Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  pl42lem3N Structured version   Unicode version

Theorem pl42lem3N 33721
Description: Lemma for pl42N 33723. (Contributed by NM, 8-Apr-2012.) (New usage is discouraged.)
Hypotheses
Ref Expression
pl42lem.b  |-  B  =  ( Base `  K
)
pl42lem.l  |-  .<_  =  ( le `  K )
pl42lem.j  |-  .\/  =  ( join `  K )
pl42lem.m  |-  ./\  =  ( meet `  K )
pl42lem.o  |-  ._|_  =  ( oc `  K )
pl42lem.f  |-  F  =  ( pmap `  K
)
pl42lem.p  |-  .+  =  ( +P `  K
)
Assertion
Ref Expression
pl42lem3N  |-  ( ( ( K  e.  HL  /\  X  e.  B  /\  Y  e.  B )  /\  ( Z  e.  B  /\  W  e.  B  /\  V  e.  B
) )  ->  (
( ( ( ( F `  X ) 
.+  ( F `  Y ) )  i^i  ( F `  Z
) )  .+  ( F `  W )
)  i^i  ( F `  V ) )  C_  ( ( ( ( F `  X ) 
.+  ( F `  Y ) )  .+  ( F `  W ) )  i^i  ( ( ( F `  X
)  .+  ( F `  Y ) )  .+  ( F `  V ) ) ) )

Proof of Theorem pl42lem3N
StepHypRef Expression
1 simpl1 991 . . 3  |-  ( ( ( K  e.  HL  /\  X  e.  B  /\  Y  e.  B )  /\  ( Z  e.  B  /\  W  e.  B  /\  V  e.  B
) )  ->  K  e.  HL )
2 simpl2 992 . . . . 5  |-  ( ( ( K  e.  HL  /\  X  e.  B  /\  Y  e.  B )  /\  ( Z  e.  B  /\  W  e.  B  /\  V  e.  B
) )  ->  X  e.  B )
3 pl42lem.b . . . . . 6  |-  B  =  ( Base `  K
)
4 eqid 2443 . . . . . 6  |-  ( Atoms `  K )  =  (
Atoms `  K )
5 pl42lem.f . . . . . 6  |-  F  =  ( pmap `  K
)
63, 4, 5pmapssat 33499 . . . . 5  |-  ( ( K  e.  HL  /\  X  e.  B )  ->  ( F `  X
)  C_  ( Atoms `  K ) )
71, 2, 6syl2anc 661 . . . 4  |-  ( ( ( K  e.  HL  /\  X  e.  B  /\  Y  e.  B )  /\  ( Z  e.  B  /\  W  e.  B  /\  V  e.  B
) )  ->  ( F `  X )  C_  ( Atoms `  K )
)
8 simpl3 993 . . . . 5  |-  ( ( ( K  e.  HL  /\  X  e.  B  /\  Y  e.  B )  /\  ( Z  e.  B  /\  W  e.  B  /\  V  e.  B
) )  ->  Y  e.  B )
93, 4, 5pmapssat 33499 . . . . 5  |-  ( ( K  e.  HL  /\  Y  e.  B )  ->  ( F `  Y
)  C_  ( Atoms `  K ) )
101, 8, 9syl2anc 661 . . . 4  |-  ( ( ( K  e.  HL  /\  X  e.  B  /\  Y  e.  B )  /\  ( Z  e.  B  /\  W  e.  B  /\  V  e.  B
) )  ->  ( F `  Y )  C_  ( Atoms `  K )
)
11 pl42lem.p . . . . 5  |-  .+  =  ( +P `  K
)
124, 11paddssat 33554 . . . 4  |-  ( ( K  e.  HL  /\  ( F `  X ) 
C_  ( Atoms `  K
)  /\  ( F `  Y )  C_  ( Atoms `  K ) )  ->  ( ( F `
 X )  .+  ( F `  Y ) )  C_  ( Atoms `  K ) )
131, 7, 10, 12syl3anc 1218 . . 3  |-  ( ( ( K  e.  HL  /\  X  e.  B  /\  Y  e.  B )  /\  ( Z  e.  B  /\  W  e.  B  /\  V  e.  B
) )  ->  (
( F `  X
)  .+  ( F `  Y ) )  C_  ( Atoms `  K )
)
14 simpr2 995 . . . 4  |-  ( ( ( K  e.  HL  /\  X  e.  B  /\  Y  e.  B )  /\  ( Z  e.  B  /\  W  e.  B  /\  V  e.  B
) )  ->  W  e.  B )
153, 4, 5pmapssat 33499 . . . 4  |-  ( ( K  e.  HL  /\  W  e.  B )  ->  ( F `  W
)  C_  ( Atoms `  K ) )
161, 14, 15syl2anc 661 . . 3  |-  ( ( ( K  e.  HL  /\  X  e.  B  /\  Y  e.  B )  /\  ( Z  e.  B  /\  W  e.  B  /\  V  e.  B
) )  ->  ( F `  W )  C_  ( Atoms `  K )
)
17 inss1 3591 . . . 4  |-  ( ( ( F `  X
)  .+  ( F `  Y ) )  i^i  ( F `  Z
) )  C_  (
( F `  X
)  .+  ( F `  Y ) )
184, 11paddss1 33557 . . . 4  |-  ( ( K  e.  HL  /\  ( ( F `  X )  .+  ( F `  Y )
)  C_  ( Atoms `  K )  /\  ( F `  W )  C_  ( Atoms `  K )
)  ->  ( (
( ( F `  X )  .+  ( F `  Y )
)  i^i  ( F `  Z ) )  C_  ( ( F `  X )  .+  ( F `  Y )
)  ->  ( (
( ( F `  X )  .+  ( F `  Y )
)  i^i  ( F `  Z ) )  .+  ( F `  W ) )  C_  ( (
( F `  X
)  .+  ( F `  Y ) )  .+  ( F `  W ) ) ) )
1917, 18mpi 17 . . 3  |-  ( ( K  e.  HL  /\  ( ( F `  X )  .+  ( F `  Y )
)  C_  ( Atoms `  K )  /\  ( F `  W )  C_  ( Atoms `  K )
)  ->  ( (
( ( F `  X )  .+  ( F `  Y )
)  i^i  ( F `  Z ) )  .+  ( F `  W ) )  C_  ( (
( F `  X
)  .+  ( F `  Y ) )  .+  ( F `  W ) ) )
201, 13, 16, 19syl3anc 1218 . 2  |-  ( ( ( K  e.  HL  /\  X  e.  B  /\  Y  e.  B )  /\  ( Z  e.  B  /\  W  e.  B  /\  V  e.  B
) )  ->  (
( ( ( F `
 X )  .+  ( F `  Y ) )  i^i  ( F `
 Z ) ) 
.+  ( F `  W ) )  C_  ( ( ( F `
 X )  .+  ( F `  Y ) )  .+  ( F `
 W ) ) )
21 simpr3 996 . . . 4  |-  ( ( ( K  e.  HL  /\  X  e.  B  /\  Y  e.  B )  /\  ( Z  e.  B  /\  W  e.  B  /\  V  e.  B
) )  ->  V  e.  B )
223, 4, 5pmapssat 33499 . . . 4  |-  ( ( K  e.  HL  /\  V  e.  B )  ->  ( F `  V
)  C_  ( Atoms `  K ) )
231, 21, 22syl2anc 661 . . 3  |-  ( ( ( K  e.  HL  /\  X  e.  B  /\  Y  e.  B )  /\  ( Z  e.  B  /\  W  e.  B  /\  V  e.  B
) )  ->  ( F `  V )  C_  ( Atoms `  K )
)
244, 11sspadd2 33556 . . 3  |-  ( ( K  e.  HL  /\  ( F `  V ) 
C_  ( Atoms `  K
)  /\  ( ( F `  X )  .+  ( F `  Y
) )  C_  ( Atoms `  K ) )  ->  ( F `  V )  C_  (
( ( F `  X )  .+  ( F `  Y )
)  .+  ( F `  V ) ) )
251, 23, 13, 24syl3anc 1218 . 2  |-  ( ( ( K  e.  HL  /\  X  e.  B  /\  Y  e.  B )  /\  ( Z  e.  B  /\  W  e.  B  /\  V  e.  B
) )  ->  ( F `  V )  C_  ( ( ( F `
 X )  .+  ( F `  Y ) )  .+  ( F `
 V ) ) )
26 ss2in 3598 . 2  |-  ( ( ( ( ( ( F `  X ) 
.+  ( F `  Y ) )  i^i  ( F `  Z
) )  .+  ( F `  W )
)  C_  ( (
( F `  X
)  .+  ( F `  Y ) )  .+  ( F `  W ) )  /\  ( F `
 V )  C_  ( ( ( F `
 X )  .+  ( F `  Y ) )  .+  ( F `
 V ) ) )  ->  ( (
( ( ( F `
 X )  .+  ( F `  Y ) )  i^i  ( F `
 Z ) ) 
.+  ( F `  W ) )  i^i  ( F `  V
) )  C_  (
( ( ( F `
 X )  .+  ( F `  Y ) )  .+  ( F `
 W ) )  i^i  ( ( ( F `  X ) 
.+  ( F `  Y ) )  .+  ( F `  V ) ) ) )
2720, 25, 26syl2anc 661 1  |-  ( ( ( K  e.  HL  /\  X  e.  B  /\  Y  e.  B )  /\  ( Z  e.  B  /\  W  e.  B  /\  V  e.  B
) )  ->  (
( ( ( ( F `  X ) 
.+  ( F `  Y ) )  i^i  ( F `  Z
) )  .+  ( F `  W )
)  i^i  ( F `  V ) )  C_  ( ( ( ( F `  X ) 
.+  ( F `  Y ) )  .+  ( F `  W ) )  i^i  ( ( ( F `  X
)  .+  ( F `  Y ) )  .+  ( F `  V ) ) ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    /\ wa 369    /\ w3a 965    = wceq 1369    e. wcel 1756    i^i cin 3348    C_ wss 3349   ` cfv 5439  (class class class)co 6112   Basecbs 14195   lecple 14266   occoc 14267   joincjn 15135   meetcmee 15136   Atomscatm 33004   HLchlt 33091   pmapcpmap 33237   +Pcpadd 33535
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1591  ax-4 1602  ax-5 1670  ax-6 1708  ax-7 1728  ax-8 1758  ax-9 1760  ax-10 1775  ax-11 1780  ax-12 1792  ax-13 1943  ax-ext 2423  ax-rep 4424  ax-sep 4434  ax-nul 4442  ax-pow 4491  ax-pr 4552  ax-un 6393
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3an 967  df-tru 1372  df-ex 1587  df-nf 1590  df-sb 1701  df-eu 2257  df-mo 2258  df-clab 2430  df-cleq 2436  df-clel 2439  df-nfc 2577  df-ne 2622  df-ral 2741  df-rex 2742  df-reu 2743  df-rab 2745  df-v 2995  df-sbc 3208  df-csb 3310  df-dif 3352  df-un 3354  df-in 3356  df-ss 3363  df-nul 3659  df-if 3813  df-pw 3883  df-sn 3899  df-pr 3901  df-op 3905  df-uni 4113  df-iun 4194  df-br 4314  df-opab 4372  df-mpt 4373  df-id 4657  df-xp 4867  df-rel 4868  df-cnv 4869  df-co 4870  df-dm 4871  df-rn 4872  df-res 4873  df-ima 4874  df-iota 5402  df-fun 5441  df-fn 5442  df-f 5443  df-f1 5444  df-fo 5445  df-f1o 5446  df-fv 5447  df-ov 6115  df-oprab 6116  df-mpt2 6117  df-1st 6598  df-2nd 6599  df-pmap 33244  df-padd 33536
This theorem is referenced by:  pl42lem4N  33722
  Copyright terms: Public domain W3C validator