Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  pl42lem3N Structured version   Unicode version

Theorem pl42lem3N 33011
Description: Lemma for pl42N 33013. (Contributed by NM, 8-Apr-2012.) (New usage is discouraged.)
Hypotheses
Ref Expression
pl42lem.b  |-  B  =  ( Base `  K
)
pl42lem.l  |-  .<_  =  ( le `  K )
pl42lem.j  |-  .\/  =  ( join `  K )
pl42lem.m  |-  ./\  =  ( meet `  K )
pl42lem.o  |-  ._|_  =  ( oc `  K )
pl42lem.f  |-  F  =  ( pmap `  K
)
pl42lem.p  |-  .+  =  ( +P `  K
)
Assertion
Ref Expression
pl42lem3N  |-  ( ( ( K  e.  HL  /\  X  e.  B  /\  Y  e.  B )  /\  ( Z  e.  B  /\  W  e.  B  /\  V  e.  B
) )  ->  (
( ( ( ( F `  X ) 
.+  ( F `  Y ) )  i^i  ( F `  Z
) )  .+  ( F `  W )
)  i^i  ( F `  V ) )  C_  ( ( ( ( F `  X ) 
.+  ( F `  Y ) )  .+  ( F `  W ) )  i^i  ( ( ( F `  X
)  .+  ( F `  Y ) )  .+  ( F `  V ) ) ) )

Proof of Theorem pl42lem3N
StepHypRef Expression
1 simpl1 1002 . . 3  |-  ( ( ( K  e.  HL  /\  X  e.  B  /\  Y  e.  B )  /\  ( Z  e.  B  /\  W  e.  B  /\  V  e.  B
) )  ->  K  e.  HL )
2 simpl2 1003 . . . . 5  |-  ( ( ( K  e.  HL  /\  X  e.  B  /\  Y  e.  B )  /\  ( Z  e.  B  /\  W  e.  B  /\  V  e.  B
) )  ->  X  e.  B )
3 pl42lem.b . . . . . 6  |-  B  =  ( Base `  K
)
4 eqid 2404 . . . . . 6  |-  ( Atoms `  K )  =  (
Atoms `  K )
5 pl42lem.f . . . . . 6  |-  F  =  ( pmap `  K
)
63, 4, 5pmapssat 32789 . . . . 5  |-  ( ( K  e.  HL  /\  X  e.  B )  ->  ( F `  X
)  C_  ( Atoms `  K ) )
71, 2, 6syl2anc 661 . . . 4  |-  ( ( ( K  e.  HL  /\  X  e.  B  /\  Y  e.  B )  /\  ( Z  e.  B  /\  W  e.  B  /\  V  e.  B
) )  ->  ( F `  X )  C_  ( Atoms `  K )
)
8 simpl3 1004 . . . . 5  |-  ( ( ( K  e.  HL  /\  X  e.  B  /\  Y  e.  B )  /\  ( Z  e.  B  /\  W  e.  B  /\  V  e.  B
) )  ->  Y  e.  B )
93, 4, 5pmapssat 32789 . . . . 5  |-  ( ( K  e.  HL  /\  Y  e.  B )  ->  ( F `  Y
)  C_  ( Atoms `  K ) )
101, 8, 9syl2anc 661 . . . 4  |-  ( ( ( K  e.  HL  /\  X  e.  B  /\  Y  e.  B )  /\  ( Z  e.  B  /\  W  e.  B  /\  V  e.  B
) )  ->  ( F `  Y )  C_  ( Atoms `  K )
)
11 pl42lem.p . . . . 5  |-  .+  =  ( +P `  K
)
124, 11paddssat 32844 . . . 4  |-  ( ( K  e.  HL  /\  ( F `  X ) 
C_  ( Atoms `  K
)  /\  ( F `  Y )  C_  ( Atoms `  K ) )  ->  ( ( F `
 X )  .+  ( F `  Y ) )  C_  ( Atoms `  K ) )
131, 7, 10, 12syl3anc 1232 . . 3  |-  ( ( ( K  e.  HL  /\  X  e.  B  /\  Y  e.  B )  /\  ( Z  e.  B  /\  W  e.  B  /\  V  e.  B
) )  ->  (
( F `  X
)  .+  ( F `  Y ) )  C_  ( Atoms `  K )
)
14 simpr2 1006 . . . 4  |-  ( ( ( K  e.  HL  /\  X  e.  B  /\  Y  e.  B )  /\  ( Z  e.  B  /\  W  e.  B  /\  V  e.  B
) )  ->  W  e.  B )
153, 4, 5pmapssat 32789 . . . 4  |-  ( ( K  e.  HL  /\  W  e.  B )  ->  ( F `  W
)  C_  ( Atoms `  K ) )
161, 14, 15syl2anc 661 . . 3  |-  ( ( ( K  e.  HL  /\  X  e.  B  /\  Y  e.  B )  /\  ( Z  e.  B  /\  W  e.  B  /\  V  e.  B
) )  ->  ( F `  W )  C_  ( Atoms `  K )
)
17 inss1 3661 . . . 4  |-  ( ( ( F `  X
)  .+  ( F `  Y ) )  i^i  ( F `  Z
) )  C_  (
( F `  X
)  .+  ( F `  Y ) )
184, 11paddss1 32847 . . . 4  |-  ( ( K  e.  HL  /\  ( ( F `  X )  .+  ( F `  Y )
)  C_  ( Atoms `  K )  /\  ( F `  W )  C_  ( Atoms `  K )
)  ->  ( (
( ( F `  X )  .+  ( F `  Y )
)  i^i  ( F `  Z ) )  C_  ( ( F `  X )  .+  ( F `  Y )
)  ->  ( (
( ( F `  X )  .+  ( F `  Y )
)  i^i  ( F `  Z ) )  .+  ( F `  W ) )  C_  ( (
( F `  X
)  .+  ( F `  Y ) )  .+  ( F `  W ) ) ) )
1917, 18mpi 21 . . 3  |-  ( ( K  e.  HL  /\  ( ( F `  X )  .+  ( F `  Y )
)  C_  ( Atoms `  K )  /\  ( F `  W )  C_  ( Atoms `  K )
)  ->  ( (
( ( F `  X )  .+  ( F `  Y )
)  i^i  ( F `  Z ) )  .+  ( F `  W ) )  C_  ( (
( F `  X
)  .+  ( F `  Y ) )  .+  ( F `  W ) ) )
201, 13, 16, 19syl3anc 1232 . 2  |-  ( ( ( K  e.  HL  /\  X  e.  B  /\  Y  e.  B )  /\  ( Z  e.  B  /\  W  e.  B  /\  V  e.  B
) )  ->  (
( ( ( F `
 X )  .+  ( F `  Y ) )  i^i  ( F `
 Z ) ) 
.+  ( F `  W ) )  C_  ( ( ( F `
 X )  .+  ( F `  Y ) )  .+  ( F `
 W ) ) )
21 simpr3 1007 . . . 4  |-  ( ( ( K  e.  HL  /\  X  e.  B  /\  Y  e.  B )  /\  ( Z  e.  B  /\  W  e.  B  /\  V  e.  B
) )  ->  V  e.  B )
223, 4, 5pmapssat 32789 . . . 4  |-  ( ( K  e.  HL  /\  V  e.  B )  ->  ( F `  V
)  C_  ( Atoms `  K ) )
231, 21, 22syl2anc 661 . . 3  |-  ( ( ( K  e.  HL  /\  X  e.  B  /\  Y  e.  B )  /\  ( Z  e.  B  /\  W  e.  B  /\  V  e.  B
) )  ->  ( F `  V )  C_  ( Atoms `  K )
)
244, 11sspadd2 32846 . . 3  |-  ( ( K  e.  HL  /\  ( F `  V ) 
C_  ( Atoms `  K
)  /\  ( ( F `  X )  .+  ( F `  Y
) )  C_  ( Atoms `  K ) )  ->  ( F `  V )  C_  (
( ( F `  X )  .+  ( F `  Y )
)  .+  ( F `  V ) ) )
251, 23, 13, 24syl3anc 1232 . 2  |-  ( ( ( K  e.  HL  /\  X  e.  B  /\  Y  e.  B )  /\  ( Z  e.  B  /\  W  e.  B  /\  V  e.  B
) )  ->  ( F `  V )  C_  ( ( ( F `
 X )  .+  ( F `  Y ) )  .+  ( F `
 V ) ) )
26 ss2in 3668 . 2  |-  ( ( ( ( ( ( F `  X ) 
.+  ( F `  Y ) )  i^i  ( F `  Z
) )  .+  ( F `  W )
)  C_  ( (
( F `  X
)  .+  ( F `  Y ) )  .+  ( F `  W ) )  /\  ( F `
 V )  C_  ( ( ( F `
 X )  .+  ( F `  Y ) )  .+  ( F `
 V ) ) )  ->  ( (
( ( ( F `
 X )  .+  ( F `  Y ) )  i^i  ( F `
 Z ) ) 
.+  ( F `  W ) )  i^i  ( F `  V
) )  C_  (
( ( ( F `
 X )  .+  ( F `  Y ) )  .+  ( F `
 W ) )  i^i  ( ( ( F `  X ) 
.+  ( F `  Y ) )  .+  ( F `  V ) ) ) )
2720, 25, 26syl2anc 661 1  |-  ( ( ( K  e.  HL  /\  X  e.  B  /\  Y  e.  B )  /\  ( Z  e.  B  /\  W  e.  B  /\  V  e.  B
) )  ->  (
( ( ( ( F `  X ) 
.+  ( F `  Y ) )  i^i  ( F `  Z
) )  .+  ( F `  W )
)  i^i  ( F `  V ) )  C_  ( ( ( ( F `  X ) 
.+  ( F `  Y ) )  .+  ( F `  W ) )  i^i  ( ( ( F `  X
)  .+  ( F `  Y ) )  .+  ( F `  V ) ) ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    /\ wa 369    /\ w3a 976    = wceq 1407    e. wcel 1844    i^i cin 3415    C_ wss 3416   ` cfv 5571  (class class class)co 6280   Basecbs 14843   lecple 14918   occoc 14919   joincjn 15899   meetcmee 15900   Atomscatm 32294   HLchlt 32381   pmapcpmap 32527   +Pcpadd 32825
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1641  ax-4 1654  ax-5 1727  ax-6 1773  ax-7 1816  ax-8 1846  ax-9 1848  ax-10 1863  ax-11 1868  ax-12 1880  ax-13 2028  ax-ext 2382  ax-rep 4509  ax-sep 4519  ax-nul 4527  ax-pow 4574  ax-pr 4632  ax-un 6576
This theorem depends on definitions:  df-bi 187  df-or 370  df-an 371  df-3an 978  df-tru 1410  df-ex 1636  df-nf 1640  df-sb 1766  df-eu 2244  df-mo 2245  df-clab 2390  df-cleq 2396  df-clel 2399  df-nfc 2554  df-ne 2602  df-ral 2761  df-rex 2762  df-reu 2763  df-rab 2765  df-v 3063  df-sbc 3280  df-csb 3376  df-dif 3419  df-un 3421  df-in 3423  df-ss 3430  df-nul 3741  df-if 3888  df-pw 3959  df-sn 3975  df-pr 3977  df-op 3981  df-uni 4194  df-iun 4275  df-br 4398  df-opab 4456  df-mpt 4457  df-id 4740  df-xp 4831  df-rel 4832  df-cnv 4833  df-co 4834  df-dm 4835  df-rn 4836  df-res 4837  df-ima 4838  df-iota 5535  df-fun 5573  df-fn 5574  df-f 5575  df-f1 5576  df-fo 5577  df-f1o 5578  df-fv 5579  df-ov 6283  df-oprab 6284  df-mpt2 6285  df-1st 6786  df-2nd 6787  df-pmap 32534  df-padd 32826
This theorem is referenced by:  pl42lem4N  33012
  Copyright terms: Public domain W3C validator