MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ply1divex Structured version   Unicode version

Theorem ply1divex 21551
Description: Lemma for ply1divalg 21552: existence part. (Contributed by Stefan O'Rear, 27-Mar-2015.)
Hypotheses
Ref Expression
ply1divalg.p  |-  P  =  (Poly1 `  R )
ply1divalg.d  |-  D  =  ( deg1  `  R )
ply1divalg.b  |-  B  =  ( Base `  P
)
ply1divalg.m  |-  .-  =  ( -g `  P )
ply1divalg.z  |-  .0.  =  ( 0g `  P )
ply1divalg.t  |-  .xb  =  ( .r `  P )
ply1divalg.r1  |-  ( ph  ->  R  e.  Ring )
ply1divalg.f  |-  ( ph  ->  F  e.  B )
ply1divalg.g1  |-  ( ph  ->  G  e.  B )
ply1divalg.g2  |-  ( ph  ->  G  =/=  .0.  )
ply1divex.o  |-  .1.  =  ( 1r `  R )
ply1divex.k  |-  K  =  ( Base `  R
)
ply1divex.u  |-  .x.  =  ( .r `  R )
ply1divex.i  |-  ( ph  ->  I  e.  K )
ply1divex.g3  |-  ( ph  ->  ( ( (coe1 `  G
) `  ( D `  G ) )  .x.  I )  =  .1.  )
Assertion
Ref Expression
ply1divex  |-  ( ph  ->  E. q  e.  B  ( D `  ( F 
.-  ( G  .xb  q ) ) )  <  ( D `  G ) )
Distinct variable groups:    .0. , q    F, q    I, q    P, q    R, q    .- , q    B, q    .xb , q    D, q    G, q    ph, q    .x. , q
Allowed substitution hints:    .1. ( q)    K( q)

Proof of Theorem ply1divex
Dummy variables  d 
f  r  a  g are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 fveq2 5688 . . . . 5  |-  ( F  =  .0.  ->  ( D `  F )  =  ( D `  .0.  ) )
21breq1d 4299 . . . 4  |-  ( F  =  .0.  ->  (
( D `  F
)  <  ( ( D `  G )  +  d )  <->  ( D `  .0.  )  <  (
( D `  G
)  +  d ) ) )
32rexbidv 2734 . . 3  |-  ( F  =  .0.  ->  ( E. d  e.  NN0  ( D `  F )  <  ( ( D `
 G )  +  d )  <->  E. d  e.  NN0  ( D `  .0.  )  <  ( ( D `  G )  +  d ) ) )
4 nnssnn0 10578 . . . . 5  |-  NN  C_  NN0
5 ply1divalg.r1 . . . . . . . . . 10  |-  ( ph  ->  R  e.  Ring )
65adantr 462 . . . . . . . . 9  |-  ( (
ph  /\  F  =/=  .0.  )  ->  R  e. 
Ring )
7 ply1divalg.f . . . . . . . . . 10  |-  ( ph  ->  F  e.  B )
87adantr 462 . . . . . . . . 9  |-  ( (
ph  /\  F  =/=  .0.  )  ->  F  e.  B )
9 simpr 458 . . . . . . . . 9  |-  ( (
ph  /\  F  =/=  .0.  )  ->  F  =/= 
.0.  )
10 ply1divalg.d . . . . . . . . . 10  |-  D  =  ( deg1  `  R )
11 ply1divalg.p . . . . . . . . . 10  |-  P  =  (Poly1 `  R )
12 ply1divalg.z . . . . . . . . . 10  |-  .0.  =  ( 0g `  P )
13 ply1divalg.b . . . . . . . . . 10  |-  B  =  ( Base `  P
)
1410, 11, 12, 13deg1nn0cl 21502 . . . . . . . . 9  |-  ( ( R  e.  Ring  /\  F  e.  B  /\  F  =/= 
.0.  )  ->  ( D `  F )  e.  NN0 )
156, 8, 9, 14syl3anc 1213 . . . . . . . 8  |-  ( (
ph  /\  F  =/=  .0.  )  ->  ( D `
 F )  e. 
NN0 )
1615nn0red 10633 . . . . . . 7  |-  ( (
ph  /\  F  =/=  .0.  )  ->  ( D `
 F )  e.  RR )
17 ply1divalg.g1 . . . . . . . . . 10  |-  ( ph  ->  G  e.  B )
18 ply1divalg.g2 . . . . . . . . . 10  |-  ( ph  ->  G  =/=  .0.  )
1910, 11, 12, 13deg1nn0cl 21502 . . . . . . . . . 10  |-  ( ( R  e.  Ring  /\  G  e.  B  /\  G  =/= 
.0.  )  ->  ( D `  G )  e.  NN0 )
205, 17, 18, 19syl3anc 1213 . . . . . . . . 9  |-  ( ph  ->  ( D `  G
)  e.  NN0 )
2120nn0red 10633 . . . . . . . 8  |-  ( ph  ->  ( D `  G
)  e.  RR )
2221adantr 462 . . . . . . 7  |-  ( (
ph  /\  F  =/=  .0.  )  ->  ( D `
 G )  e.  RR )
2316, 22resubcld 9772 . . . . . 6  |-  ( (
ph  /\  F  =/=  .0.  )  ->  ( ( D `  F )  -  ( D `  G ) )  e.  RR )
24 arch 10572 . . . . . 6  |-  ( ( ( D `  F
)  -  ( D `
 G ) )  e.  RR  ->  E. d  e.  NN  ( ( D `
 F )  -  ( D `  G ) )  <  d )
2523, 24syl 16 . . . . 5  |-  ( (
ph  /\  F  =/=  .0.  )  ->  E. d  e.  NN  ( ( D `
 F )  -  ( D `  G ) )  <  d )
26 ssrexv 3414 . . . . 5  |-  ( NN  C_  NN0  ->  ( E. d  e.  NN  (
( D `  F
)  -  ( D `
 G ) )  <  d  ->  E. d  e.  NN0  ( ( D `
 F )  -  ( D `  G ) )  <  d ) )
274, 25, 26mpsyl 63 . . . 4  |-  ( (
ph  /\  F  =/=  .0.  )  ->  E. d  e.  NN0  ( ( D `
 F )  -  ( D `  G ) )  <  d )
2816adantr 462 . . . . . . 7  |-  ( ( ( ph  /\  F  =/=  .0.  )  /\  d  e.  NN0 )  ->  ( D `  F )  e.  RR )
2921ad2antrr 720 . . . . . . 7  |-  ( ( ( ph  /\  F  =/=  .0.  )  /\  d  e.  NN0 )  ->  ( D `  G )  e.  RR )
30 nn0re 10584 . . . . . . . 8  |-  ( d  e.  NN0  ->  d  e.  RR )
3130adantl 463 . . . . . . 7  |-  ( ( ( ph  /\  F  =/=  .0.  )  /\  d  e.  NN0 )  ->  d  e.  RR )
3228, 29, 31ltsubadd2d 9933 . . . . . 6  |-  ( ( ( ph  /\  F  =/=  .0.  )  /\  d  e.  NN0 )  ->  (
( ( D `  F )  -  ( D `  G )
)  <  d  <->  ( D `  F )  <  (
( D `  G
)  +  d ) ) )
3332biimpd 207 . . . . 5  |-  ( ( ( ph  /\  F  =/=  .0.  )  /\  d  e.  NN0 )  ->  (
( ( D `  F )  -  ( D `  G )
)  <  d  ->  ( D `  F )  <  ( ( D `
 G )  +  d ) ) )
3433reximdva 2826 . . . 4  |-  ( (
ph  /\  F  =/=  .0.  )  ->  ( E. d  e.  NN0  (
( D `  F
)  -  ( D `
 G ) )  <  d  ->  E. d  e.  NN0  ( D `  F )  <  (
( D `  G
)  +  d ) ) )
3527, 34mpd 15 . . 3  |-  ( (
ph  /\  F  =/=  .0.  )  ->  E. d  e.  NN0  ( D `  F )  <  (
( D `  G
)  +  d ) )
36 0nn0 10590 . . . 4  |-  0  e.  NN0
3710, 11, 12deg1z 21501 . . . . . 6  |-  ( R  e.  Ring  ->  ( D `
 .0.  )  = -oo )
385, 37syl 16 . . . . 5  |-  ( ph  ->  ( D `  .0.  )  = -oo )
39 0re 9382 . . . . . . 7  |-  0  e.  RR
40 readdcl 9361 . . . . . . 7  |-  ( ( ( D `  G
)  e.  RR  /\  0  e.  RR )  ->  ( ( D `  G )  +  0 )  e.  RR )
4121, 39, 40sylancl 657 . . . . . 6  |-  ( ph  ->  ( ( D `  G )  +  0 )  e.  RR )
42 mnflt 11100 . . . . . 6  |-  ( ( ( D `  G
)  +  0 )  e.  RR  -> -oo  <  ( ( D `  G
)  +  0 ) )
4341, 42syl 16 . . . . 5  |-  ( ph  -> -oo  <  ( ( D `  G )  +  0 ) )
4438, 43eqbrtrd 4309 . . . 4  |-  ( ph  ->  ( D `  .0.  )  <  ( ( D `
 G )  +  0 ) )
45 oveq2 6098 . . . . . 6  |-  ( d  =  0  ->  (
( D `  G
)  +  d )  =  ( ( D `
 G )  +  0 ) )
4645breq2d 4301 . . . . 5  |-  ( d  =  0  ->  (
( D `  .0.  )  <  ( ( D `
 G )  +  d )  <->  ( D `  .0.  )  <  (
( D `  G
)  +  0 ) ) )
4746rspcev 3070 . . . 4  |-  ( ( 0  e.  NN0  /\  ( D `  .0.  )  <  ( ( D `  G )  +  0 ) )  ->  E. d  e.  NN0  ( D `  .0.  )  <  ( ( D `  G )  +  d ) )
4836, 44, 47sylancr 658 . . 3  |-  ( ph  ->  E. d  e.  NN0  ( D `  .0.  )  <  ( ( D `  G )  +  d ) )
493, 35, 48pm2.61ne 2684 . 2  |-  ( ph  ->  E. d  e.  NN0  ( D `  F )  <  ( ( D `
 G )  +  d ) )
507adantr 462 . . . 4  |-  ( (
ph  /\  d  e.  NN0 )  ->  F  e.  B )
51 oveq2 6098 . . . . . . . . . 10  |-  ( a  =  0  ->  (
( D `  G
)  +  a )  =  ( ( D `
 G )  +  0 ) )
5251breq2d 4301 . . . . . . . . 9  |-  ( a  =  0  ->  (
( D `  f
)  <  ( ( D `  G )  +  a )  <->  ( D `  f )  <  (
( D `  G
)  +  0 ) ) )
5352imbi1d 317 . . . . . . . 8  |-  ( a  =  0  ->  (
( ( D `  f )  <  (
( D `  G
)  +  a )  ->  E. q  e.  B  ( D `  ( f 
.-  ( G  .xb  q ) ) )  <  ( D `  G ) )  <->  ( ( D `  f )  <  ( ( D `  G )  +  0 )  ->  E. q  e.  B  ( D `  ( f  .-  ( G  .xb  q ) ) )  <  ( D `
 G ) ) ) )
5453ralbidv 2733 . . . . . . 7  |-  ( a  =  0  ->  ( A. f  e.  B  ( ( D `  f )  <  (
( D `  G
)  +  a )  ->  E. q  e.  B  ( D `  ( f 
.-  ( G  .xb  q ) ) )  <  ( D `  G ) )  <->  A. f  e.  B  ( ( D `  f )  <  ( ( D `  G )  +  0 )  ->  E. q  e.  B  ( D `  ( f  .-  ( G  .xb  q ) ) )  <  ( D `
 G ) ) ) )
5554imbi2d 316 . . . . . 6  |-  ( a  =  0  ->  (
( ph  ->  A. f  e.  B  ( ( D `  f )  <  ( ( D `  G )  +  a )  ->  E. q  e.  B  ( D `  ( f  .-  ( G  .xb  q ) ) )  <  ( D `
 G ) ) )  <->  ( ph  ->  A. f  e.  B  ( ( D `  f
)  <  ( ( D `  G )  +  0 )  ->  E. q  e.  B  ( D `  ( f 
.-  ( G  .xb  q ) ) )  <  ( D `  G ) ) ) ) )
56 oveq2 6098 . . . . . . . . . 10  |-  ( a  =  d  ->  (
( D `  G
)  +  a )  =  ( ( D `
 G )  +  d ) )
5756breq2d 4301 . . . . . . . . 9  |-  ( a  =  d  ->  (
( D `  f
)  <  ( ( D `  G )  +  a )  <->  ( D `  f )  <  (
( D `  G
)  +  d ) ) )
5857imbi1d 317 . . . . . . . 8  |-  ( a  =  d  ->  (
( ( D `  f )  <  (
( D `  G
)  +  a )  ->  E. q  e.  B  ( D `  ( f 
.-  ( G  .xb  q ) ) )  <  ( D `  G ) )  <->  ( ( D `  f )  <  ( ( D `  G )  +  d )  ->  E. q  e.  B  ( D `  ( f  .-  ( G  .xb  q ) ) )  <  ( D `
 G ) ) ) )
5958ralbidv 2733 . . . . . . 7  |-  ( a  =  d  ->  ( A. f  e.  B  ( ( D `  f )  <  (
( D `  G
)  +  a )  ->  E. q  e.  B  ( D `  ( f 
.-  ( G  .xb  q ) ) )  <  ( D `  G ) )  <->  A. f  e.  B  ( ( D `  f )  <  ( ( D `  G )  +  d )  ->  E. q  e.  B  ( D `  ( f  .-  ( G  .xb  q ) ) )  <  ( D `
 G ) ) ) )
6059imbi2d 316 . . . . . 6  |-  ( a  =  d  ->  (
( ph  ->  A. f  e.  B  ( ( D `  f )  <  ( ( D `  G )  +  a )  ->  E. q  e.  B  ( D `  ( f  .-  ( G  .xb  q ) ) )  <  ( D `
 G ) ) )  <->  ( ph  ->  A. f  e.  B  ( ( D `  f
)  <  ( ( D `  G )  +  d )  ->  E. q  e.  B  ( D `  ( f 
.-  ( G  .xb  q ) ) )  <  ( D `  G ) ) ) ) )
61 oveq2 6098 . . . . . . . . . 10  |-  ( a  =  ( d  +  1 )  ->  (
( D `  G
)  +  a )  =  ( ( D `
 G )  +  ( d  +  1 ) ) )
6261breq2d 4301 . . . . . . . . 9  |-  ( a  =  ( d  +  1 )  ->  (
( D `  f
)  <  ( ( D `  G )  +  a )  <->  ( D `  f )  <  (
( D `  G
)  +  ( d  +  1 ) ) ) )
6362imbi1d 317 . . . . . . . 8  |-  ( a  =  ( d  +  1 )  ->  (
( ( D `  f )  <  (
( D `  G
)  +  a )  ->  E. q  e.  B  ( D `  ( f 
.-  ( G  .xb  q ) ) )  <  ( D `  G ) )  <->  ( ( D `  f )  <  ( ( D `  G )  +  ( d  +  1 ) )  ->  E. q  e.  B  ( D `  ( f  .-  ( G  .xb  q ) ) )  <  ( D `
 G ) ) ) )
6463ralbidv 2733 . . . . . . 7  |-  ( a  =  ( d  +  1 )  ->  ( A. f  e.  B  ( ( D `  f )  <  (
( D `  G
)  +  a )  ->  E. q  e.  B  ( D `  ( f 
.-  ( G  .xb  q ) ) )  <  ( D `  G ) )  <->  A. f  e.  B  ( ( D `  f )  <  ( ( D `  G )  +  ( d  +  1 ) )  ->  E. q  e.  B  ( D `  ( f  .-  ( G  .xb  q ) ) )  <  ( D `
 G ) ) ) )
6564imbi2d 316 . . . . . 6  |-  ( a  =  ( d  +  1 )  ->  (
( ph  ->  A. f  e.  B  ( ( D `  f )  <  ( ( D `  G )  +  a )  ->  E. q  e.  B  ( D `  ( f  .-  ( G  .xb  q ) ) )  <  ( D `
 G ) ) )  <->  ( ph  ->  A. f  e.  B  ( ( D `  f
)  <  ( ( D `  G )  +  ( d  +  1 ) )  ->  E. q  e.  B  ( D `  ( f 
.-  ( G  .xb  q ) ) )  <  ( D `  G ) ) ) ) )
6611ply1rng 17657 . . . . . . . . . . . 12  |-  ( R  e.  Ring  ->  P  e. 
Ring )
675, 66syl 16 . . . . . . . . . . 11  |-  ( ph  ->  P  e.  Ring )
6813, 12rng0cl 16656 . . . . . . . . . . 11  |-  ( P  e.  Ring  ->  .0.  e.  B )
6967, 68syl 16 . . . . . . . . . 10  |-  ( ph  ->  .0.  e.  B )
7069ad2antrr 720 . . . . . . . . 9  |-  ( ( ( ph  /\  f  e.  B )  /\  ( D `  f )  <  ( ( D `  G )  +  0 ) )  ->  .0.  e.  B )
71 ply1divalg.t . . . . . . . . . . . . . . . . 17  |-  .xb  =  ( .r `  P )
7213, 71, 12rngrz 16672 . . . . . . . . . . . . . . . 16  |-  ( ( P  e.  Ring  /\  G  e.  B )  ->  ( G  .xb  .0.  )  =  .0.  )
7367, 17, 72syl2anc 656 . . . . . . . . . . . . . . 15  |-  ( ph  ->  ( G  .xb  .0.  )  =  .0.  )
7473oveq2d 6106 . . . . . . . . . . . . . 14  |-  ( ph  ->  ( f  .-  ( G  .xb  .0.  ) )  =  ( f  .-  .0.  ) )
7574adantr 462 . . . . . . . . . . . . 13  |-  ( (
ph  /\  f  e.  B )  ->  (
f  .-  ( G  .xb 
.0.  ) )  =  ( f  .-  .0.  ) )
76 rnggrp 16640 . . . . . . . . . . . . . . 15  |-  ( P  e.  Ring  ->  P  e. 
Grp )
7767, 76syl 16 . . . . . . . . . . . . . 14  |-  ( ph  ->  P  e.  Grp )
78 ply1divalg.m . . . . . . . . . . . . . . 15  |-  .-  =  ( -g `  P )
7913, 12, 78grpsubid1 15604 . . . . . . . . . . . . . 14  |-  ( ( P  e.  Grp  /\  f  e.  B )  ->  ( f  .-  .0.  )  =  f )
8077, 79sylan 468 . . . . . . . . . . . . 13  |-  ( (
ph  /\  f  e.  B )  ->  (
f  .-  .0.  )  =  f )
8175, 80eqtr2d 2474 . . . . . . . . . . . 12  |-  ( (
ph  /\  f  e.  B )  ->  f  =  ( f  .-  ( G  .xb  .0.  )
) )
8281fveq2d 5692 . . . . . . . . . . 11  |-  ( (
ph  /\  f  e.  B )  ->  ( D `  f )  =  ( D `  ( f  .-  ( G  .xb  .0.  ) ) ) )
8320nn0cnd 10634 . . . . . . . . . . . . 13  |-  ( ph  ->  ( D `  G
)  e.  CC )
8483addid1d 9565 . . . . . . . . . . . 12  |-  ( ph  ->  ( ( D `  G )  +  0 )  =  ( D `
 G ) )
8584adantr 462 . . . . . . . . . . 11  |-  ( (
ph  /\  f  e.  B )  ->  (
( D `  G
)  +  0 )  =  ( D `  G ) )
8682, 85breq12d 4302 . . . . . . . . . 10  |-  ( (
ph  /\  f  e.  B )  ->  (
( D `  f
)  <  ( ( D `  G )  +  0 )  <->  ( D `  ( f  .-  ( G  .xb  .0.  ) ) )  <  ( D `
 G ) ) )
8786biimpa 481 . . . . . . . . 9  |-  ( ( ( ph  /\  f  e.  B )  /\  ( D `  f )  <  ( ( D `  G )  +  0 ) )  ->  ( D `  ( f  .-  ( G  .xb  .0.  ) ) )  < 
( D `  G
) )
88 oveq2 6098 . . . . . . . . . . . . 13  |-  ( q  =  .0.  ->  ( G  .xb  q )  =  ( G  .xb  .0.  ) )
8988oveq2d 6106 . . . . . . . . . . . 12  |-  ( q  =  .0.  ->  (
f  .-  ( G  .xb  q ) )  =  ( f  .-  ( G  .xb  .0.  ) ) )
9089fveq2d 5692 . . . . . . . . . . 11  |-  ( q  =  .0.  ->  ( D `  ( f  .-  ( G  .xb  q
) ) )  =  ( D `  (
f  .-  ( G  .xb 
.0.  ) ) ) )
9190breq1d 4299 . . . . . . . . . 10  |-  ( q  =  .0.  ->  (
( D `  (
f  .-  ( G  .xb  q ) ) )  <  ( D `  G )  <->  ( D `  ( f  .-  ( G  .xb  .0.  ) ) )  <  ( D `
 G ) ) )
9291rspcev 3070 . . . . . . . . 9  |-  ( (  .0.  e.  B  /\  ( D `  ( f 
.-  ( G  .xb  .0.  ) ) )  < 
( D `  G
) )  ->  E. q  e.  B  ( D `  ( f  .-  ( G  .xb  q ) ) )  <  ( D `
 G ) )
9370, 87, 92syl2anc 656 . . . . . . . 8  |-  ( ( ( ph  /\  f  e.  B )  /\  ( D `  f )  <  ( ( D `  G )  +  0 ) )  ->  E. q  e.  B  ( D `  ( f  .-  ( G  .xb  q ) ) )  <  ( D `
 G ) )
9493ex 434 . . . . . . 7  |-  ( (
ph  /\  f  e.  B )  ->  (
( D `  f
)  <  ( ( D `  G )  +  0 )  ->  E. q  e.  B  ( D `  ( f 
.-  ( G  .xb  q ) ) )  <  ( D `  G ) ) )
9594ralrimiva 2797 . . . . . 6  |-  ( ph  ->  A. f  e.  B  ( ( D `  f )  <  (
( D `  G
)  +  0 )  ->  E. q  e.  B  ( D `  ( f 
.-  ( G  .xb  q ) ) )  <  ( D `  G ) ) )
96 nn0addcl 10611 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( D `  G
)  e.  NN0  /\  d  e.  NN0 )  -> 
( ( D `  G )  +  d )  e.  NN0 )
9720, 96sylan 468 . . . . . . . . . . . . . . . . 17  |-  ( (
ph  /\  d  e.  NN0 )  ->  ( ( D `  G )  +  d )  e. 
NN0 )
9897adantr 462 . . . . . . . . . . . . . . . 16  |-  ( ( ( ph  /\  d  e.  NN0 )  /\  (
g  e.  B  /\  ( D `  g )  <  ( ( D `
 G )  +  ( d  +  1 ) ) ) )  ->  ( ( D `
 G )  +  d )  e.  NN0 )
995ad2antrr 720 . . . . . . . . . . . . . . . 16  |-  ( ( ( ph  /\  d  e.  NN0 )  /\  (
g  e.  B  /\  ( D `  g )  <  ( ( D `
 G )  +  ( d  +  1 ) ) ) )  ->  R  e.  Ring )
100 simprl 750 . . . . . . . . . . . . . . . 16  |-  ( ( ( ph  /\  d  e.  NN0 )  /\  (
g  e.  B  /\  ( D `  g )  <  ( ( D `
 G )  +  ( d  +  1 ) ) ) )  ->  g  e.  B
)
10110, 11, 13deg1cl 21497 . . . . . . . . . . . . . . . . . . . . 21  |-  ( g  e.  B  ->  ( D `  g )  e.  ( NN0  u.  { -oo } ) )
102101adantl 463 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( ( ph  /\  d  e.  NN0 )  /\  g  e.  B )  ->  ( D `  g )  e.  ( NN0  u.  { -oo } ) )
10320ad2antrr 720 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( ( ( ph  /\  d  e.  NN0 )  /\  g  e.  B )  ->  ( D `  G )  e.  NN0 )
104 peano2nn0 10616 . . . . . . . . . . . . . . . . . . . . . . 23  |-  ( d  e.  NN0  ->  ( d  +  1 )  e. 
NN0 )
105104ad2antlr 721 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( ( ( ph  /\  d  e.  NN0 )  /\  g  e.  B )  ->  (
d  +  1 )  e.  NN0 )
106103, 105nn0addcld 10636 . . . . . . . . . . . . . . . . . . . . 21  |-  ( ( ( ph  /\  d  e.  NN0 )  /\  g  e.  B )  ->  (
( D `  G
)  +  ( d  +  1 ) )  e.  NN0 )
107106nn0zd 10741 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( ( ph  /\  d  e.  NN0 )  /\  g  e.  B )  ->  (
( D `  G
)  +  ( d  +  1 ) )  e.  ZZ )
108 degltlem1 21486 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( ( D `  g
)  e.  ( NN0 
u.  { -oo } )  /\  ( ( D `
 G )  +  ( d  +  1 ) )  e.  ZZ )  ->  ( ( D `
 g )  < 
( ( D `  G )  +  ( d  +  1 ) )  <->  ( D `  g )  <_  (
( ( D `  G )  +  ( d  +  1 ) )  -  1 ) ) )
109102, 107, 108syl2anc 656 . . . . . . . . . . . . . . . . . . 19  |-  ( ( ( ph  /\  d  e.  NN0 )  /\  g  e.  B )  ->  (
( D `  g
)  <  ( ( D `  G )  +  ( d  +  1 ) )  <->  ( D `  g )  <_  (
( ( D `  G )  +  ( d  +  1 ) )  -  1 ) ) )
110109biimpd 207 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( ph  /\  d  e.  NN0 )  /\  g  e.  B )  ->  (
( D `  g
)  <  ( ( D `  G )  +  ( d  +  1 ) )  -> 
( D `  g
)  <_  ( (
( D `  G
)  +  ( d  +  1 ) )  -  1 ) ) )
111110impr 616 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ph  /\  d  e.  NN0 )  /\  (
g  e.  B  /\  ( D `  g )  <  ( ( D `
 G )  +  ( d  +  1 ) ) ) )  ->  ( D `  g )  <_  (
( ( D `  G )  +  ( d  +  1 ) )  -  1 ) )
11220adantr 462 . . . . . . . . . . . . . . . . . . . . 21  |-  ( (
ph  /\  d  e.  NN0 )  ->  ( D `  G )  e.  NN0 )
113112nn0cnd 10634 . . . . . . . . . . . . . . . . . . . 20  |-  ( (
ph  /\  d  e.  NN0 )  ->  ( D `  G )  e.  CC )
114 nn0cn 10585 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( d  e.  NN0  ->  d  e.  CC )
115114adantl 463 . . . . . . . . . . . . . . . . . . . . 21  |-  ( (
ph  /\  d  e.  NN0 )  ->  d  e.  CC )
116 peano2cn 9537 . . . . . . . . . . . . . . . . . . . . 21  |-  ( d  e.  CC  ->  (
d  +  1 )  e.  CC )
117115, 116syl 16 . . . . . . . . . . . . . . . . . . . 20  |-  ( (
ph  /\  d  e.  NN0 )  ->  ( d  +  1 )  e.  CC )
118 1cnd 9398 . . . . . . . . . . . . . . . . . . . 20  |-  ( (
ph  /\  d  e.  NN0 )  ->  1  e.  CC )
119113, 117, 118addsubassd 9735 . . . . . . . . . . . . . . . . . . 19  |-  ( (
ph  /\  d  e.  NN0 )  ->  ( (
( D `  G
)  +  ( d  +  1 ) )  -  1 )  =  ( ( D `  G )  +  ( ( d  +  1 )  -  1 ) ) )
120 ax-1cn 9336 . . . . . . . . . . . . . . . . . . . . 21  |-  1  e.  CC
121 pncan 9612 . . . . . . . . . . . . . . . . . . . . 21  |-  ( ( d  e.  CC  /\  1  e.  CC )  ->  ( ( d  +  1 )  -  1 )  =  d )
122115, 120, 121sylancl 657 . . . . . . . . . . . . . . . . . . . 20  |-  ( (
ph  /\  d  e.  NN0 )  ->  ( (
d  +  1 )  -  1 )  =  d )
123122oveq2d 6106 . . . . . . . . . . . . . . . . . . 19  |-  ( (
ph  /\  d  e.  NN0 )  ->  ( ( D `  G )  +  ( ( d  +  1 )  - 
1 ) )  =  ( ( D `  G )  +  d ) )
124119, 123eqtrd 2473 . . . . . . . . . . . . . . . . . 18  |-  ( (
ph  /\  d  e.  NN0 )  ->  ( (
( D `  G
)  +  ( d  +  1 ) )  -  1 )  =  ( ( D `  G )  +  d ) )
125124adantr 462 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ph  /\  d  e.  NN0 )  /\  (
g  e.  B  /\  ( D `  g )  <  ( ( D `
 G )  +  ( d  +  1 ) ) ) )  ->  ( ( ( D `  G )  +  ( d  +  1 ) )  - 
1 )  =  ( ( D `  G
)  +  d ) )
126111, 125breqtrd 4313 . . . . . . . . . . . . . . . 16  |-  ( ( ( ph  /\  d  e.  NN0 )  /\  (
g  e.  B  /\  ( D `  g )  <  ( ( D `
 G )  +  ( d  +  1 ) ) ) )  ->  ( D `  g )  <_  (
( D `  G
)  +  d ) )
12767ad2antrr 720 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( ph  /\  d  e.  NN0 )  /\  g  e.  B )  ->  P  e.  Ring )
12817ad2antrr 720 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( ph  /\  d  e.  NN0 )  /\  g  e.  B )  ->  G  e.  B )
1295ad2antrr 720 . . . . . . . . . . . . . . . . . . 19  |-  ( ( ( ph  /\  d  e.  NN0 )  /\  g  e.  B )  ->  R  e.  Ring )
130 ply1divex.i . . . . . . . . . . . . . . . . . . . . 21  |-  ( ph  ->  I  e.  K )
131130ad2antrr 720 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( ( ph  /\  d  e.  NN0 )  /\  g  e.  B )  ->  I  e.  K )
132 eqid 2441 . . . . . . . . . . . . . . . . . . . . . . 23  |-  (coe1 `  g
)  =  (coe1 `  g
)
133 ply1divex.k . . . . . . . . . . . . . . . . . . . . . . 23  |-  K  =  ( Base `  R
)
134132, 13, 11, 133coe1f 17622 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( g  e.  B  ->  (coe1 `  g ) : NN0 --> K )
135134adantl 463 . . . . . . . . . . . . . . . . . . . . 21  |-  ( ( ( ph  /\  d  e.  NN0 )  /\  g  e.  B )  ->  (coe1 `  g ) : NN0 --> K )
136 simplr 749 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( ( ( ph  /\  d  e.  NN0 )  /\  g  e.  B )  ->  d  e.  NN0 )
137103, 136nn0addcld 10636 . . . . . . . . . . . . . . . . . . . . 21  |-  ( ( ( ph  /\  d  e.  NN0 )  /\  g  e.  B )  ->  (
( D `  G
)  +  d )  e.  NN0 )
138135, 137ffvelrnd 5841 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( ( ph  /\  d  e.  NN0 )  /\  g  e.  B )  ->  (
(coe1 `  g ) `  ( ( D `  G )  +  d ) )  e.  K
)
139 ply1divex.u . . . . . . . . . . . . . . . . . . . . 21  |-  .x.  =  ( .r `  R )
140133, 139rngcl 16648 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( R  e.  Ring  /\  I  e.  K  /\  (
(coe1 `  g ) `  ( ( D `  G )  +  d ) )  e.  K
)  ->  ( I  .x.  ( (coe1 `  g ) `  ( ( D `  G )  +  d ) ) )  e.  K )
141129, 131, 138, 140syl3anc 1213 . . . . . . . . . . . . . . . . . . 19  |-  ( ( ( ph  /\  d  e.  NN0 )  /\  g  e.  B )  ->  (
I  .x.  ( (coe1 `  g ) `  (
( D `  G
)  +  d ) ) )  e.  K
)
142 eqid 2441 . . . . . . . . . . . . . . . . . . . 20  |-  (var1 `  R
)  =  (var1 `  R
)
143 eqid 2441 . . . . . . . . . . . . . . . . . . . 20  |-  ( .s
`  P )  =  ( .s `  P
)
144 eqid 2441 . . . . . . . . . . . . . . . . . . . 20  |-  (mulGrp `  P )  =  (mulGrp `  P )
145 eqid 2441 . . . . . . . . . . . . . . . . . . . 20  |-  (.g `  (mulGrp `  P ) )  =  (.g `  (mulGrp `  P
) )
146133, 11, 142, 143, 144, 145, 13ply1tmcl 17679 . . . . . . . . . . . . . . . . . . 19  |-  ( ( R  e.  Ring  /\  (
I  .x.  ( (coe1 `  g ) `  (
( D `  G
)  +  d ) ) )  e.  K  /\  d  e.  NN0 )  ->  ( ( I 
.x.  ( (coe1 `  g
) `  ( ( D `  G )  +  d ) ) ) ( .s `  P ) ( d (.g `  (mulGrp `  P
) ) (var1 `  R
) ) )  e.  B )
147129, 141, 136, 146syl3anc 1213 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( ph  /\  d  e.  NN0 )  /\  g  e.  B )  ->  (
( I  .x.  (
(coe1 `  g ) `  ( ( D `  G )  +  d ) ) ) ( .s `  P ) ( d (.g `  (mulGrp `  P ) ) (var1 `  R ) ) )  e.  B )
14813, 71rngcl 16648 . . . . . . . . . . . . . . . . . 18  |-  ( ( P  e.  Ring  /\  G  e.  B  /\  (
( I  .x.  (
(coe1 `  g ) `  ( ( D `  G )  +  d ) ) ) ( .s `  P ) ( d (.g `  (mulGrp `  P ) ) (var1 `  R ) ) )  e.  B )  -> 
( G  .xb  (
( I  .x.  (
(coe1 `  g ) `  ( ( D `  G )  +  d ) ) ) ( .s `  P ) ( d (.g `  (mulGrp `  P ) ) (var1 `  R ) ) ) )  e.  B )
149127, 128, 147, 148syl3anc 1213 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ph  /\  d  e.  NN0 )  /\  g  e.  B )  ->  ( G  .xb  ( ( I 
.x.  ( (coe1 `  g
) `  ( ( D `  G )  +  d ) ) ) ( .s `  P ) ( d (.g `  (mulGrp `  P
) ) (var1 `  R
) ) ) )  e.  B )
150149adantrr 711 . . . . . . . . . . . . . . . 16  |-  ( ( ( ph  /\  d  e.  NN0 )  /\  (
g  e.  B  /\  ( D `  g )  <  ( ( D `
 G )  +  ( d  +  1 ) ) ) )  ->  ( G  .xb  ( ( I  .x.  ( (coe1 `  g ) `  ( ( D `  G )  +  d ) ) ) ( .s `  P ) ( d (.g `  (mulGrp `  P ) ) (var1 `  R ) ) ) )  e.  B )
151103nn0red 10633 . . . . . . . . . . . . . . . . . . 19  |-  ( ( ( ph  /\  d  e.  NN0 )  /\  g  e.  B )  ->  ( D `  G )  e.  RR )
152151leidd 9902 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( ph  /\  d  e.  NN0 )  /\  g  e.  B )  ->  ( D `  G )  <_  ( D `  G
) )
15310, 133, 11, 142, 143, 144, 145deg1tmle 21532 . . . . . . . . . . . . . . . . . . 19  |-  ( ( R  e.  Ring  /\  (
I  .x.  ( (coe1 `  g ) `  (
( D `  G
)  +  d ) ) )  e.  K  /\  d  e.  NN0 )  ->  ( D `  ( ( I  .x.  ( (coe1 `  g ) `  ( ( D `  G )  +  d ) ) ) ( .s `  P ) ( d (.g `  (mulGrp `  P ) ) (var1 `  R ) ) ) )  <_  d )
154129, 141, 136, 153syl3anc 1213 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( ph  /\  d  e.  NN0 )  /\  g  e.  B )  ->  ( D `  ( (
I  .x.  ( (coe1 `  g ) `  (
( D `  G
)  +  d ) ) ) ( .s
`  P ) ( d (.g `  (mulGrp `  P
) ) (var1 `  R
) ) ) )  <_  d )
15511, 10, 129, 13, 71, 128, 147, 103, 136, 152, 154deg1mulle2 21524 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ph  /\  d  e.  NN0 )  /\  g  e.  B )  ->  ( D `  ( G  .xb  ( ( I  .x.  ( (coe1 `  g ) `  ( ( D `  G )  +  d ) ) ) ( .s `  P ) ( d (.g `  (mulGrp `  P ) ) (var1 `  R ) ) ) ) )  <_  (
( D `  G
)  +  d ) )
156155adantrr 711 . . . . . . . . . . . . . . . 16  |-  ( ( ( ph  /\  d  e.  NN0 )  /\  (
g  e.  B  /\  ( D `  g )  <  ( ( D `
 G )  +  ( d  +  1 ) ) ) )  ->  ( D `  ( G  .xb  ( ( I  .x.  ( (coe1 `  g ) `  (
( D `  G
)  +  d ) ) ) ( .s
`  P ) ( d (.g `  (mulGrp `  P
) ) (var1 `  R
) ) ) ) )  <_  ( ( D `  G )  +  d ) )
157 eqid 2441 . . . . . . . . . . . . . . . 16  |-  (coe1 `  ( G  .xb  ( ( I 
.x.  ( (coe1 `  g
) `  ( ( D `  G )  +  d ) ) ) ( .s `  P ) ( d (.g `  (mulGrp `  P
) ) (var1 `  R
) ) ) ) )  =  (coe1 `  ( G  .xb  ( ( I 
.x.  ( (coe1 `  g
) `  ( ( D `  G )  +  d ) ) ) ( .s `  P ) ( d (.g `  (mulGrp `  P
) ) (var1 `  R
) ) ) ) )
158 eqid 2441 . . . . . . . . . . . . . . . . . . 19  |-  ( 0g
`  R )  =  ( 0g `  R
)
159158, 133, 11, 142, 143, 144, 145, 13, 71, 139, 128, 129, 141, 136, 103coe1tmmul2fv 17685 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( ph  /\  d  e.  NN0 )  /\  g  e.  B )  ->  (
(coe1 `  ( G  .xb  ( ( I  .x.  ( (coe1 `  g ) `  ( ( D `  G )  +  d ) ) ) ( .s `  P ) ( d (.g `  (mulGrp `  P ) ) (var1 `  R ) ) ) ) ) `  (
d  +  ( D `
 G ) ) )  =  ( ( (coe1 `  G ) `  ( D `  G ) )  .x.  ( I 
.x.  ( (coe1 `  g
) `  ( ( D `  G )  +  d ) ) ) ) )
160103nn0cnd 10634 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( ( ph  /\  d  e.  NN0 )  /\  g  e.  B )  ->  ( D `  G )  e.  CC )
161114ad2antlr 721 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( ( ph  /\  d  e.  NN0 )  /\  g  e.  B )  ->  d  e.  CC )
162160, 161addcomd 9567 . . . . . . . . . . . . . . . . . . 19  |-  ( ( ( ph  /\  d  e.  NN0 )  /\  g  e.  B )  ->  (
( D `  G
)  +  d )  =  ( d  +  ( D `  G
) ) )
163162fveq2d 5692 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( ph  /\  d  e.  NN0 )  /\  g  e.  B )  ->  (
(coe1 `  ( G  .xb  ( ( I  .x.  ( (coe1 `  g ) `  ( ( D `  G )  +  d ) ) ) ( .s `  P ) ( d (.g `  (mulGrp `  P ) ) (var1 `  R ) ) ) ) ) `  (
( D `  G
)  +  d ) )  =  ( (coe1 `  ( G  .xb  (
( I  .x.  (
(coe1 `  g ) `  ( ( D `  G )  +  d ) ) ) ( .s `  P ) ( d (.g `  (mulGrp `  P ) ) (var1 `  R ) ) ) ) ) `  (
d  +  ( D `
 G ) ) ) )
164 ply1divex.g3 . . . . . . . . . . . . . . . . . . . . 21  |-  ( ph  ->  ( ( (coe1 `  G
) `  ( D `  G ) )  .x.  I )  =  .1.  )
165164oveq1d 6105 . . . . . . . . . . . . . . . . . . . 20  |-  ( ph  ->  ( ( ( (coe1 `  G ) `  ( D `  G )
)  .x.  I )  .x.  ( (coe1 `  g ) `  ( ( D `  G )  +  d ) ) )  =  (  .1.  .x.  (
(coe1 `  g ) `  ( ( D `  G )  +  d ) ) ) )
166165ad2antrr 720 . . . . . . . . . . . . . . . . . . 19  |-  ( ( ( ph  /\  d  e.  NN0 )  /\  g  e.  B )  ->  (
( ( (coe1 `  G
) `  ( D `  G ) )  .x.  I )  .x.  (
(coe1 `  g ) `  ( ( D `  G )  +  d ) ) )  =  (  .1.  .x.  (
(coe1 `  g ) `  ( ( D `  G )  +  d ) ) ) )
167 eqid 2441 . . . . . . . . . . . . . . . . . . . . . . . 24  |-  (coe1 `  G
)  =  (coe1 `  G
)
168167, 13, 11, 133coe1f 17622 . . . . . . . . . . . . . . . . . . . . . . 23  |-  ( G  e.  B  ->  (coe1 `  G ) : NN0 --> K )
16917, 168syl 16 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( ph  ->  (coe1 `  G ) : NN0 --> K )
170169ad2antrr 720 . . . . . . . . . . . . . . . . . . . . 21  |-  ( ( ( ph  /\  d  e.  NN0 )  /\  g  e.  B )  ->  (coe1 `  G ) : NN0 --> K )
171170, 103ffvelrnd 5841 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( ( ph  /\  d  e.  NN0 )  /\  g  e.  B )  ->  (
(coe1 `  G ) `  ( D `  G ) )  e.  K )
172133, 139rngass 16651 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( R  e.  Ring  /\  (
( (coe1 `  G ) `  ( D `  G ) )  e.  K  /\  I  e.  K  /\  ( (coe1 `  g ) `  ( ( D `  G )  +  d ) )  e.  K
) )  ->  (
( ( (coe1 `  G
) `  ( D `  G ) )  .x.  I )  .x.  (
(coe1 `  g ) `  ( ( D `  G )  +  d ) ) )  =  ( ( (coe1 `  G
) `  ( D `  G ) )  .x.  ( I  .x.  ( (coe1 `  g ) `  (
( D `  G
)  +  d ) ) ) ) )
173129, 171, 131, 138, 172syl13anc 1215 . . . . . . . . . . . . . . . . . . 19  |-  ( ( ( ph  /\  d  e.  NN0 )  /\  g  e.  B )  ->  (
( ( (coe1 `  G
) `  ( D `  G ) )  .x.  I )  .x.  (
(coe1 `  g ) `  ( ( D `  G )  +  d ) ) )  =  ( ( (coe1 `  G
) `  ( D `  G ) )  .x.  ( I  .x.  ( (coe1 `  g ) `  (
( D `  G
)  +  d ) ) ) ) )
174 ply1divex.o . . . . . . . . . . . . . . . . . . . . 21  |-  .1.  =  ( 1r `  R )
175133, 139, 174rnglidm 16658 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( R  e.  Ring  /\  (
(coe1 `  g ) `  ( ( D `  G )  +  d ) )  e.  K
)  ->  (  .1.  .x.  ( (coe1 `  g ) `  ( ( D `  G )  +  d ) ) )  =  ( (coe1 `  g ) `  ( ( D `  G )  +  d ) ) )
176129, 138, 175syl2anc 656 . . . . . . . . . . . . . . . . . . 19  |-  ( ( ( ph  /\  d  e.  NN0 )  /\  g  e.  B )  ->  (  .1.  .x.  ( (coe1 `  g
) `  ( ( D `  G )  +  d ) ) )  =  ( (coe1 `  g ) `  (
( D `  G
)  +  d ) ) )
177166, 173, 1763eqtr3rd 2482 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( ph  /\  d  e.  NN0 )  /\  g  e.  B )  ->  (
(coe1 `  g ) `  ( ( D `  G )  +  d ) )  =  ( ( (coe1 `  G ) `  ( D `  G ) )  .x.  ( I 
.x.  ( (coe1 `  g
) `  ( ( D `  G )  +  d ) ) ) ) )
178159, 163, 1773eqtr4rd 2484 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ph  /\  d  e.  NN0 )  /\  g  e.  B )  ->  (
(coe1 `  g ) `  ( ( D `  G )  +  d ) )  =  ( (coe1 `  ( G  .xb  ( ( I  .x.  ( (coe1 `  g ) `  ( ( D `  G )  +  d ) ) ) ( .s `  P ) ( d (.g `  (mulGrp `  P ) ) (var1 `  R ) ) ) ) ) `  (
( D `  G
)  +  d ) ) )
179178adantrr 711 . . . . . . . . . . . . . . . 16  |-  ( ( ( ph  /\  d  e.  NN0 )  /\  (
g  e.  B  /\  ( D `  g )  <  ( ( D `
 G )  +  ( d  +  1 ) ) ) )  ->  ( (coe1 `  g
) `  ( ( D `  G )  +  d ) )  =  ( (coe1 `  ( G  .xb  ( ( I 
.x.  ( (coe1 `  g
) `  ( ( D `  G )  +  d ) ) ) ( .s `  P ) ( d (.g `  (mulGrp `  P
) ) (var1 `  R
) ) ) ) ) `  ( ( D `  G )  +  d ) ) )
18010, 11, 13, 78, 98, 99, 100, 126, 150, 156, 132, 157, 179deg1sublt 21525 . . . . . . . . . . . . . . 15  |-  ( ( ( ph  /\  d  e.  NN0 )  /\  (
g  e.  B  /\  ( D `  g )  <  ( ( D `
 G )  +  ( d  +  1 ) ) ) )  ->  ( D `  ( g  .-  ( G  .xb  ( ( I 
.x.  ( (coe1 `  g
) `  ( ( D `  G )  +  d ) ) ) ( .s `  P ) ( d (.g `  (mulGrp `  P
) ) (var1 `  R
) ) ) ) ) )  <  (
( D `  G
)  +  d ) )
181180adantlrr 715 . . . . . . . . . . . . . 14  |-  ( ( ( ph  /\  (
d  e.  NN0  /\  A. f  e.  B  ( ( D `  f
)  <  ( ( D `  G )  +  d )  ->  E. q  e.  B  ( D `  ( f 
.-  ( G  .xb  q ) ) )  <  ( D `  G ) ) ) )  /\  ( g  e.  B  /\  ( D `  g )  <  ( ( D `  G )  +  ( d  +  1 ) ) ) )  -> 
( D `  (
g  .-  ( G  .xb  ( ( I  .x.  ( (coe1 `  g ) `  ( ( D `  G )  +  d ) ) ) ( .s `  P ) ( d (.g `  (mulGrp `  P ) ) (var1 `  R ) ) ) ) ) )  < 
( ( D `  G )  +  d ) )
18277ad2antrr 720 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( ph  /\  d  e.  NN0 )  /\  g  e.  B )  ->  P  e.  Grp )
183 simpr 458 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( ph  /\  d  e.  NN0 )  /\  g  e.  B )  ->  g  e.  B )
18413, 78grpsubcl 15599 . . . . . . . . . . . . . . . . . 18  |-  ( ( P  e.  Grp  /\  g  e.  B  /\  ( G  .xb  ( ( I  .x.  ( (coe1 `  g ) `  (
( D `  G
)  +  d ) ) ) ( .s
`  P ) ( d (.g `  (mulGrp `  P
) ) (var1 `  R
) ) ) )  e.  B )  -> 
( g  .-  ( G  .xb  ( ( I 
.x.  ( (coe1 `  g
) `  ( ( D `  G )  +  d ) ) ) ( .s `  P ) ( d (.g `  (mulGrp `  P
) ) (var1 `  R
) ) ) ) )  e.  B )
185182, 183, 149, 184syl3anc 1213 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ph  /\  d  e.  NN0 )  /\  g  e.  B )  ->  (
g  .-  ( G  .xb  ( ( I  .x.  ( (coe1 `  g ) `  ( ( D `  G )  +  d ) ) ) ( .s `  P ) ( d (.g `  (mulGrp `  P ) ) (var1 `  R ) ) ) ) )  e.  B
)
186185adantrr 711 . . . . . . . . . . . . . . . 16  |-  ( ( ( ph  /\  d  e.  NN0 )  /\  (
g  e.  B  /\  ( D `  g )  <  ( ( D `
 G )  +  ( d  +  1 ) ) ) )  ->  ( g  .-  ( G  .xb  ( ( I  .x.  ( (coe1 `  g ) `  (
( D `  G
)  +  d ) ) ) ( .s
`  P ) ( d (.g `  (mulGrp `  P
) ) (var1 `  R
) ) ) ) )  e.  B )
187186adantlrr 715 . . . . . . . . . . . . . . 15  |-  ( ( ( ph  /\  (
d  e.  NN0  /\  A. f  e.  B  ( ( D `  f
)  <  ( ( D `  G )  +  d )  ->  E. q  e.  B  ( D `  ( f 
.-  ( G  .xb  q ) ) )  <  ( D `  G ) ) ) )  /\  ( g  e.  B  /\  ( D `  g )  <  ( ( D `  G )  +  ( d  +  1 ) ) ) )  -> 
( g  .-  ( G  .xb  ( ( I 
.x.  ( (coe1 `  g
) `  ( ( D `  G )  +  d ) ) ) ( .s `  P ) ( d (.g `  (mulGrp `  P
) ) (var1 `  R
) ) ) ) )  e.  B )
188 simplrr 755 . . . . . . . . . . . . . . 15  |-  ( ( ( ph  /\  (
d  e.  NN0  /\  A. f  e.  B  ( ( D `  f
)  <  ( ( D `  G )  +  d )  ->  E. q  e.  B  ( D `  ( f 
.-  ( G  .xb  q ) ) )  <  ( D `  G ) ) ) )  /\  ( g  e.  B  /\  ( D `  g )  <  ( ( D `  G )  +  ( d  +  1 ) ) ) )  ->  A. f  e.  B  ( ( D `  f )  <  (
( D `  G
)  +  d )  ->  E. q  e.  B  ( D `  ( f 
.-  ( G  .xb  q ) ) )  <  ( D `  G ) ) )
189 fveq2 5688 . . . . . . . . . . . . . . . . . 18  |-  ( f  =  ( g  .-  ( G  .xb  ( ( I  .x.  ( (coe1 `  g ) `  (
( D `  G
)  +  d ) ) ) ( .s
`  P ) ( d (.g `  (mulGrp `  P
) ) (var1 `  R
) ) ) ) )  ->  ( D `  f )  =  ( D `  ( g 
.-  ( G  .xb  ( ( I  .x.  ( (coe1 `  g ) `  ( ( D `  G )  +  d ) ) ) ( .s `  P ) ( d (.g `  (mulGrp `  P ) ) (var1 `  R ) ) ) ) ) ) )
190189breq1d 4299 . . . . . . . . . . . . . . . . 17  |-  ( f  =  ( g  .-  ( G  .xb  ( ( I  .x.  ( (coe1 `  g ) `  (
( D `  G
)  +  d ) ) ) ( .s
`  P ) ( d (.g `  (mulGrp `  P
) ) (var1 `  R
) ) ) ) )  ->  ( ( D `  f )  <  ( ( D `  G )  +  d )  <->  ( D `  ( g  .-  ( G  .xb  ( ( I 
.x.  ( (coe1 `  g
) `  ( ( D `  G )  +  d ) ) ) ( .s `  P ) ( d (.g `  (mulGrp `  P
) ) (var1 `  R
) ) ) ) ) )  <  (
( D `  G
)  +  d ) ) )
191 oveq1 6097 . . . . . . . . . . . . . . . . . . . 20  |-  ( f  =  ( g  .-  ( G  .xb  ( ( I  .x.  ( (coe1 `  g ) `  (
( D `  G
)  +  d ) ) ) ( .s
`  P ) ( d (.g `  (mulGrp `  P
) ) (var1 `  R
) ) ) ) )  ->  ( f  .-  ( G  .xb  q
) )  =  ( ( g  .-  ( G  .xb  ( ( I 
.x.  ( (coe1 `  g
) `  ( ( D `  G )  +  d ) ) ) ( .s `  P ) ( d (.g `  (mulGrp `  P
) ) (var1 `  R
) ) ) ) )  .-  ( G 
.xb  q ) ) )
192191fveq2d 5692 . . . . . . . . . . . . . . . . . . 19  |-  ( f  =  ( g  .-  ( G  .xb  ( ( I  .x.  ( (coe1 `  g ) `  (
( D `  G
)  +  d ) ) ) ( .s
`  P ) ( d (.g `  (mulGrp `  P
) ) (var1 `  R
) ) ) ) )  ->  ( D `  ( f  .-  ( G  .xb  q ) ) )  =  ( D `
 ( ( g 
.-  ( G  .xb  ( ( I  .x.  ( (coe1 `  g ) `  ( ( D `  G )  +  d ) ) ) ( .s `  P ) ( d (.g `  (mulGrp `  P ) ) (var1 `  R ) ) ) ) )  .-  ( G  .xb  q ) ) ) )
193192breq1d 4299 . . . . . . . . . . . . . . . . . 18  |-  ( f  =  ( g  .-  ( G  .xb  ( ( I  .x.  ( (coe1 `  g ) `  (
( D `  G
)  +  d ) ) ) ( .s
`  P ) ( d (.g `  (mulGrp `  P
) ) (var1 `  R
) ) ) ) )  ->  ( ( D `  ( f  .-  ( G  .xb  q
) ) )  < 
( D `  G
)  <->  ( D `  ( ( g  .-  ( G  .xb  ( ( I  .x.  ( (coe1 `  g ) `  (
( D `  G
)  +  d ) ) ) ( .s
`  P ) ( d (.g `  (mulGrp `  P
) ) (var1 `  R
) ) ) ) )  .-  ( G 
.xb  q ) ) )  <  ( D `
 G ) ) )
194193rexbidv 2734 . . . . . . . . . . . . . . . . 17  |-  ( f  =  ( g  .-  ( G  .xb  ( ( I  .x.  ( (coe1 `  g ) `  (
( D `  G
)  +  d ) ) ) ( .s
`  P ) ( d (.g `  (mulGrp `  P
) ) (var1 `  R
) ) ) ) )  ->  ( E. q  e.  B  ( D `  ( f  .-  ( G  .xb  q
) ) )  < 
( D `  G
)  <->  E. q  e.  B  ( D `  ( ( g  .-  ( G 
.xb  ( ( I 
.x.  ( (coe1 `  g
) `  ( ( D `  G )  +  d ) ) ) ( .s `  P ) ( d (.g `  (mulGrp `  P
) ) (var1 `  R
) ) ) ) )  .-  ( G 
.xb  q ) ) )  <  ( D `
 G ) ) )
195190, 194imbi12d 320 . . . . . . . . . . . . . . . 16  |-  ( f  =  ( g  .-  ( G  .xb  ( ( I  .x.  ( (coe1 `  g ) `  (
( D `  G
)  +  d ) ) ) ( .s
`  P ) ( d (.g `  (mulGrp `  P
) ) (var1 `  R
) ) ) ) )  ->  ( (
( D `  f
)  <  ( ( D `  G )  +  d )  ->  E. q  e.  B  ( D `  ( f 
.-  ( G  .xb  q ) ) )  <  ( D `  G ) )  <->  ( ( D `  ( g  .-  ( G  .xb  (
( I  .x.  (
(coe1 `  g ) `  ( ( D `  G )  +  d ) ) ) ( .s `  P ) ( d (.g `  (mulGrp `  P ) ) (var1 `  R ) ) ) ) ) )  < 
( ( D `  G )  +  d )  ->  E. q  e.  B  ( D `  ( ( g  .-  ( G  .xb  ( ( I  .x.  ( (coe1 `  g ) `  (
( D `  G
)  +  d ) ) ) ( .s
`  P ) ( d (.g `  (mulGrp `  P
) ) (var1 `  R
) ) ) ) )  .-  ( G 
.xb  q ) ) )  <  ( D `
 G ) ) ) )
196195rspcva 3068 . . . . . . . . . . . . . . 15  |-  ( ( ( g  .-  ( G  .xb  ( ( I 
.x.  ( (coe1 `  g
) `  ( ( D `  G )  +  d ) ) ) ( .s `  P ) ( d (.g `  (mulGrp `  P
) ) (var1 `  R
) ) ) ) )  e.  B  /\  A. f  e.  B  ( ( D `  f
)  <  ( ( D `  G )  +  d )  ->  E. q  e.  B  ( D `  ( f 
.-  ( G  .xb  q ) ) )  <  ( D `  G ) ) )  ->  ( ( D `
 ( g  .-  ( G  .xb  ( ( I  .x.  ( (coe1 `  g ) `  (
( D `  G
)  +  d ) ) ) ( .s
`  P ) ( d (.g `  (mulGrp `  P
) ) (var1 `  R
) ) ) ) ) )  <  (
( D `  G
)  +  d )  ->  E. q  e.  B  ( D `  ( ( g  .-  ( G 
.xb  ( ( I 
.x.  ( (coe1 `  g
) `  ( ( D `  G )  +  d ) ) ) ( .s `  P ) ( d (.g `  (mulGrp `  P
) ) (var1 `  R
) ) ) ) )  .-  ( G 
.xb  q ) ) )  <  ( D `
 G ) ) )
197187, 188, 196syl2anc 656 . . . . . . . . . . . . . 14  |-  ( ( ( ph  /\  (
d  e.  NN0  /\  A. f  e.  B  ( ( D `  f
)  <  ( ( D `  G )  +  d )  ->  E. q  e.  B  ( D `  ( f 
.-  ( G  .xb  q ) ) )  <  ( D `  G ) ) ) )  /\  ( g  e.  B  /\  ( D `  g )  <  ( ( D `  G )  +  ( d  +  1 ) ) ) )  -> 
( ( D `  ( g  .-  ( G  .xb  ( ( I 
.x.  ( (coe1 `  g
) `  ( ( D `  G )  +  d ) ) ) ( .s `  P ) ( d (.g `  (mulGrp `  P
) ) (var1 `  R
) ) ) ) ) )  <  (
( D `  G
)  +  d )  ->  E. q  e.  B  ( D `  ( ( g  .-  ( G 
.xb  ( ( I 
.x.  ( (coe1 `  g
) `  ( ( D `  G )  +  d ) ) ) ( .s `  P ) ( d (.g `  (mulGrp `  P
) ) (var1 `  R
) ) ) ) )  .-  ( G 
.xb  q ) ) )  <  ( D `
 G ) ) )
198181, 197mpd 15 . . . . . . . . . . . . 13  |-  ( ( ( ph  /\  (
d  e.  NN0  /\  A. f  e.  B  ( ( D `  f
)  <  ( ( D `  G )  +  d )  ->  E. q  e.  B  ( D `  ( f 
.-  ( G  .xb  q ) ) )  <  ( D `  G ) ) ) )  /\  ( g  e.  B  /\  ( D `  g )  <  ( ( D `  G )  +  ( d  +  1 ) ) ) )  ->  E. q  e.  B  ( D `  ( ( g  .-  ( G 
.xb  ( ( I 
.x.  ( (coe1 `  g
) `  ( ( D `  G )  +  d ) ) ) ( .s `  P ) ( d (.g `  (mulGrp `  P
) ) (var1 `  R
) ) ) ) )  .-  ( G 
.xb  q ) ) )  <  ( D `
 G ) )
19967ad3antrrr 724 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( ( ph  /\  d  e.  NN0 )  /\  g  e.  B )  /\  q  e.  B
)  ->  P  e.  Ring )
200 simpr 458 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( ( ph  /\  d  e.  NN0 )  /\  g  e.  B )  /\  q  e.  B
)  ->  q  e.  B )
201147adantr 462 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( ( ph  /\  d  e.  NN0 )  /\  g  e.  B )  /\  q  e.  B
)  ->  ( (
I  .x.  ( (coe1 `  g ) `  (
( D `  G
)  +  d ) ) ) ( .s
`  P ) ( d (.g `  (mulGrp `  P
) ) (var1 `  R
) ) )  e.  B )
202 eqid 2441 . . . . . . . . . . . . . . . . . . 19  |-  ( +g  `  P )  =  ( +g  `  P )
20313, 202rngacl 16662 . . . . . . . . . . . . . . . . . 18  |-  ( ( P  e.  Ring  /\  q  e.  B  /\  (
( I  .x.  (
(coe1 `  g ) `  ( ( D `  G )  +  d ) ) ) ( .s `  P ) ( d (.g `  (mulGrp `  P ) ) (var1 `  R ) ) )  e.  B )  -> 
( q ( +g  `  P ) ( ( I  .x.  ( (coe1 `  g ) `  (
( D `  G
)  +  d ) ) ) ( .s
`  P ) ( d (.g `  (mulGrp `  P
) ) (var1 `  R
) ) ) )  e.  B )
204199, 200, 201, 203syl3anc 1213 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ( ph  /\  d  e.  NN0 )  /\  g  e.  B )  /\  q  e.  B
)  ->  ( q
( +g  `  P ) ( ( I  .x.  ( (coe1 `  g ) `  ( ( D `  G )  +  d ) ) ) ( .s `  P ) ( d (.g `  (mulGrp `  P ) ) (var1 `  R ) ) ) )  e.  B )
20577ad3antrrr 724 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( ( ( ( ph  /\  d  e.  NN0 )  /\  g  e.  B )  /\  q  e.  B
)  ->  P  e.  Grp )
206 simplr 749 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( ( ( ( ph  /\  d  e.  NN0 )  /\  g  e.  B )  /\  q  e.  B
)  ->  g  e.  B )
207149adantr 462 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( ( ( ( ph  /\  d  e.  NN0 )  /\  g  e.  B )  /\  q  e.  B
)  ->  ( G  .xb  ( ( I  .x.  ( (coe1 `  g ) `  ( ( D `  G )  +  d ) ) ) ( .s `  P ) ( d (.g `  (mulGrp `  P ) ) (var1 `  R ) ) ) )  e.  B )
20817ad3antrrr 724 . . . . . . . . . . . . . . . . . . . . . . 23  |-  ( ( ( ( ph  /\  d  e.  NN0 )  /\  g  e.  B )  /\  q  e.  B
)  ->  G  e.  B )
20913, 71rngcl 16648 . . . . . . . . . . . . . . . . . . . . . . 23  |-  ( ( P  e.  Ring  /\  G  e.  B  /\  q  e.  B )  ->  ( G  .xb  q )  e.  B )
210199, 208, 200, 209syl3anc 1213 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( ( ( ( ph  /\  d  e.  NN0 )  /\  g  e.  B )  /\  q  e.  B
)  ->  ( G  .xb  q )  e.  B
)
21113, 202, 78grpsubsub4 15611 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( ( P  e.  Grp  /\  ( g  e.  B  /\  ( G  .xb  (
( I  .x.  (
(coe1 `  g ) `  ( ( D `  G )  +  d ) ) ) ( .s `  P ) ( d (.g `  (mulGrp `  P ) ) (var1 `  R ) ) ) )  e.  B  /\  ( G  .xb  q )  e.  B ) )  ->  ( ( g 
.-  ( G  .xb  ( ( I  .x.  ( (coe1 `  g ) `  ( ( D `  G )  +  d ) ) ) ( .s `  P ) ( d (.g `  (mulGrp `  P ) ) (var1 `  R ) ) ) ) )  .-  ( G  .xb  q ) )  =  ( g  .-  ( ( G  .xb  q ) ( +g  `  P ) ( G 
.xb  ( ( I 
.x.  ( (coe1 `  g
) `  ( ( D `  G )  +  d ) ) ) ( .s `  P ) ( d (.g `  (mulGrp `  P
) ) (var1 `  R
) ) ) ) ) ) )
212205, 206, 207, 210, 211syl13anc 1215 . . . . . . . . . . . . . . . . . . . . 21  |-  ( ( ( ( ph  /\  d  e.  NN0 )  /\  g  e.  B )  /\  q  e.  B
)  ->  ( (
g  .-  ( G  .xb  ( ( I  .x.  ( (coe1 `  g ) `  ( ( D `  G )  +  d ) ) ) ( .s `  P ) ( d (.g `  (mulGrp `  P ) ) (var1 `  R ) ) ) ) )  .-  ( G  .xb  q ) )  =  ( g  .-  ( ( G  .xb  q ) ( +g  `  P ) ( G 
.xb  ( ( I 
.x.  ( (coe1 `  g
) `  ( ( D `  G )  +  d ) ) ) ( .s `  P ) ( d (.g `  (mulGrp `  P
) ) (var1 `  R
) ) ) ) ) ) )
21313, 202, 71rngdi 16653 . . . . . . . . . . . . . . . . . . . . . . 23  |-  ( ( P  e.  Ring  /\  ( G  e.  B  /\  q  e.  B  /\  ( ( I  .x.  ( (coe1 `  g ) `  ( ( D `  G )  +  d ) ) ) ( .s `  P ) ( d (.g `  (mulGrp `  P ) ) (var1 `  R ) ) )  e.  B ) )  ->  ( G  .xb  ( q ( +g  `  P ) ( ( I  .x.  ( (coe1 `  g ) `  (
( D `  G
)  +  d ) ) ) ( .s
`  P ) ( d (.g `  (mulGrp `  P
) ) (var1 `  R
) ) ) ) )  =  ( ( G  .xb  q )
( +g  `  P ) ( G  .xb  (
( I  .x.  (
(coe1 `  g ) `  ( ( D `  G )  +  d ) ) ) ( .s `  P ) ( d (.g `  (mulGrp `  P ) ) (var1 `  R ) ) ) ) ) )
214199, 208, 200, 201, 213syl13anc 1215 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( ( ( ( ph  /\  d  e.  NN0 )  /\  g  e.  B )  /\  q  e.  B
)  ->  ( G  .xb  ( q ( +g  `  P ) ( ( I  .x.  ( (coe1 `  g ) `  (
( D `  G
)  +  d ) ) ) ( .s
`  P ) ( d (.g `  (mulGrp `  P
) ) (var1 `  R
) ) ) ) )  =  ( ( G  .xb  q )
( +g  `  P ) ( G  .xb  (
( I  .x.  (
(coe1 `  g ) `  ( ( D `  G )  +  d ) ) ) ( .s `  P ) ( d (.g `  (mulGrp `  P ) ) (var1 `  R ) ) ) ) ) )
215214oveq2d 6106 . . . . . . . . . . . . . . . . . . . . 21  |-  ( ( ( ( ph  /\  d  e.  NN0 )  /\  g  e.  B )  /\  q  e.  B
)  ->  ( g  .-  ( G  .xb  (
q ( +g  `  P
) ( ( I 
.x.  ( (coe1 `  g
) `  ( ( D `  G )  +  d ) ) ) ( .s `  P ) ( d (.g `  (mulGrp `  P
) ) (var1 `  R
) ) ) ) ) )  =  ( g  .-  ( ( G  .xb  q )
( +g  `  P ) ( G  .xb  (
( I  .x.  (
(coe1 `  g ) `  ( ( D `  G )  +  d ) ) ) ( .s `  P ) ( d (.g `  (mulGrp `  P ) ) (var1 `  R ) ) ) ) ) ) )
216212, 215eqtr4d 2476 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( ( ( ph  /\  d  e.  NN0 )  /\  g  e.  B )  /\  q  e.  B
)  ->  ( (
g  .-  ( G  .xb  ( ( I  .x.  ( (coe1 `  g ) `  ( ( D `  G )  +  d ) ) ) ( .s `  P ) ( d (.g `  (mulGrp `  P ) ) (var1 `  R ) ) ) ) )  .-  ( G  .xb  q ) )  =  ( g  .-  ( G  .xb  ( q ( +g  `  P
) ( ( I 
.x.  ( (coe1 `  g
) `  ( ( D `  G )  +  d ) ) ) ( .s `  P ) ( d (.g `  (mulGrp `  P
) ) (var1 `  R
) ) ) ) ) ) )
217216fveq2d 5692 . . . . . . . . . . . . . . . . . . 19  |-  ( ( ( ( ph  /\  d  e.  NN0 )  /\  g  e.  B )  /\  q  e.  B
)  ->  ( D `  ( ( g  .-  ( G  .xb  ( ( I  .x.  ( (coe1 `  g ) `  (
( D `  G
)  +  d ) ) ) ( .s
`  P ) ( d (.g `  (mulGrp `  P
) ) (var1 `  R
) ) ) ) )  .-  ( G 
.xb  q ) ) )  =  ( D `
 ( g  .-  ( G  .xb  ( q ( +g  `  P
) ( ( I 
.x.  ( (coe1 `  g
) `  ( ( D `  G )  +  d ) ) ) ( .s `  P ) ( d (.g `  (mulGrp `  P
) ) (var1 `  R
) ) ) ) ) ) ) )
218217breq1d 4299 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( ( ph  /\  d  e.  NN0 )  /\  g  e.  B )  /\  q  e.  B
)  ->  ( ( D `  ( (
g  .-  ( G  .xb  ( ( I  .x.  ( (coe1 `  g ) `  ( ( D `  G )  +  d ) ) ) ( .s `  P ) ( d (.g `  (mulGrp `  P ) ) (var1 `  R ) ) ) ) )  .-  ( G  .xb  q ) ) )  <  ( D `
 G )  <->  ( D `  ( g  .-  ( G  .xb  ( q ( +g  `  P ) ( ( I  .x.  ( (coe1 `  g ) `  ( ( D `  G )  +  d ) ) ) ( .s `  P ) ( d (.g `  (mulGrp `  P ) ) (var1 `  R ) ) ) ) ) ) )  <  ( D `  G ) ) )
219218biimpd 207 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ( ph  /\  d  e.  NN0 )  /\  g  e.  B )  /\  q  e.  B
)  ->  ( ( D `  ( (
g  .-  ( G  .xb  ( ( I  .x.  ( (coe1 `  g ) `  ( ( D `  G )  +  d ) ) ) ( .s `  P ) ( d (.g `  (mulGrp `  P ) ) (var1 `  R ) ) ) ) )  .-  ( G  .xb  q ) ) )  <  ( D `
 G )  -> 
( D `  (
g  .-  ( G  .xb  ( q ( +g  `  P ) ( ( I  .x.  ( (coe1 `  g ) `  (
( D `  G
)  +  d ) ) ) ( .s
`  P ) ( d (.g `  (mulGrp `  P
) ) (var1 `  R
) ) ) ) ) ) )  < 
( D `  G
) ) )
220 oveq2 6098 . . . . . . . . . . . . . . . . . . . . 21  |-  ( r  =  ( q ( +g  `  P ) ( ( I  .x.  ( (coe1 `  g ) `  ( ( D `  G )  +  d ) ) ) ( .s `  P ) ( d (.g `  (mulGrp `  P ) ) (var1 `  R ) ) ) )  ->  ( G  .xb  r )  =  ( G  .xb  ( q
( +g  `  P ) ( ( I  .x.  ( (coe1 `  g ) `  ( ( D `  G )  +  d ) ) ) ( .s `  P ) ( d (.g `  (mulGrp `  P ) ) (var1 `  R ) ) ) ) ) )
221220oveq2d 6106 . . . . . . . . . . . . . . . . . . . 20  |-  ( r  =  ( q ( +g  `  P ) ( ( I  .x.  ( (coe1 `  g ) `  ( ( D `  G )  +  d ) ) ) ( .s `  P ) ( d (.g `  (mulGrp `  P ) ) (var1 `  R ) ) ) )  ->  ( g  .-  ( G  .xb  r
) )  =  ( g  .-  ( G 
.xb  ( q ( +g  `  P ) ( ( I  .x.  ( (coe1 `  g ) `  ( ( D `  G )  +  d ) ) ) ( .s `  P ) ( d (.g `  (mulGrp `  P ) ) (var1 `  R ) ) ) ) ) ) )
222221fveq2d 5692 . . . . . . . . . . . . . . . . . . 19  |-  ( r  =  ( q ( +g  `  P ) ( ( I  .x.  ( (coe1 `  g ) `  ( ( D `  G )  +  d ) ) ) ( .s `  P ) ( d (.g `  (mulGrp `  P ) ) (var1 `  R ) ) ) )  ->  ( D `  ( g  .-  ( G  .xb  r ) ) )  =  ( D `
 ( g  .-  ( G  .xb  ( q ( +g  `  P
) ( ( I 
.x.  ( (coe1 `  g
) `  ( ( D `  G )  +  d ) ) ) ( .s `  P ) ( d (.g `  (mulGrp `  P
) ) (var1 `  R
) ) ) ) ) ) ) )
223222breq1d 4299 . . . . . . . . . . . . . . . . . 18  |-  ( r  =  ( q ( +g  `  P ) ( ( I  .x.  ( (coe1 `  g ) `  ( ( D `  G )  +  d ) ) ) ( .s `  P ) ( d (.g `  (mulGrp `  P ) ) (var1 `  R ) ) ) )  ->  ( ( D `  ( g  .-  ( G  .xb  r
) ) )  < 
( D `  G
)  <->  ( D `  ( g  .-  ( G  .xb  ( q ( +g  `  P ) ( ( I  .x.  ( (coe1 `  g ) `  ( ( D `  G )  +  d ) ) ) ( .s `  P ) ( d (.g `  (mulGrp `  P ) ) (var1 `  R ) ) ) ) ) ) )  <  ( D `  G ) ) )
224223rspcev 3070 . . . . . . . . . . . . . . . . 17  |-  ( ( ( q ( +g  `  P ) ( ( I  .x.  ( (coe1 `  g ) `  (
( D `  G
)  +  d ) ) ) ( .s
`  P ) ( d (.g `  (mulGrp `  P
) ) (var1 `  R
) ) ) )  e.  B  /\  ( D `  ( g  .-  ( G  .xb  (
q ( +g  `  P
) ( ( I 
.x.  ( (coe1 `  g
) `  ( ( D `  G )  +  d ) ) ) ( .s `  P ) ( d (.g `  (mulGrp `  P
) ) (var1 `  R
) ) ) ) ) ) )  < 
( D `  G
) )  ->  E. r  e.  B  ( D `  ( g  .-  ( G  .xb  r ) ) )  <  ( D `
 G ) )
225204, 219, 224syl6an 542 . . . . . . . . . . . . . . . 16  |-  ( ( ( ( ph  /\  d  e.  NN0 )  /\  g  e.  B )  /\  q  e.  B
)  ->  ( ( D `  ( (
g  .-  ( G  .xb  ( ( I  .x.  ( (coe1 `  g ) `  ( ( D `  G )  +  d ) ) ) ( .s `  P ) ( d (.g `  (mulGrp `  P ) ) (var1 `  R ) ) ) ) )  .-  ( G  .xb  q ) ) )  <  ( D `
 G )  ->  E. r  e.  B  ( D `  ( g 
.-  ( G  .xb  r ) ) )  <  ( D `  G ) ) )
226225rexlimdva 2839 . . . . . . . . . . . . . . 15  |-  ( ( ( ph  /\  d  e.  NN0 )  /\  g  e.  B )  ->  ( E. q  e.  B  ( D `  ( ( g  .-  ( G 
.xb  ( ( I 
.x.  ( (coe1 `  g
) `  ( ( D `  G )  +  d ) ) ) ( .s `  P ) ( d (.g `  (mulGrp `  P
) ) (var1 `  R
) ) ) ) )  .-  ( G 
.xb  q ) ) )  <  ( D `
 G )  ->  E. r  e.  B  ( D `  ( g 
.-  ( G  .xb  r ) ) )  <  ( D `  G ) ) )
227226adantrr 711 . . . . . . . . . . . . . 14  |-  ( ( ( ph  /\  d  e.  NN0 )  /\  (
g  e.  B  /\  ( D `  g )  <  ( ( D `
 G )  +  ( d  +  1 ) ) ) )  ->  ( E. q  e.  B  ( D `  ( ( g  .-  ( G  .xb  ( ( I  .x.  ( (coe1 `  g ) `  (
( D `  G
)  +  d ) ) ) ( .s
`  P ) ( d (.g `  (mulGrp `  P
) ) (var1 `  R
) ) ) ) )  .-  ( G 
.xb  q ) ) )  <  ( D `
 G )  ->  E. r  e.  B  ( D `  ( g 
.-  ( G  .xb  r ) ) )  <  ( D `  G ) ) )
228227adantlrr 715 . . . . . . . . . . . . 13  |-  ( ( ( ph  /\  (
d  e.  NN0  /\  A. f  e.  B  ( ( D `  f
)  <  ( ( D `  G )  +  d )  ->  E. q  e.  B  ( D `  ( f 
.-  ( G  .xb  q ) ) )  <  ( D `  G ) ) ) )  /\  ( g  e.  B  /\  ( D `  g )  <  ( ( D `  G )  +  ( d  +  1 ) ) ) )  -> 
( E. q  e.  B  ( D `  ( ( g  .-  ( G  .xb  ( ( I  .x.  ( (coe1 `  g ) `  (
( D `  G
)  +  d ) ) ) ( .s
`  P ) ( d (.g `  (mulGrp `  P
) ) (var1 `  R
) ) ) ) )  .-  ( G 
.xb  q ) ) )  <  ( D `
 G )  ->  E. r  e.  B  ( D `  ( g 
.-  ( G  .xb  r ) ) )  <  ( D `  G ) ) )
229198, 228mpd 15 . . . . . . . . . . . 12  |-  ( ( ( ph  /\  (
d  e.  NN0  /\  A. f  e.  B  ( ( D `  f
)  <  ( ( D `  G )  +  d )  ->  E. q  e.  B  ( D `  ( f 
.-  ( G  .xb  q ) ) )  <  ( D `  G ) ) ) )  /\  ( g  e.  B  /\  ( D `  g )  <  ( ( D `  G )  +  ( d  +  1 ) ) ) )  ->  E. r  e.  B  ( D `  ( g 
.-  ( G  .xb  r ) ) )  <  ( D `  G ) )
230229expr 612 . . . . . . . . . . 11  |-  ( ( ( ph  /\  (
d  e.  NN0  /\  A. f  e.  B  ( ( D `  f
)  <  ( ( D `  G )  +  d )  ->  E. q  e.  B  ( D `  ( f 
.-  ( G  .xb  q ) ) )  <  ( D `  G ) ) ) )  /\  g  e.  B )  ->  (
( D `  g
)  <  ( ( D `  G )  +  ( d  +  1 ) )  ->  E. r  e.  B  ( D `  ( g 
.-  ( G  .xb  r ) ) )  <  ( D `  G ) ) )
231230ralrimiva 2797 . . . . . . . . . 10  |-  ( (
ph  /\  ( d  e.  NN0  /\  A. f  e.  B  ( ( D `  f )  <  ( ( D `  G )  +  d )  ->  E. q  e.  B  ( D `  ( f  .-  ( G  .xb  q ) ) )  <  ( D `
 G ) ) ) )  ->  A. g  e.  B  ( ( D `  g )  <  ( ( D `  G )  +  ( d  +  1 ) )  ->  E. r  e.  B  ( D `  ( g  .-  ( G  .xb  r ) ) )  <  ( D `
 G ) ) )
232 fveq2 5688 . . . . . . . . . . . . 13  |-  ( g  =  f  ->  ( D `  g )  =  ( D `  f ) )
233232breq1d 4299 . . . . . . . . . . . 12  |-  ( g  =  f  ->  (
( D `  g
)  <  ( ( D `  G )  +  ( d  +  1 ) )  <->  ( D `  f )  <  (
( D `  G
)  +  ( d  +  1 ) ) ) )
234 oveq1 6097 . . . . . . . . . . . . . . . 16  |-  ( g  =  f  ->  (
g  .-  ( G  .xb  r ) )  =  ( f  .-  ( G  .xb  r ) ) )
235234fveq2d 5692 . . . . . . . . . . . . . . 15  |-  ( g  =  f  ->  ( D `  ( g  .-  ( G  .xb  r
) ) )  =  ( D `  (
f  .-  ( G  .xb  r ) ) ) )
236235breq1d 4299 . . . . . . . . . . . . . 14  |-  ( g  =  f  ->  (
( D `  (
g  .-  ( G  .xb  r ) ) )  <  ( D `  G )  <->  ( D `  ( f  .-  ( G  .xb  r ) ) )  <  ( D `
 G ) ) )
237236rexbidv 2734 . . . . . . . . . . . . 13  |-  ( g  =  f  ->  ( E. r  e.  B  ( D `  ( g 
.-  ( G  .xb  r ) ) )  <  ( D `  G )  <->  E. r  e.  B  ( D `  ( f  .-  ( G  .xb  r ) ) )  <  ( D `
 G ) ) )
238 oveq2 6098 . . . . . . . . . . . . . . . . 17  |-  ( r  =  q  ->  ( G  .xb  r )  =  ( G  .xb  q
) )
239238oveq2d 6106 . . . . . . . . . . . . . . . 16  |-  ( r  =  q  ->  (
f  .-  ( G  .xb  r ) )  =  ( f  .-  ( G  .xb  q ) ) )
240239fveq2d 5692 . . . . . . . . . . . . . . 15  |-  ( r  =  q  ->  ( D `  ( f  .-  ( G  .xb  r
) ) )  =  ( D `  (
f  .-  ( G  .xb  q ) ) ) )
241240breq1d 4299 . . . . . . . . . . . . . 14  |-  ( r  =  q  ->  (
( D `  (
f  .-  ( G  .xb  r ) ) )  <  ( D `  G )  <->  ( D `  ( f  .-  ( G  .xb  q ) ) )  <  ( D `
 G ) ) )
242241cbvrexv 2946 . . . . . . . . . . . . 13  |-  ( E. r  e.  B  ( D `  ( f 
.-  ( G  .xb  r ) ) )  <  ( D `  G )  <->  E. q  e.  B  ( D `  ( f  .-  ( G  .xb  q ) ) )  <  ( D `
 G ) )
243237, 242syl6bb 261 . . . . . . . . . . . 12  |-  ( g  =  f  ->  ( E. r  e.  B  ( D `  ( g 
.-  ( G  .xb  r ) ) )  <  ( D `  G )  <->  E. q  e.  B  ( D `  ( f  .-  ( G  .xb  q ) ) )  <  ( D `
 G ) ) )
244233, 243imbi12d 320 . . . . . . . . . . 11  |-  ( g  =  f  ->  (
( ( D `  g )  <  (
( D `  G
)  +  ( d  +  1 ) )  ->  E. r  e.  B  ( D `  ( g 
.-  ( G  .xb  r ) ) )  <  ( D `  G ) )  <->  ( ( D `  f )  <  ( ( D `  G )  +  ( d  +  1 ) )  ->  E. q  e.  B  ( D `  ( f  .-  ( G  .xb  q ) ) )  <  ( D `
 G ) ) ) )
245244cbvralv 2945 . . . . . . . . . 10  |-  ( A. g  e.  B  (
( D `  g
)  <  ( ( D `  G )  +  ( d  +  1 ) )  ->  E. r  e.  B  ( D `  ( g 
.-  ( G  .xb  r ) ) )  <  ( D `  G ) )  <->  A. f  e.  B  ( ( D `  f )  <  ( ( D `  G )  +  ( d  +  1 ) )  ->  E. q  e.  B  ( D `  ( f  .-  ( G  .xb  q ) ) )  <  ( D `
 G ) ) )
246231, 245sylib 196 . . . . . . . . 9  |-  ( (
ph  /\  ( d  e.  NN0  /\  A. f  e.  B  ( ( D `  f )  <  ( ( D `  G )  +  d )  ->  E. q  e.  B  ( D `  ( f  .-  ( G  .xb  q ) ) )  <  ( D `
 G ) ) ) )  ->  A. f  e.  B  ( ( D `  f )  <  ( ( D `  G )  +  ( d  +  1 ) )  ->  E. q  e.  B  ( D `  ( f  .-  ( G  .xb  q ) ) )  <  ( D `
 G ) ) )
247246exp32 602 . . . . . . . 8  |-  ( ph  ->  ( d  e.  NN0  ->  ( A. f  e.  B  ( ( D `
 f )  < 
( ( D `  G )  +  d )  ->  E. q  e.  B  ( D `  ( f  .-  ( G  .xb  q ) ) )  <  ( D `
 G ) )  ->  A. f  e.  B  ( ( D `  f )  <  (
( D `  G
)  +  ( d  +  1 ) )  ->  E. q  e.  B  ( D `  ( f 
.-  ( G  .xb  q ) ) )  <  ( D `  G ) ) ) ) )
248247com12 31 . . . . . . 7  |-  ( d  e.  NN0  ->  ( ph  ->  ( A. f  e.  B  ( ( D `
 f )  < 
( ( D `  G )  +  d )  ->  E. q  e.  B  ( D `  ( f  .-  ( G  .xb  q ) ) )  <  ( D `
 G ) )  ->  A. f  e.  B  ( ( D `  f )  <  (
( D `  G
)  +  ( d  +  1 ) )  ->  E. q  e.  B  ( D `  ( f 
.-  ( G  .xb  q ) ) )  <  ( D `  G ) ) ) ) )
249248a2d 26 . . . . . 6  |-  ( d  e.  NN0  ->  ( (
ph  ->  A. f  e.  B  ( ( D `  f )  <  (
( D `  G
)  +  d )  ->  E. q  e.  B  ( D `  ( f 
.-  ( G  .xb  q ) ) )  <  ( D `  G ) ) )  ->  ( ph  ->  A. f  e.  B  ( ( D `  f
)  <  ( ( D `  G )  +  ( d  +  1 ) )  ->  E. q  e.  B  ( D `  ( f 
.-  ( G  .xb  q ) ) )  <  ( D `  G ) ) ) ) )
25055, 60, 65, 60, 95, 249nn0ind 10734 . . . . 5  |-  ( d  e.  NN0  ->  ( ph  ->  A. f  e.  B  ( ( D `  f )  <  (
( D `  G
)  +  d )  ->  E. q  e.  B  ( D `  ( f 
.-  ( G  .xb  q ) ) )  <  ( D `  G ) ) ) )
251250impcom 430 . . . 4  |-  ( (
ph  /\  d  e.  NN0 )  ->  A. f  e.  B  ( ( D `  f )  <  ( ( D `  G )  +  d )  ->  E. q  e.  B  ( D `  ( f  .-  ( G  .xb  q ) ) )  <  ( D `
 G ) ) )
252 fveq2 5688 . . . . . . 7  |-  ( f  =  F  ->  ( D `  f )  =  ( D `  F ) )
253252breq1d 4299 . . . . . 6  |-  ( f  =  F  ->  (
( D `  f
)  <  ( ( D `  G )  +  d )  <->  ( D `  F )  <  (
( D `  G
)  +  d ) ) )
254 oveq1 6097 . . . . . . . . 9  |-  ( f  =  F  ->  (
f  .-  ( G  .xb  q ) )  =  ( F  .-  ( G  .xb  q ) ) )
255254fveq2d 5692 . . . . . . . 8  |-  ( f  =  F  ->  ( D `  ( f  .-  ( G  .xb  q
) ) )  =  ( D `  ( F  .-  ( G  .xb  q ) ) ) )
256255breq1d 4299 . . . . . . 7  |-  ( f  =  F  ->  (
( D `  (
f  .-  ( G  .xb  q ) ) )  <  ( D `  G )  <->  ( D `  ( F  .-  ( G  .xb  q ) ) )  <  ( D `
 G ) ) )
257256rexbidv 2734 . . . . . 6  |-  ( f  =  F  ->  ( E. q  e.  B  ( D `  ( f 
.-  ( G  .xb  q ) ) )  <  ( D `  G )  <->  E. q  e.  B  ( D `  ( F  .-  ( G  .xb  q ) ) )  <  ( D `
 G ) ) )
258253, 257imbi12d 320 . . . . 5  |-  ( f  =  F  ->  (
( ( D `  f )  <  (
( D `  G
)  +  d )  ->  E. q  e.  B  ( D `  ( f 
.-  ( G  .xb  q ) ) )  <  ( D `  G ) )  <->  ( ( D `  F )  <  ( ( D `  G )  +  d )  ->  E. q  e.  B  ( D `  ( F  .-  ( G  .xb  q ) ) )  <  ( D `
 G ) ) ) )
259258rspcva 3068 . . . 4  |-  ( ( F  e.  B  /\  A. f  e.  B  ( ( D `  f
)  <  ( ( D `  G )  +  d )  ->  E. q  e.  B  ( D `  ( f 
.-  ( G  .xb  q ) ) )  <  ( D `  G ) ) )  ->  ( ( D `
 F )  < 
( ( D `  G )  +  d )  ->  E. q  e.  B  ( D `  ( F  .-  ( G  .xb  q ) ) )  <  ( D `
 G ) ) )
26050, 251, 259syl2anc 656 . . 3  |-  ( (
ph  /\  d  e.  NN0 )  ->  ( ( D `  F )  <  ( ( D `  G )  +  d )  ->  E. q  e.  B  ( D `  ( F  .-  ( G  .xb  q ) ) )  <  ( D `
 G ) ) )
261260rexlimdva 2839 . 2  |-  ( ph  ->  ( E. d  e. 
NN0  ( D `  F )  <  (
( D `  G
)  +  d )  ->  E. q  e.  B  ( D `  ( F 
.-  ( G  .xb  q ) ) )  <  ( D `  G ) ) )
26249, 261mpd 15 1  |-  ( ph  ->  E. q  e.  B  ( D `  ( F 
.-  ( G  .xb  q ) ) )  <  ( D `  G ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 184    /\ wa 369    = wceq 1364    e. wcel 1761    =/= wne 2604   A.wral 2713   E.wrex 2714    u. cun 3323    C_ wss 3325   {csn 3874   class class class wbr 4289   -->wf 5411   ` cfv 5415  (class class class)co 6090   CCcc 9276   RRcr 9277   0cc0 9278   1c1 9279    + caddc 9281   -oocmnf 9412    < clt 9414    <_ cle 9415    - cmin 9591   NNcn 10318   NN0cn0 10575   ZZcz 10642   Basecbs 14170   +g cplusg 14234   .rcmulr 14235   .scvsca 14238   0gc0g 14374   Grpcgrp 15406   -gcsg 15409  .gcmg 15410  mulGrpcmgp 16581   1rcur 16593   Ringcrg 16635  var1cv1 17583  Poly1cpl1 17584  coe1cco1 17587   deg1 cdg1 21466
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1596  ax-4 1607  ax-5 1675  ax-6 1713  ax-7 1733  ax-8 1763  ax-9 1765  ax-10 1780  ax-11 1785  ax-12 1797  ax-13 1948  ax-ext 2422  ax-rep 4400  ax-sep 4410  ax-nul 4418  ax-pow 4467  ax-pr 4528  ax-un 6371  ax-inf2 7843  ax-cnex 9334  ax-resscn 9335  ax-1cn 9336  ax-icn 9337  ax-addcl 9338  ax-addrcl 9339  ax-mulcl 9340  ax-mulrcl 9341  ax-mulcom 9342  ax-addass 9343  ax-mulass 9344  ax-distr 9345  ax-i2m1 9346  ax-1ne0 9347  ax-1rid 9348  ax-rnegex 9349  ax-rrecex 9350  ax-cnre 9351  ax-pre-lttri 9352  ax-pre-lttrn 9353  ax-pre-ltadd 9354  ax-pre-mulgt0 9355  ax-pre-sup 9356  ax-addf 9357  ax-mulf 9358
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3or 961  df-3an 962  df-tru 1367  df-ex 1592  df-nf 1595  df-sb 1706  df-eu 2263  df-mo 2264  df-clab 2428  df-cleq 2434  df-clel 2437  df-nfc 2566  df-ne 2606  df-nel 2607  df-ral 2718  df-rex 2719  df-reu 2720  df-rmo 2721  df-rab 2722  df-v 2972  df-sbc 3184  df-csb 3286  df-dif 3328  df-un 3330  df-in 3332  df-ss 3339  df-pss 3341  df-nul 3635  df-if 3789  df-pw 3859  df-sn 3875  df-pr 3877  df-tp 3879  df-op 3881  df-uni 4089  df-int 4126  df-iun 4170  df-iin 4171  df-br 4290  df-opab 4348  df-mpt 4349  df-tr 4383  df-eprel 4628  df-id 4632  df-po 4637  df-so 4638  df-fr 4675  df-se 4676  df-we 4677  df-ord 4718  df-on 4719  df-lim 4720  df-suc 4721  df-xp 4842  df-rel 4843  df-cnv 4844  df-co 4845  df-dm 4846  df-rn 4847  df-res 4848  df-ima 4849  df-iota 5378  df-fun 5417  df-fn 5418  df-f 5419  df-f1 5420  df-fo 5421  df-f1o 5422  df-fv 5423  df-isom 5424  df-riota 6049  df-ov 6093  df-oprab 6094  df-mpt2 6095  df-of 6319  df-ofr 6320  df-om 6476  df-1st 6576  df-2nd 6577  df-supp 6690  df-tpos 6744  df-recs 6828  df-rdg 6862  df-1o 6916  df-2o 6917  df-oadd 6920  df-er 7097  df-map 7212  df-pm 7213  df-ixp 7260  df-en 7307  df-dom 7308  df-sdom 7309  df-fin 7310  df-fsupp 7617  df-sup 7687  df-oi 7720  df-card 8105  df-pnf 9416  df-mnf 9417  df-xr 9418  df-ltxr 9419  df-le 9420  df-sub 9593  df-neg 9594  df-nn 10319  df-2 10376  df-3 10377  df-4 10378  df-5 10379  df-6 10380  df-7 10381  df-8 10382  df-9 10383  df-10 10384  df-n0 10576  df-z 10643  df-dec 10752  df-uz 10858  df-fz 11434  df-fzo 11545  df-seq 11803  df-hash 12100  df-struct 14172  df-ndx 14173  df-slot 14174  df-base 14175  df-sets 14176  df-ress 14177  df-plusg 14247  df-mulr 14248  df-starv 14249  df-sca 14250  df-vsca 14251  df-tset 14253  df-ple 14254  df-ds 14256  df-unif 14257  df-0g 14376  df-gsum 14377  df-mre 14520  df-mrc 14521  df-acs 14523  df-mnd 15411  df-mhm 15460  df-submnd 15461  df-grp 15538  df-minusg 15539  df-sbg 15540  df-mulg 15541  df-subg 15671  df-ghm 15738  df-cntz 15828  df-cmn 16272  df-abl 16273  df-mgp 16582  df-ur 16594  df-rng 16637  df-cring 16638  df-oppr 16705  df-dvdsr 16723  df-unit 16724  df-invr 16754  df-subrg 16843  df-lmod 16930  df-lss 16992  df-rlreg 17332  df-psr 17407  df-mvr 17408  df-mpl 17409  df-opsr 17415  df-psr1 17589  df-vr1 17590  df-ply1 17591  df-coe1 17594  df-cnfld 17719  df-mdeg 21467  df-deg1 21468
This theorem is referenced by:  ply1divalg  21552
  Copyright terms: Public domain W3C validator