MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  pltn2lp Structured version   Unicode version

Theorem pltn2lp 16166
Description: The less-than relation has no 2-cycle loops. (pssn2lp 3572 analog.) (Contributed by NM, 2-Dec-2011.)
Hypotheses
Ref Expression
pltnlt.b  |-  B  =  ( Base `  K
)
pltnlt.s  |-  .<  =  ( lt `  K )
Assertion
Ref Expression
pltn2lp  |-  ( ( K  e.  Poset  /\  X  e.  B  /\  Y  e.  B )  ->  -.  ( X  .<  Y  /\  Y  .<  X ) )

Proof of Theorem pltn2lp
StepHypRef Expression
1 pltnlt.b . . . . 5  |-  B  =  ( Base `  K
)
2 eqid 2429 . . . . 5  |-  ( le
`  K )  =  ( le `  K
)
3 pltnlt.s . . . . 5  |-  .<  =  ( lt `  K )
41, 2, 3pltnle 16163 . . . 4  |-  ( ( ( K  e.  Poset  /\  X  e.  B  /\  Y  e.  B )  /\  X  .<  Y )  ->  -.  Y ( le `  K ) X )
54ex 435 . . 3  |-  ( ( K  e.  Poset  /\  X  e.  B  /\  Y  e.  B )  ->  ( X  .<  Y  ->  -.  Y ( le `  K ) X ) )
62, 3pltle 16158 . . . 4  |-  ( ( K  e.  Poset  /\  Y  e.  B  /\  X  e.  B )  ->  ( Y  .<  X  ->  Y
( le `  K
) X ) )
763com23 1211 . . 3  |-  ( ( K  e.  Poset  /\  X  e.  B  /\  Y  e.  B )  ->  ( Y  .<  X  ->  Y
( le `  K
) X ) )
85, 7nsyld 145 . 2  |-  ( ( K  e.  Poset  /\  X  e.  B  /\  Y  e.  B )  ->  ( X  .<  Y  ->  -.  Y  .<  X ) )
9 imnan 423 . 2  |-  ( ( X  .<  Y  ->  -.  Y  .<  X )  <->  -.  ( X  .<  Y  /\  Y  .<  X ) )
108, 9sylib 199 1  |-  ( ( K  e.  Poset  /\  X  e.  B  /\  Y  e.  B )  ->  -.  ( X  .<  Y  /\  Y  .<  X ) )
Colors of variables: wff setvar class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 370    /\ w3a 982    = wceq 1437    e. wcel 1870   class class class wbr 4426   ` cfv 5601   Basecbs 15084   lecple 15159   Posetcpo 16136   ltcplt 16137
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1665  ax-4 1678  ax-5 1751  ax-6 1797  ax-7 1841  ax-9 1874  ax-10 1889  ax-11 1894  ax-12 1907  ax-13 2055  ax-ext 2407  ax-sep 4548  ax-nul 4556  ax-pr 4661
This theorem depends on definitions:  df-bi 188  df-or 371  df-an 372  df-3an 984  df-tru 1440  df-ex 1660  df-nf 1664  df-sb 1790  df-eu 2270  df-mo 2271  df-clab 2415  df-cleq 2421  df-clel 2424  df-nfc 2579  df-ne 2627  df-ral 2787  df-rex 2788  df-rab 2791  df-v 3089  df-sbc 3306  df-dif 3445  df-un 3447  df-in 3449  df-ss 3456  df-nul 3768  df-if 3916  df-sn 4003  df-pr 4005  df-op 4009  df-uni 4223  df-br 4427  df-opab 4485  df-mpt 4486  df-id 4769  df-xp 4860  df-rel 4861  df-cnv 4862  df-co 4863  df-dm 4864  df-iota 5565  df-fun 5603  df-fv 5609  df-preset 16124  df-poset 16142  df-plt 16155
This theorem is referenced by:  plttr  16167
  Copyright terms: Public domain W3C validator