MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ply1val Structured version   Unicode version

Theorem ply1val 17648
Description: The value of the set of univariate polynomials. (Contributed by Mario Carneiro, 9-Feb-2015.)
Hypotheses
Ref Expression
ply1val.1  |-  P  =  (Poly1 `  R )
ply1val.2  |-  S  =  (PwSer1 `  R )
Assertion
Ref Expression
ply1val  |-  P  =  ( Ss  ( Base `  ( 1o mPoly  R ) ) )

Proof of Theorem ply1val
Dummy variable  r is distinct from all other variables.
StepHypRef Expression
1 ply1val.1 . 2  |-  P  =  (Poly1 `  R )
2 fveq2 5689 . . . . . 6  |-  ( r  =  R  ->  (PwSer1 `  r )  =  (PwSer1 `  R ) )
3 ply1val.2 . . . . . 6  |-  S  =  (PwSer1 `  R )
42, 3syl6eqr 2491 . . . . 5  |-  ( r  =  R  ->  (PwSer1 `  r )  =  S )
5 oveq2 6097 . . . . . 6  |-  ( r  =  R  ->  ( 1o mPoly  r )  =  ( 1o mPoly  R ) )
65fveq2d 5693 . . . . 5  |-  ( r  =  R  ->  ( Base `  ( 1o mPoly  r
) )  =  (
Base `  ( 1o mPoly  R ) ) )
74, 6oveq12d 6107 . . . 4  |-  ( r  =  R  ->  (
(PwSer1 `
 r )s  ( Base `  ( 1o mPoly  r )
) )  =  ( Ss  ( Base `  ( 1o mPoly  R ) ) ) )
8 df-ply1 17636 . . . 4  |- Poly1  =  (
r  e.  _V  |->  ( (PwSer1 `  r )s  ( Base `  ( 1o mPoly  r )
) ) )
9 ovex 6114 . . . 4  |-  ( Ss  (
Base `  ( 1o mPoly  R ) ) )  e. 
_V
107, 8, 9fvmpt 5772 . . 3  |-  ( R  e.  _V  ->  (Poly1 `  R )  =  ( Ss  ( Base `  ( 1o mPoly  R ) ) ) )
11 fvprc 5683 . . . . 5  |-  ( -.  R  e.  _V  ->  (Poly1 `  R )  =  (/) )
12 ress0 14230 . . . . 5  |-  ( (/)s  ( Base `  ( 1o mPoly  R )
) )  =  (/)
1311, 12syl6eqr 2491 . . . 4  |-  ( -.  R  e.  _V  ->  (Poly1 `  R )  =  (
(/)s 
( Base `  ( 1o mPoly  R ) ) ) )
14 fvprc 5683 . . . . . 6  |-  ( -.  R  e.  _V  ->  (PwSer1 `  R )  =  (/) )
153, 14syl5eq 2485 . . . . 5  |-  ( -.  R  e.  _V  ->  S  =  (/) )
1615oveq1d 6104 . . . 4  |-  ( -.  R  e.  _V  ->  ( Ss  ( Base `  ( 1o mPoly  R ) ) )  =  ( (/)s  ( Base `  ( 1o mPoly  R ) ) ) )
1713, 16eqtr4d 2476 . . 3  |-  ( -.  R  e.  _V  ->  (Poly1 `  R )  =  ( Ss  ( Base `  ( 1o mPoly  R ) ) ) )
1810, 17pm2.61i 164 . 2  |-  (Poly1 `  R
)  =  ( Ss  (
Base `  ( 1o mPoly  R ) ) )
191, 18eqtri 2461 1  |-  P  =  ( Ss  ( Base `  ( 1o mPoly  R ) ) )
Colors of variables: wff setvar class
Syntax hints:   -. wn 3    = wceq 1369    e. wcel 1756   _Vcvv 2970   (/)c0 3635   ` cfv 5416  (class class class)co 6089   1oc1o 6911   Basecbs 14172   ↾s cress 14173   mPoly cmpl 17418  PwSer1cps1 17629  Poly1cpl1 17631
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1591  ax-4 1602  ax-5 1670  ax-6 1708  ax-7 1728  ax-8 1758  ax-9 1760  ax-10 1775  ax-11 1780  ax-12 1792  ax-13 1943  ax-ext 2422  ax-sep 4411  ax-nul 4419  ax-pow 4468  ax-pr 4529
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3an 967  df-tru 1372  df-ex 1587  df-nf 1590  df-sb 1701  df-eu 2257  df-mo 2258  df-clab 2428  df-cleq 2434  df-clel 2437  df-nfc 2566  df-ne 2606  df-ral 2718  df-rex 2719  df-rab 2722  df-v 2972  df-sbc 3185  df-dif 3329  df-un 3331  df-in 3333  df-ss 3340  df-nul 3636  df-if 3790  df-sn 3876  df-pr 3878  df-op 3882  df-uni 4090  df-br 4291  df-opab 4349  df-mpt 4350  df-id 4634  df-xp 4844  df-rel 4845  df-cnv 4846  df-co 4847  df-dm 4848  df-iota 5379  df-fun 5418  df-fv 5424  df-ov 6092  df-oprab 6093  df-mpt2 6094  df-slot 14176  df-base 14177  df-ress 14179  df-ply1 17636
This theorem is referenced by:  ply1bas  17649  ply1crng  17652  ply1assa  17653  ply1bascl  17657  ply1plusg  17677  ply1vsca  17678  ply1mulr  17679  ply1rng  17701  ply1lmod  17705  ply1sca  17706
  Copyright terms: Public domain W3C validator