MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ply1val Structured version   Unicode version

Theorem ply1val 18730
Description: The value of the set of univariate polynomials. (Contributed by Mario Carneiro, 9-Feb-2015.)
Hypotheses
Ref Expression
ply1val.1  |-  P  =  (Poly1 `  R )
ply1val.2  |-  S  =  (PwSer1 `  R )
Assertion
Ref Expression
ply1val  |-  P  =  ( Ss  ( Base `  ( 1o mPoly  R ) ) )

Proof of Theorem ply1val
Dummy variable  r is distinct from all other variables.
StepHypRef Expression
1 ply1val.1 . 2  |-  P  =  (Poly1 `  R )
2 fveq2 5825 . . . . . 6  |-  ( r  =  R  ->  (PwSer1 `  r )  =  (PwSer1 `  R ) )
3 ply1val.2 . . . . . 6  |-  S  =  (PwSer1 `  R )
42, 3syl6eqr 2480 . . . . 5  |-  ( r  =  R  ->  (PwSer1 `  r )  =  S )
5 oveq2 6257 . . . . . 6  |-  ( r  =  R  ->  ( 1o mPoly  r )  =  ( 1o mPoly  R ) )
65fveq2d 5829 . . . . 5  |-  ( r  =  R  ->  ( Base `  ( 1o mPoly  r
) )  =  (
Base `  ( 1o mPoly  R ) ) )
74, 6oveq12d 6267 . . . 4  |-  ( r  =  R  ->  (
(PwSer1 `
 r )s  ( Base `  ( 1o mPoly  r )
) )  =  ( Ss  ( Base `  ( 1o mPoly  R ) ) ) )
8 df-ply1 18718 . . . 4  |- Poly1  =  (
r  e.  _V  |->  ( (PwSer1 `  r )s  ( Base `  ( 1o mPoly  r )
) ) )
9 ovex 6277 . . . 4  |-  ( Ss  (
Base `  ( 1o mPoly  R ) ) )  e. 
_V
107, 8, 9fvmpt 5908 . . 3  |-  ( R  e.  _V  ->  (Poly1 `  R )  =  ( Ss  ( Base `  ( 1o mPoly  R ) ) ) )
11 fvprc 5819 . . . . 5  |-  ( -.  R  e.  _V  ->  (Poly1 `  R )  =  (/) )
12 ress0 15126 . . . . 5  |-  ( (/)s  ( Base `  ( 1o mPoly  R )
) )  =  (/)
1311, 12syl6eqr 2480 . . . 4  |-  ( -.  R  e.  _V  ->  (Poly1 `  R )  =  (
(/)s 
( Base `  ( 1o mPoly  R ) ) ) )
14 fvprc 5819 . . . . . 6  |-  ( -.  R  e.  _V  ->  (PwSer1 `  R )  =  (/) )
153, 14syl5eq 2474 . . . . 5  |-  ( -.  R  e.  _V  ->  S  =  (/) )
1615oveq1d 6264 . . . 4  |-  ( -.  R  e.  _V  ->  ( Ss  ( Base `  ( 1o mPoly  R ) ) )  =  ( (/)s  ( Base `  ( 1o mPoly  R ) ) ) )
1713, 16eqtr4d 2465 . . 3  |-  ( -.  R  e.  _V  ->  (Poly1 `  R )  =  ( Ss  ( Base `  ( 1o mPoly  R ) ) ) )
1810, 17pm2.61i 167 . 2  |-  (Poly1 `  R
)  =  ( Ss  (
Base `  ( 1o mPoly  R ) ) )
191, 18eqtri 2450 1  |-  P  =  ( Ss  ( Base `  ( 1o mPoly  R ) ) )
Colors of variables: wff setvar class
Syntax hints:   -. wn 3    = wceq 1437    e. wcel 1872   _Vcvv 3022   (/)c0 3704   ` cfv 5544  (class class class)co 6249   1oc1o 7130   Basecbs 15064   ↾s cress 15065   mPoly cmpl 18520  PwSer1cps1 18711  Poly1cpl1 18713
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1663  ax-4 1676  ax-5 1752  ax-6 1798  ax-7 1843  ax-8 1874  ax-9 1876  ax-10 1891  ax-11 1896  ax-12 1909  ax-13 2063  ax-ext 2408  ax-sep 4489  ax-nul 4498  ax-pow 4545  ax-pr 4603
This theorem depends on definitions:  df-bi 188  df-or 371  df-an 372  df-3an 984  df-tru 1440  df-ex 1658  df-nf 1662  df-sb 1791  df-eu 2280  df-mo 2281  df-clab 2415  df-cleq 2421  df-clel 2424  df-nfc 2558  df-ne 2601  df-ral 2719  df-rex 2720  df-rab 2723  df-v 3024  df-sbc 3243  df-dif 3382  df-un 3384  df-in 3386  df-ss 3393  df-nul 3705  df-if 3855  df-sn 3942  df-pr 3944  df-op 3948  df-uni 4163  df-br 4367  df-opab 4426  df-mpt 4427  df-id 4711  df-xp 4802  df-rel 4803  df-cnv 4804  df-co 4805  df-dm 4806  df-iota 5508  df-fun 5546  df-fv 5552  df-ov 6252  df-oprab 6253  df-mpt2 6254  df-slot 15068  df-base 15069  df-ress 15071  df-ply1 18718
This theorem is referenced by:  ply1bas  18731  ply1crng  18734  ply1assa  18735  ply1bascl  18739  ply1plusg  18761  ply1vsca  18762  ply1mulr  18763  ply1ring  18784  ply1lmod  18788  ply1sca  18789
  Copyright terms: Public domain W3C validator