MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ply1termlem Structured version   Unicode version

Theorem ply1termlem 21683
Description: Lemma for ply1term 21684. (Contributed by Mario Carneiro, 26-Jul-2014.)
Hypothesis
Ref Expression
ply1term.1  |-  F  =  ( z  e.  CC  |->  ( A  x.  (
z ^ N ) ) )
Assertion
Ref Expression
ply1termlem  |-  ( ( A  e.  CC  /\  N  e.  NN0 )  ->  F  =  ( z  e.  CC  |->  sum_ k  e.  ( 0 ... N ) ( if ( k  =  N ,  A ,  0 )  x.  ( z ^ k
) ) ) )
Distinct variable groups:    z, k, A    k, N, z
Allowed substitution hints:    F( z, k)

Proof of Theorem ply1termlem
StepHypRef Expression
1 simplr 754 . . . . . . 7  |-  ( ( ( A  e.  CC  /\  N  e.  NN0 )  /\  z  e.  CC )  ->  N  e.  NN0 )
2 nn0uz 10907 . . . . . . 7  |-  NN0  =  ( ZZ>= `  0 )
31, 2syl6eleq 2533 . . . . . 6  |-  ( ( ( A  e.  CC  /\  N  e.  NN0 )  /\  z  e.  CC )  ->  N  e.  (
ZZ>= `  0 ) )
4 fzss1 11509 . . . . . 6  |-  ( N  e.  ( ZZ>= `  0
)  ->  ( N ... N )  C_  (
0 ... N ) )
53, 4syl 16 . . . . 5  |-  ( ( ( A  e.  CC  /\  N  e.  NN0 )  /\  z  e.  CC )  ->  ( N ... N )  C_  (
0 ... N ) )
6 elfz1eq 11474 . . . . . . . . 9  |-  ( k  e.  ( N ... N )  ->  k  =  N )
76adantl 466 . . . . . . . 8  |-  ( ( ( ( A  e.  CC  /\  N  e. 
NN0 )  /\  z  e.  CC )  /\  k  e.  ( N ... N
) )  ->  k  =  N )
8 iftrue 3809 . . . . . . . 8  |-  ( k  =  N  ->  if ( k  =  N ,  A ,  0 )  =  A )
97, 8syl 16 . . . . . . 7  |-  ( ( ( ( A  e.  CC  /\  N  e. 
NN0 )  /\  z  e.  CC )  /\  k  e.  ( N ... N
) )  ->  if ( k  =  N ,  A ,  0 )  =  A )
10 simpll 753 . . . . . . . 8  |-  ( ( ( A  e.  CC  /\  N  e.  NN0 )  /\  z  e.  CC )  ->  A  e.  CC )
1110adantr 465 . . . . . . 7  |-  ( ( ( ( A  e.  CC  /\  N  e. 
NN0 )  /\  z  e.  CC )  /\  k  e.  ( N ... N
) )  ->  A  e.  CC )
129, 11eqeltrd 2517 . . . . . 6  |-  ( ( ( ( A  e.  CC  /\  N  e. 
NN0 )  /\  z  e.  CC )  /\  k  e.  ( N ... N
) )  ->  if ( k  =  N ,  A ,  0 )  e.  CC )
13 simplr 754 . . . . . . 7  |-  ( ( ( ( A  e.  CC  /\  N  e. 
NN0 )  /\  z  e.  CC )  /\  k  e.  ( N ... N
) )  ->  z  e.  CC )
141adantr 465 . . . . . . . 8  |-  ( ( ( ( A  e.  CC  /\  N  e. 
NN0 )  /\  z  e.  CC )  /\  k  e.  ( N ... N
) )  ->  N  e.  NN0 )
157, 14eqeltrd 2517 . . . . . . 7  |-  ( ( ( ( A  e.  CC  /\  N  e. 
NN0 )  /\  z  e.  CC )  /\  k  e.  ( N ... N
) )  ->  k  e.  NN0 )
1613, 15expcld 12020 . . . . . 6  |-  ( ( ( ( A  e.  CC  /\  N  e. 
NN0 )  /\  z  e.  CC )  /\  k  e.  ( N ... N
) )  ->  (
z ^ k )  e.  CC )
1712, 16mulcld 9418 . . . . 5  |-  ( ( ( ( A  e.  CC  /\  N  e. 
NN0 )  /\  z  e.  CC )  /\  k  e.  ( N ... N
) )  ->  ( if ( k  =  N ,  A ,  0 )  x.  ( z ^ k ) )  e.  CC )
18 eldifn 3491 . . . . . . . . . 10  |-  ( k  e.  ( ( 0 ... N )  \ 
( N ... N
) )  ->  -.  k  e.  ( N ... N ) )
1918adantl 466 . . . . . . . . 9  |-  ( ( ( ( A  e.  CC  /\  N  e. 
NN0 )  /\  z  e.  CC )  /\  k  e.  ( ( 0 ... N )  \  ( N ... N ) ) )  ->  -.  k  e.  ( N ... N
) )
201adantr 465 . . . . . . . . . . 11  |-  ( ( ( ( A  e.  CC  /\  N  e. 
NN0 )  /\  z  e.  CC )  /\  k  e.  ( ( 0 ... N )  \  ( N ... N ) ) )  ->  N  e.  NN0 )
2120nn0zd 10757 . . . . . . . . . 10  |-  ( ( ( ( A  e.  CC  /\  N  e. 
NN0 )  /\  z  e.  CC )  /\  k  e.  ( ( 0 ... N )  \  ( N ... N ) ) )  ->  N  e.  ZZ )
22 fzsn 11512 . . . . . . . . . . . 12  |-  ( N  e.  ZZ  ->  ( N ... N )  =  { N } )
2322eleq2d 2510 . . . . . . . . . . 11  |-  ( N  e.  ZZ  ->  (
k  e.  ( N ... N )  <->  k  e.  { N } ) )
24 elsnc2g 3919 . . . . . . . . . . 11  |-  ( N  e.  ZZ  ->  (
k  e.  { N } 
<->  k  =  N ) )
2523, 24bitrd 253 . . . . . . . . . 10  |-  ( N  e.  ZZ  ->  (
k  e.  ( N ... N )  <->  k  =  N ) )
2621, 25syl 16 . . . . . . . . 9  |-  ( ( ( ( A  e.  CC  /\  N  e. 
NN0 )  /\  z  e.  CC )  /\  k  e.  ( ( 0 ... N )  \  ( N ... N ) ) )  ->  ( k  e.  ( N ... N
)  <->  k  =  N ) )
2719, 26mtbid 300 . . . . . . . 8  |-  ( ( ( ( A  e.  CC  /\  N  e. 
NN0 )  /\  z  e.  CC )  /\  k  e.  ( ( 0 ... N )  \  ( N ... N ) ) )  ->  -.  k  =  N )
28 iffalse 3811 . . . . . . . 8  |-  ( -.  k  =  N  ->  if ( k  =  N ,  A ,  0 )  =  0 )
2927, 28syl 16 . . . . . . 7  |-  ( ( ( ( A  e.  CC  /\  N  e. 
NN0 )  /\  z  e.  CC )  /\  k  e.  ( ( 0 ... N )  \  ( N ... N ) ) )  ->  if (
k  =  N ,  A ,  0 )  =  0 )
3029oveq1d 6118 . . . . . 6  |-  ( ( ( ( A  e.  CC  /\  N  e. 
NN0 )  /\  z  e.  CC )  /\  k  e.  ( ( 0 ... N )  \  ( N ... N ) ) )  ->  ( if ( k  =  N ,  A ,  0 )  x.  ( z ^ k ) )  =  ( 0  x.  ( z ^ k
) ) )
31 simpr 461 . . . . . . . 8  |-  ( ( ( A  e.  CC  /\  N  e.  NN0 )  /\  z  e.  CC )  ->  z  e.  CC )
32 eldifi 3490 . . . . . . . . 9  |-  ( k  e.  ( ( 0 ... N )  \ 
( N ... N
) )  ->  k  e.  ( 0 ... N
) )
33 elfznn0 11493 . . . . . . . . 9  |-  ( k  e.  ( 0 ... N )  ->  k  e.  NN0 )
3432, 33syl 16 . . . . . . . 8  |-  ( k  e.  ( ( 0 ... N )  \ 
( N ... N
) )  ->  k  e.  NN0 )
35 expcl 11895 . . . . . . . 8  |-  ( ( z  e.  CC  /\  k  e.  NN0 )  -> 
( z ^ k
)  e.  CC )
3631, 34, 35syl2an 477 . . . . . . 7  |-  ( ( ( ( A  e.  CC  /\  N  e. 
NN0 )  /\  z  e.  CC )  /\  k  e.  ( ( 0 ... N )  \  ( N ... N ) ) )  ->  ( z ^ k )  e.  CC )
3736mul02d 9579 . . . . . 6  |-  ( ( ( ( A  e.  CC  /\  N  e. 
NN0 )  /\  z  e.  CC )  /\  k  e.  ( ( 0 ... N )  \  ( N ... N ) ) )  ->  ( 0  x.  ( z ^
k ) )  =  0 )
3830, 37eqtrd 2475 . . . . 5  |-  ( ( ( ( A  e.  CC  /\  N  e. 
NN0 )  /\  z  e.  CC )  /\  k  e.  ( ( 0 ... N )  \  ( N ... N ) ) )  ->  ( if ( k  =  N ,  A ,  0 )  x.  ( z ^ k ) )  =  0 )
39 fzfid 11807 . . . . 5  |-  ( ( ( A  e.  CC  /\  N  e.  NN0 )  /\  z  e.  CC )  ->  ( 0 ... N )  e.  Fin )
405, 17, 38, 39fsumss 13214 . . . 4  |-  ( ( ( A  e.  CC  /\  N  e.  NN0 )  /\  z  e.  CC )  ->  sum_ k  e.  ( N ... N ) ( if ( k  =  N ,  A ,  0 )  x.  ( z ^ k
) )  =  sum_ k  e.  ( 0 ... N ) ( if ( k  =  N ,  A , 
0 )  x.  (
z ^ k ) ) )
411nn0zd 10757 . . . . 5  |-  ( ( ( A  e.  CC  /\  N  e.  NN0 )  /\  z  e.  CC )  ->  N  e.  ZZ )
4231, 1expcld 12020 . . . . . 6  |-  ( ( ( A  e.  CC  /\  N  e.  NN0 )  /\  z  e.  CC )  ->  ( z ^ N )  e.  CC )
4310, 42mulcld 9418 . . . . 5  |-  ( ( ( A  e.  CC  /\  N  e.  NN0 )  /\  z  e.  CC )  ->  ( A  x.  ( z ^ N
) )  e.  CC )
44 oveq2 6111 . . . . . . 7  |-  ( k  =  N  ->  (
z ^ k )  =  ( z ^ N ) )
458, 44oveq12d 6121 . . . . . 6  |-  ( k  =  N  ->  ( if ( k  =  N ,  A ,  0 )  x.  ( z ^ k ) )  =  ( A  x.  ( z ^ N
) ) )
4645fsum1 13230 . . . . 5  |-  ( ( N  e.  ZZ  /\  ( A  x.  (
z ^ N ) )  e.  CC )  ->  sum_ k  e.  ( N ... N ) ( if ( k  =  N ,  A ,  0 )  x.  ( z ^ k
) )  =  ( A  x.  ( z ^ N ) ) )
4741, 43, 46syl2anc 661 . . . 4  |-  ( ( ( A  e.  CC  /\  N  e.  NN0 )  /\  z  e.  CC )  ->  sum_ k  e.  ( N ... N ) ( if ( k  =  N ,  A ,  0 )  x.  ( z ^ k
) )  =  ( A  x.  ( z ^ N ) ) )
4840, 47eqtr3d 2477 . . 3  |-  ( ( ( A  e.  CC  /\  N  e.  NN0 )  /\  z  e.  CC )  ->  sum_ k  e.  ( 0 ... N ) ( if ( k  =  N ,  A ,  0 )  x.  ( z ^ k
) )  =  ( A  x.  ( z ^ N ) ) )
4948mpteq2dva 4390 . 2  |-  ( ( A  e.  CC  /\  N  e.  NN0 )  -> 
( z  e.  CC  |->  sum_ k  e.  ( 0 ... N ) ( if ( k  =  N ,  A , 
0 )  x.  (
z ^ k ) ) )  =  ( z  e.  CC  |->  ( A  x.  ( z ^ N ) ) ) )
50 ply1term.1 . 2  |-  F  =  ( z  e.  CC  |->  ( A  x.  (
z ^ N ) ) )
5149, 50syl6reqr 2494 1  |-  ( ( A  e.  CC  /\  N  e.  NN0 )  ->  F  =  ( z  e.  CC  |->  sum_ k  e.  ( 0 ... N ) ( if ( k  =  N ,  A ,  0 )  x.  ( z ^ k
) ) ) )
Colors of variables: wff setvar class
Syntax hints:   -. wn 3    -> wi 4    <-> wb 184    /\ wa 369    = wceq 1369    e. wcel 1756    \ cdif 3337    C_ wss 3340   ifcif 3803   {csn 3889    e. cmpt 4362   ` cfv 5430  (class class class)co 6103   CCcc 9292   0cc0 9294    x. cmul 9299   NN0cn0 10591   ZZcz 10658   ZZ>=cuz 10873   ...cfz 11449   ^cexp 11877   sum_csu 13175
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1591  ax-4 1602  ax-5 1670  ax-6 1708  ax-7 1728  ax-8 1758  ax-9 1760  ax-10 1775  ax-11 1780  ax-12 1792  ax-13 1943  ax-ext 2423  ax-rep 4415  ax-sep 4425  ax-nul 4433  ax-pow 4482  ax-pr 4543  ax-un 6384  ax-inf2 7859  ax-cnex 9350  ax-resscn 9351  ax-1cn 9352  ax-icn 9353  ax-addcl 9354  ax-addrcl 9355  ax-mulcl 9356  ax-mulrcl 9357  ax-mulcom 9358  ax-addass 9359  ax-mulass 9360  ax-distr 9361  ax-i2m1 9362  ax-1ne0 9363  ax-1rid 9364  ax-rnegex 9365  ax-rrecex 9366  ax-cnre 9367  ax-pre-lttri 9368  ax-pre-lttrn 9369  ax-pre-ltadd 9370  ax-pre-mulgt0 9371  ax-pre-sup 9372
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3or 966  df-3an 967  df-tru 1372  df-fal 1375  df-ex 1587  df-nf 1590  df-sb 1701  df-eu 2257  df-mo 2258  df-clab 2430  df-cleq 2436  df-clel 2439  df-nfc 2577  df-ne 2620  df-nel 2621  df-ral 2732  df-rex 2733  df-reu 2734  df-rmo 2735  df-rab 2736  df-v 2986  df-sbc 3199  df-csb 3301  df-dif 3343  df-un 3345  df-in 3347  df-ss 3354  df-pss 3356  df-nul 3650  df-if 3804  df-pw 3874  df-sn 3890  df-pr 3892  df-tp 3894  df-op 3896  df-uni 4104  df-int 4141  df-iun 4185  df-br 4305  df-opab 4363  df-mpt 4364  df-tr 4398  df-eprel 4644  df-id 4648  df-po 4653  df-so 4654  df-fr 4691  df-se 4692  df-we 4693  df-ord 4734  df-on 4735  df-lim 4736  df-suc 4737  df-xp 4858  df-rel 4859  df-cnv 4860  df-co 4861  df-dm 4862  df-rn 4863  df-res 4864  df-ima 4865  df-iota 5393  df-fun 5432  df-fn 5433  df-f 5434  df-f1 5435  df-fo 5436  df-f1o 5437  df-fv 5438  df-isom 5439  df-riota 6064  df-ov 6106  df-oprab 6107  df-mpt2 6108  df-om 6489  df-1st 6589  df-2nd 6590  df-recs 6844  df-rdg 6878  df-1o 6932  df-oadd 6936  df-er 7113  df-en 7323  df-dom 7324  df-sdom 7325  df-fin 7326  df-sup 7703  df-oi 7736  df-card 8121  df-pnf 9432  df-mnf 9433  df-xr 9434  df-ltxr 9435  df-le 9436  df-sub 9609  df-neg 9610  df-div 10006  df-nn 10335  df-2 10392  df-3 10393  df-n0 10592  df-z 10659  df-uz 10874  df-rp 11004  df-fz 11450  df-fzo 11561  df-seq 11819  df-exp 11878  df-hash 12116  df-cj 12600  df-re 12601  df-im 12602  df-sqr 12736  df-abs 12737  df-clim 12978  df-sum 13176
This theorem is referenced by:  ply1term  21684  coe1termlem  21737
  Copyright terms: Public domain W3C validator