  ->  ( ( (coeff `  F ) `  k )  e.  S  ->  ( * `  (
(coeff `  F ) `  k ) )  e.  S ) )
2723, 26syl 17 . . . . . . . . 9  |-  ( ph  ->  ( ( (coeff `  F ) `  k
)  e.  S  -> 
( * `  (
(coeff `  F ) `  k ) )  e.  S ) )
28 elsni 4005 . . . . . . . . . . . . 13  |-  ( ( (coeff `  F ) `  k )  e.  {
0 }  ->  (
(coeff `  F ) `  k )  =  0 )
2928fveq2d 5892 . . . . . . . . . . . 12  |-  ( ( (coeff `  F ) `  k )  e.  {
0 }  ->  (
* `  ( (coeff `  F ) `  k
) )  =  ( * `  0 ) )
30 cj0 13270 . . . . . . . . . . . 12  |-  ( * `
 0 )  =  0
3129, 30syl6eq 2512 . . . . . . . . . . 11  |-  ( ( (coeff `  F ) `  k )  e.  {
0 }  ->  (
* `  ( (coeff `  F ) `  k
) )  =  0 )
32 fvex 5898 . . . . . . . . . . . 12  |-  ( * `
 ( (coeff `  F ) `  k
) )  e.  _V
3332elsnc 4004 . . . . . . . . . . 11  |-  ( ( * `  ( (coeff `  F ) `  k
) )  e.  {
0 }  <->  ( * `  ( (coeff `  F
) `  k )
)  =  0 )
3431, 33sylibr 217 . . . . . . . . . 10  |-  ( ( (coeff `  F ) `  k )  e.  {
0 }  ->  (
* `  ( (coeff `  F ) `  k
) )  e.  {
0 } )
3534a1i 11 . . . . . . . . 9  |-  ( ph  ->  ( ( (coeff `  F ) `  k
)  e.  { 0 }  ->  ( * `  ( (coeff `  F
) `  k )
)  e.  { 0 } ) )
3627, 35orim12d 854 . . . . . . . 8  |-  ( ph  ->  ( ( ( (coeff `  F ) `  k
)  e.  S  \/  ( (coeff `  F ) `  k )  e.  {
0 } )  -> 
( ( * `  ( (coeff `  F ) `  k ) )  e.  S  \/  ( * `
 ( (coeff `  F ) `  k
) )  e.  {
0 } ) ) )
37 elun 3586 . . . . . . . 8  |-  ( ( (coeff `  F ) `  k )  e.  ( S  u.  { 0 } )  <->  ( (
(coeff `  F ) `  k )  e.  S  \/  ( (coeff `  F
) `  k )  e.  { 0 } ) )
38 elun 3586 . . . . . . . 8  |-  ( ( * `  ( (coeff `  F ) `  k
) )  e.  ( S  u.  { 0 } )  <->  ( (
* `  ( (coeff `  F ) `  k
) )  e.  S  \/  ( * `  (
(coeff `  F ) `  k ) )  e. 
{ 0 } ) )
3936, 37, 383imtr4g 278 . . . . . . 7  |-  ( ph  ->  ( ( (coeff `  F ) `  k
)  e.  ( S  u.  { 0 } )  ->  ( * `  ( (coeff `  F
) `  k )
)  e.  ( S  u.  { 0 } ) ) )
4039adantr 471 . . . . . 6  |-  ( (
ph  /\  k  e.  ( 0 ... N
) )  ->  (
( (coeff `  F
) `  k )  e.  ( S  u.  {
0 } )  -> 
( * `  (
(coeff `  F ) `  k ) )  e.  ( S  u.  {
0 } ) ) )
4121, 40mpd 15 . . . . 5  |-  ( (
ph  /\  k  e.  ( 0 ... N
) )  ->  (
* `  ( (coeff `  F ) `  k
) )  e.  ( S  u.  { 0 } ) )
4219, 41eqeltrd 2540 . . . 4  |-  ( (
ph  /\  k  e.  ( 0 ... N
) )  ->  (
( *  o.  (coeff `  F ) ) `  k )  e.  ( S  u.  { 0 } ) )
4311, 14, 42elplyd 23205 . . 3  |-  ( ph  ->  ( z  e.  CC  |->  sum_ k  e.  ( 0 ... N ) ( ( ( *  o.  (coeff `  F )
) `  k )  x.  ( z ^ k
) ) )  e.  (Poly `  ( S  u.  { 0 } ) ) )
446, 43eqeltrd 2540 . 2  |-  ( ph  ->  G  e.  (Poly `  ( S  u.  { 0 } ) ) )
45 plyun0 23200 . 2  |-  (Poly `  ( S  u.  { 0 } ) )  =  (Poly `  S )
4644, 45syl6eleq 2550 1  |-  ( ph  ->  G  e.  (Poly `  S ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    \/ wo 374    /\ wa 375    = wceq 1455    e. wcel 1898   A.wral 2749    u. cun 3414    C_ wss 3416   {csn 3980    |-> cmpt 4475    o. ccom 4857   -->wf 5597   ` cfv 5601  (class class class)co 6315   CCcc 9563   0cc0 9565    x. cmul 9570   NN0cn0 10898   ...cfz 11813   ^cexp 12304   *ccj 13208   sum_csu 13801  Polycply 23187  coeffccoe 23189  degcdgr 23190
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1680  ax-4 1693  ax-5 1769  ax-6 1816  ax-7 1862  ax-8 1900  ax-9 1907  ax-10 1926  ax-11 1931  ax-12 1944  ax-13 2102  ax-ext 2442  ax-rep 4529  ax-sep 4539  ax-nul 4548  ax-pow 4595  ax-pr 4653  ax-un 6610  ax-inf2 8172  ax-cnex 9621  ax-resscn 9622  ax-1cn 9623  ax-icn 9624  ax-addcl 9625  ax-addrcl 9626  ax-mulcl 9627  ax-mulrcl 9628  ax-mulcom 9629  ax-addass 9630  ax-mulass 9631  ax-distr 9632  ax-i2m1 9633  ax-1ne0 9634  ax-1rid 9635  ax-rnegex 9636  ax-rrecex 9637  ax-cnre 9638  ax-pre-lttri 9639  ax-pre-lttrn 9640  ax-pre-ltadd 9641  ax-pre-mulgt0 9642  ax-pre-sup 9643  ax-addf 9644
This theorem depends on definitions:  df-bi 190  df-or 376  df-an 377  df-3or 992  df-3an 993  df-tru 1458  df-fal 1461  df-ex 1675  df-nf 1679  df-sb 1809  df-eu 2314  df-mo 2315  df-clab 2449  df-cleq 2455  df-clel 2458  df-nfc 2592  df-ne 2635  df-nel 2636  df-ral 2754  df-rex 2755  df-reu 2756  df-rmo 2757  df-rab 2758  df-v 3059  df-sbc 3280  df-csb 3376  df-dif 3419  df-un 3421  df-in 3423  df-ss 3430  df-pss 3432  df-nul 3744  df-if 3894  df-pw 3965  df-sn 3981  df-pr 3983  df-tp 3985  df-op 3987  df-uni 4213  df-int 4249  df-iun 4294  df-br 4417  df-opab 4476  df-mpt 4477  df-tr 4512  df-eprel 4764  df-id 4768  df-po 4774  df-so 4775  df-fr 4812  df-se 4813  df-we 4814  df-xp 4859  df-rel 4860  df-cnv 4861  df-co 4862  df-dm 4863  df-rn 4864  df-res 4865  df-ima 4866  df-pred 5399  df-ord 5445  df-on 5446  df-lim 5447  df-suc 5448  df-iota 5565  df-fun 5603  df-fn 5604  df-f 5605  df-f1 5606  df-fo 5607  df-f1o 5608  df-fv 5609  df-isom 5610  df-riota 6277  df-ov 6318  df-oprab 6319  df-mpt2 6320  df-of 6558  df-om 6720  df-1st 6820  df-2nd 6821  df-wrecs 7054  df-recs 7116  df-rdg 7154  df-1o 7208  df-oadd 7212  df-er 7389  df-map 7500  df-pm 7501  df-en 7596  df-dom 7597  df-sdom 7598  df-fin 7599  df-sup 7982  df-inf 7983  df-oi 8051  df-card 8399  df-pnf 9703  df-mnf 9704  df-xr 9705  df-ltxr 9706  df-le 9707  df-sub 9888  df-neg 9889  df-div 10298  df-nn 10638  df-2 10696  df-3 10697  df-n0 10899  df-z 10967  df-uz 11189  df-rp 11332  df-fz 11814  df-fzo 11947  df-fl 12060  df-seq 12246  df-exp 12305  df-hash 12548  df-cj 13211  df-re 13212  df-im 13213  df-sqrt 13347  df-abs 13348  df-clim 13601  df-rlim 13602  df-sum 13802  df-0p 22677  df-ply 23191  df-coe 23193  df-dgr 23194
This theorem is referenced by:  coecj  23281
  Copyright terms: Public domain W3C validator