MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ply1divalg Structured version   Unicode version

Theorem ply1divalg 22404
Description: The division algorithm for univariate polynomials over a ring. For polynomials  F ,  G such that  G  =/=  0 and the leading coefficient of  G is a unit, there are unique polynomials  q and  r  =  F  -  ( G  x.  q ) such that the degree of  r is less than the degree of  G. (Contributed by Stefan O'Rear, 27-Mar-2015.)
Hypotheses
Ref Expression
ply1divalg.p  |-  P  =  (Poly1 `  R )
ply1divalg.d  |-  D  =  ( deg1  `  R )
ply1divalg.b  |-  B  =  ( Base `  P
)
ply1divalg.m  |-  .-  =  ( -g `  P )
ply1divalg.z  |-  .0.  =  ( 0g `  P )
ply1divalg.t  |-  .xb  =  ( .r `  P )
ply1divalg.r1  |-  ( ph  ->  R  e.  Ring )
ply1divalg.f  |-  ( ph  ->  F  e.  B )
ply1divalg.g1  |-  ( ph  ->  G  e.  B )
ply1divalg.g2  |-  ( ph  ->  G  =/=  .0.  )
ply1divalg.g3  |-  ( ph  ->  ( (coe1 `  G ) `  ( D `  G ) )  e.  U )
ply1divalg.u  |-  U  =  (Unit `  R )
Assertion
Ref Expression
ply1divalg  |-  ( ph  ->  E! q  e.  B  ( D `  ( F 
.-  ( G  .xb  q ) ) )  <  ( D `  G ) )
Distinct variable groups:    ph, q    B, q    D, q    F, q    G, q    .- , q    P, q    R, q    .xb , q    .0. , q
Allowed substitution hint:    U( q)

Proof of Theorem ply1divalg
StepHypRef Expression
1 ply1divalg.p . . 3  |-  P  =  (Poly1 `  R )
2 ply1divalg.d . . 3  |-  D  =  ( deg1  `  R )
3 ply1divalg.b . . 3  |-  B  =  ( Base `  P
)
4 ply1divalg.m . . 3  |-  .-  =  ( -g `  P )
5 ply1divalg.z . . 3  |-  .0.  =  ( 0g `  P )
6 ply1divalg.t . . 3  |-  .xb  =  ( .r `  P )
7 ply1divalg.r1 . . 3  |-  ( ph  ->  R  e.  Ring )
8 ply1divalg.f . . 3  |-  ( ph  ->  F  e.  B )
9 ply1divalg.g1 . . 3  |-  ( ph  ->  G  e.  B )
10 ply1divalg.g2 . . 3  |-  ( ph  ->  G  =/=  .0.  )
11 eqid 2467 . . 3  |-  ( 1r
`  R )  =  ( 1r `  R
)
12 eqid 2467 . . 3  |-  ( Base `  R )  =  (
Base `  R )
13 eqid 2467 . . 3  |-  ( .r
`  R )  =  ( .r `  R
)
14 ply1divalg.g3 . . . 4  |-  ( ph  ->  ( (coe1 `  G ) `  ( D `  G ) )  e.  U )
15 ply1divalg.u . . . . 5  |-  U  =  (Unit `  R )
16 eqid 2467 . . . . 5  |-  ( invr `  R )  =  (
invr `  R )
1715, 16, 12ringinvcl 17195 . . . 4  |-  ( ( R  e.  Ring  /\  (
(coe1 `  G ) `  ( D `  G ) )  e.  U )  ->  ( ( invr `  R ) `  (
(coe1 `  G ) `  ( D `  G ) ) )  e.  (
Base `  R )
)
187, 14, 17syl2anc 661 . . 3  |-  ( ph  ->  ( ( invr `  R
) `  ( (coe1 `  G ) `  ( D `  G )
) )  e.  (
Base `  R )
)
1915, 16, 13, 11unitrinv 17197 . . . 4  |-  ( ( R  e.  Ring  /\  (
(coe1 `  G ) `  ( D `  G ) )  e.  U )  ->  ( ( (coe1 `  G ) `  ( D `  G )
) ( .r `  R ) ( (
invr `  R ) `  ( (coe1 `  G ) `  ( D `  G ) ) ) )  =  ( 1r `  R
) )
207, 14, 19syl2anc 661 . . 3  |-  ( ph  ->  ( ( (coe1 `  G
) `  ( D `  G ) ) ( .r `  R ) ( ( invr `  R
) `  ( (coe1 `  G ) `  ( D `  G )
) ) )  =  ( 1r `  R
) )
211, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 18, 20ply1divex 22403 . 2  |-  ( ph  ->  E. q  e.  B  ( D `  ( F 
.-  ( G  .xb  q ) ) )  <  ( D `  G ) )
22 eqid 2467 . . . . . 6  |-  (RLReg `  R )  =  (RLReg `  R )
2322, 15unitrrg 17810 . . . . 5  |-  ( R  e.  Ring  ->  U  C_  (RLReg `  R ) )
247, 23syl 16 . . . 4  |-  ( ph  ->  U  C_  (RLReg `  R
) )
2524, 14sseldd 3510 . . 3  |-  ( ph  ->  ( (coe1 `  G ) `  ( D `  G ) )  e.  (RLReg `  R ) )
261, 2, 3, 4, 5, 6, 7, 8, 9, 10, 25, 22ply1divmo 22402 . 2  |-  ( ph  ->  E* q  e.  B  ( D `  ( F 
.-  ( G  .xb  q ) ) )  <  ( D `  G ) )
27 reu5 3082 . 2  |-  ( E! q  e.  B  ( D `  ( F 
.-  ( G  .xb  q ) ) )  <  ( D `  G )  <->  ( E. q  e.  B  ( D `  ( F  .-  ( G  .xb  q
) ) )  < 
( D `  G
)  /\  E* q  e.  B  ( D `  ( F  .-  ( G  .xb  q ) ) )  <  ( D `
 G ) ) )
2821, 26, 27sylanbrc 664 1  |-  ( ph  ->  E! q  e.  B  ( D `  ( F 
.-  ( G  .xb  q ) ) )  <  ( D `  G ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    = wceq 1379    e. wcel 1767    =/= wne 2662   E.wrex 2818   E!wreu 2819   E*wrmo 2820    C_ wss 3481   class class class wbr 4453   ` cfv 5594  (class class class)co 6295    < clt 9640   Basecbs 14506   .rcmulr 14572   0gc0g 14711   -gcsg 15926   1rcur 17023   Ringcrg 17068  Unitcui 17158   invrcinvr 17190  RLRegcrlreg 17795  Poly1cpl1 18084  coe1cco1 18085   deg1 cdg1 22318
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1601  ax-4 1612  ax-5 1680  ax-6 1719  ax-7 1739  ax-8 1769  ax-9 1771  ax-10 1786  ax-11 1791  ax-12 1803  ax-13 1968  ax-ext 2445  ax-rep 4564  ax-sep 4574  ax-nul 4582  ax-pow 4631  ax-pr 4692  ax-un 6587  ax-inf2 8070  ax-cnex 9560  ax-resscn 9561  ax-1cn 9562  ax-icn 9563  ax-addcl 9564  ax-addrcl 9565  ax-mulcl 9566  ax-mulrcl 9567  ax-mulcom 9568  ax-addass 9569  ax-mulass 9570  ax-distr 9571  ax-i2m1 9572  ax-1ne0 9573  ax-1rid 9574  ax-rnegex 9575  ax-rrecex 9576  ax-cnre 9577  ax-pre-lttri 9578  ax-pre-lttrn 9579  ax-pre-ltadd 9580  ax-pre-mulgt0 9581  ax-pre-sup 9582  ax-addf 9583  ax-mulf 9584
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3or 974  df-3an 975  df-tru 1382  df-ex 1597  df-nf 1600  df-sb 1712  df-eu 2279  df-mo 2280  df-clab 2453  df-cleq 2459  df-clel 2462  df-nfc 2617  df-ne 2664  df-nel 2665  df-ral 2822  df-rex 2823  df-reu 2824  df-rmo 2825  df-rab 2826  df-v 3120  df-sbc 3337  df-csb 3441  df-dif 3484  df-un 3486  df-in 3488  df-ss 3495  df-pss 3497  df-nul 3791  df-if 3946  df-pw 4018  df-sn 4034  df-pr 4036  df-tp 4038  df-op 4040  df-uni 4252  df-int 4289  df-iun 4333  df-iin 4334  df-br 4454  df-opab 4512  df-mpt 4513  df-tr 4547  df-eprel 4797  df-id 4801  df-po 4806  df-so 4807  df-fr 4844  df-se 4845  df-we 4846  df-ord 4887  df-on 4888  df-lim 4889  df-suc 4890  df-xp 5011  df-rel 5012  df-cnv 5013  df-co 5014  df-dm 5015  df-rn 5016  df-res 5017  df-ima 5018  df-iota 5557  df-fun 5596  df-fn 5597  df-f 5598  df-f1 5599  df-fo 5600  df-f1o 5601  df-fv 5602  df-isom 5603  df-riota 6256  df-ov 6298  df-oprab 6299  df-mpt2 6300  df-of 6535  df-ofr 6536  df-om 6696  df-1st 6795  df-2nd 6796  df-supp 6914  df-tpos 6967  df-recs 7054  df-rdg 7088  df-1o 7142  df-2o 7143  df-oadd 7146  df-er 7323  df-map 7434  df-pm 7435  df-ixp 7482  df-en 7529  df-dom 7530  df-sdom 7531  df-fin 7532  df-fsupp 7842  df-sup 7913  df-oi 7947  df-card 8332  df-pnf 9642  df-mnf 9643  df-xr 9644  df-ltxr 9645  df-le 9646  df-sub 9819  df-neg 9820  df-nn 10549  df-2 10606  df-3 10607  df-4 10608  df-5 10609  df-6 10610  df-7 10611  df-8 10612  df-9 10613  df-10 10614  df-n0 10808  df-z 10877  df-dec 10989  df-uz 11095  df-fz 11685  df-fzo 11805  df-seq 12088  df-hash 12386  df-struct 14508  df-ndx 14509  df-slot 14510  df-base 14511  df-sets 14512  df-ress 14513  df-plusg 14584  df-mulr 14585  df-starv 14586  df-sca 14587  df-vsca 14588  df-tset 14590  df-ple 14591  df-ds 14593  df-unif 14594  df-0g 14713  df-gsum 14714  df-mre 14857  df-mrc 14858  df-acs 14860  df-mgm 15745  df-sgrp 15784  df-mnd 15794  df-mhm 15838  df-submnd 15839  df-grp 15928  df-minusg 15929  df-sbg 15930  df-mulg 15931  df-subg 16069  df-ghm 16136  df-cntz 16226  df-cmn 16671  df-abl 16672  df-mgp 17012  df-ur 17024  df-ring 17070  df-cring 17071  df-oppr 17142  df-dvdsr 17160  df-unit 17161  df-invr 17191  df-subrg 17296  df-lmod 17383  df-lss 17448  df-rlreg 17799  df-psr 17873  df-mvr 17874  df-mpl 17875  df-opsr 17877  df-psr1 18087  df-vr1 18088  df-ply1 18089  df-coe1 18090  df-cnfld 18289  df-mdeg 22319  df-deg1 22320
This theorem is referenced by:  ply1divalg2  22405
  Copyright terms: Public domain W3C validator