Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  pl42lem3N Structured version   Visualization version   Unicode version

Theorem pl42lem3N 33617
Description: Lemma for pl42N 33619. (Contributed by NM, 8-Apr-2012.) (New usage is discouraged.)
Hypotheses
Ref Expression
pl42lem.b  |-  B  =  ( Base `  K
)
pl42lem.l  |-  .<_  =  ( le `  K )
pl42lem.j  |-  .\/  =  ( join `  K )
pl42lem.m  |-  ./\  =  ( meet `  K )
pl42lem.o  |-  ._|_  =  ( oc `  K )
pl42lem.f  |-  F  =  ( pmap `  K
)
pl42lem.p  |-  .+  =  ( +P `  K
)
Assertion
Ref Expression
pl42lem3N  |-  ( ( ( K  e.  HL  /\  X  e.  B  /\  Y  e.  B )  /\  ( Z  e.  B  /\  W  e.  B  /\  V  e.  B
) )  ->  (
( ( ( ( F `  X ) 
.+  ( F `  Y ) )  i^i  ( F `  Z
) )  .+  ( F `  W )
)  i^i  ( F `  V ) )  C_  ( ( ( ( F `  X ) 
.+  ( F `  Y ) )  .+  ( F `  W ) )  i^i  ( ( ( F `  X
)  .+  ( F `  Y ) )  .+  ( F `  V ) ) ) )

Proof of Theorem pl42lem3N
StepHypRef Expression
1 simpl1 1033 . . 3  |-  ( ( ( K  e.  HL  /\  X  e.  B  /\  Y  e.  B )  /\  ( Z  e.  B  /\  W  e.  B  /\  V  e.  B
) )  ->  K  e.  HL )
2 simpl2 1034 . . . . 5  |-  ( ( ( K  e.  HL  /\  X  e.  B  /\  Y  e.  B )  /\  ( Z  e.  B  /\  W  e.  B  /\  V  e.  B
) )  ->  X  e.  B )
3 pl42lem.b . . . . . 6  |-  B  =  ( Base `  K
)
4 eqid 2471 . . . . . 6  |-  ( Atoms `  K )  =  (
Atoms `  K )
5 pl42lem.f . . . . . 6  |-  F  =  ( pmap `  K
)
63, 4, 5pmapssat 33395 . . . . 5  |-  ( ( K  e.  HL  /\  X  e.  B )  ->  ( F `  X
)  C_  ( Atoms `  K ) )
71, 2, 6syl2anc 673 . . . 4  |-  ( ( ( K  e.  HL  /\  X  e.  B  /\  Y  e.  B )  /\  ( Z  e.  B  /\  W  e.  B  /\  V  e.  B
) )  ->  ( F `  X )  C_  ( Atoms `  K )
)
8 simpl3 1035 . . . . 5  |-  ( ( ( K  e.  HL  /\  X  e.  B  /\  Y  e.  B )  /\  ( Z  e.  B  /\  W  e.  B  /\  V  e.  B
) )  ->  Y  e.  B )
93, 4, 5pmapssat 33395 . . . . 5  |-  ( ( K  e.  HL  /\  Y  e.  B )  ->  ( F `  Y
)  C_  ( Atoms `  K ) )
101, 8, 9syl2anc 673 . . . 4  |-  ( ( ( K  e.  HL  /\  X  e.  B  /\  Y  e.  B )  /\  ( Z  e.  B  /\  W  e.  B  /\  V  e.  B
) )  ->  ( F `  Y )  C_  ( Atoms `  K )
)
11 pl42lem.p . . . . 5  |-  .+  =  ( +P `  K
)
124, 11paddssat 33450 . . . 4  |-  ( ( K  e.  HL  /\  ( F `  X ) 
C_  ( Atoms `  K
)  /\  ( F `  Y )  C_  ( Atoms `  K ) )  ->  ( ( F `
 X )  .+  ( F `  Y ) )  C_  ( Atoms `  K ) )
131, 7, 10, 12syl3anc 1292 . . 3  |-  ( ( ( K  e.  HL  /\  X  e.  B  /\  Y  e.  B )  /\  ( Z  e.  B  /\  W  e.  B  /\  V  e.  B
) )  ->  (
( F `  X
)  .+  ( F `  Y ) )  C_  ( Atoms `  K )
)
14 simpr2 1037 . . . 4  |-  ( ( ( K  e.  HL  /\  X  e.  B  /\  Y  e.  B )  /\  ( Z  e.  B  /\  W  e.  B  /\  V  e.  B
) )  ->  W  e.  B )
153, 4, 5pmapssat 33395 . . . 4  |-  ( ( K  e.  HL  /\  W  e.  B )  ->  ( F `  W
)  C_  ( Atoms `  K ) )
161, 14, 15syl2anc 673 . . 3  |-  ( ( ( K  e.  HL  /\  X  e.  B  /\  Y  e.  B )  /\  ( Z  e.  B  /\  W  e.  B  /\  V  e.  B
) )  ->  ( F `  W )  C_  ( Atoms `  K )
)
17 inss1 3643 . . . 4  |-  ( ( ( F `  X
)  .+  ( F `  Y ) )  i^i  ( F `  Z
) )  C_  (
( F `  X
)  .+  ( F `  Y ) )
184, 11paddss1 33453 . . . 4  |-  ( ( K  e.  HL  /\  ( ( F `  X )  .+  ( F `  Y )
)  C_  ( Atoms `  K )  /\  ( F `  W )  C_  ( Atoms `  K )
)  ->  ( (
( ( F `  X )  .+  ( F `  Y )
)  i^i  ( F `  Z ) )  C_  ( ( F `  X )  .+  ( F `  Y )
)  ->  ( (
( ( F `  X )  .+  ( F `  Y )
)  i^i  ( F `  Z ) )  .+  ( F `  W ) )  C_  ( (
( F `  X
)  .+  ( F `  Y ) )  .+  ( F `  W ) ) ) )
1917, 18mpi 20 . . 3  |-  ( ( K  e.  HL  /\  ( ( F `  X )  .+  ( F `  Y )
)  C_  ( Atoms `  K )  /\  ( F `  W )  C_  ( Atoms `  K )
)  ->  ( (
( ( F `  X )  .+  ( F `  Y )
)  i^i  ( F `  Z ) )  .+  ( F `  W ) )  C_  ( (
( F `  X
)  .+  ( F `  Y ) )  .+  ( F `  W ) ) )
201, 13, 16, 19syl3anc 1292 . 2  |-  ( ( ( K  e.  HL  /\  X  e.  B  /\  Y  e.  B )  /\  ( Z  e.  B  /\  W  e.  B  /\  V  e.  B
) )  ->  (
( ( ( F `
 X )  .+  ( F `  Y ) )  i^i  ( F `
 Z ) ) 
.+  ( F `  W ) )  C_  ( ( ( F `
 X )  .+  ( F `  Y ) )  .+  ( F `
 W ) ) )
21 simpr3 1038 . . . 4  |-  ( ( ( K  e.  HL  /\  X  e.  B  /\  Y  e.  B )  /\  ( Z  e.  B  /\  W  e.  B  /\  V  e.  B
) )  ->  V  e.  B )
223, 4, 5pmapssat 33395 . . . 4  |-  ( ( K  e.  HL  /\  V  e.  B )  ->  ( F `  V
)  C_  ( Atoms `  K ) )
231, 21, 22syl2anc 673 . . 3  |-  ( ( ( K  e.  HL  /\  X  e.  B  /\  Y  e.  B )  /\  ( Z  e.  B  /\  W  e.  B  /\  V  e.  B
) )  ->  ( F `  V )  C_  ( Atoms `  K )
)
244, 11sspadd2 33452 . . 3  |-  ( ( K  e.  HL  /\  ( F `  V ) 
C_  ( Atoms `  K
)  /\  ( ( F `  X )  .+  ( F `  Y
) )  C_  ( Atoms `  K ) )  ->  ( F `  V )  C_  (
( ( F `  X )  .+  ( F `  Y )
)  .+  ( F `  V ) ) )
251, 23, 13, 24syl3anc 1292 . 2  |-  ( ( ( K  e.  HL  /\  X  e.  B  /\  Y  e.  B )  /\  ( Z  e.  B  /\  W  e.  B  /\  V  e.  B
) )  ->  ( F `  V )  C_  ( ( ( F `
 X )  .+  ( F `  Y ) )  .+  ( F `
 V ) ) )
26 ss2in 3650 . 2  |-  ( ( ( ( ( ( F `  X ) 
.+  ( F `  Y ) )  i^i  ( F `  Z
) )  .+  ( F `  W )
)  C_  ( (
( F `  X
)  .+  ( F `  Y ) )  .+  ( F `  W ) )  /\  ( F `
 V )  C_  ( ( ( F `
 X )  .+  ( F `  Y ) )  .+  ( F `
 V ) ) )  ->  ( (
( ( ( F `
 X )  .+  ( F `  Y ) )  i^i  ( F `
 Z ) ) 
.+  ( F `  W ) )  i^i  ( F `  V
) )  C_  (
( ( ( F `
 X )  .+  ( F `  Y ) )  .+  ( F `
 W ) )  i^i  ( ( ( F `  X ) 
.+  ( F `  Y ) )  .+  ( F `  V ) ) ) )
2720, 25, 26syl2anc 673 1  |-  ( ( ( K  e.  HL  /\  X  e.  B  /\  Y  e.  B )  /\  ( Z  e.  B  /\  W  e.  B  /\  V  e.  B
) )  ->  (
( ( ( ( F `  X ) 
.+  ( F `  Y ) )  i^i  ( F `  Z
) )  .+  ( F `  W )
)  i^i  ( F `  V ) )  C_  ( ( ( ( F `  X ) 
.+  ( F `  Y ) )  .+  ( F `  W ) )  i^i  ( ( ( F `  X
)  .+  ( F `  Y ) )  .+  ( F `  V ) ) ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    /\ wa 376    /\ w3a 1007    = wceq 1452    e. wcel 1904    i^i cin 3389    C_ wss 3390   ` cfv 5589  (class class class)co 6308   Basecbs 15199   lecple 15275   occoc 15276   joincjn 16267   meetcmee 16268   Atomscatm 32900   HLchlt 32987   pmapcpmap 33133   +Pcpadd 33431
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1677  ax-4 1690  ax-5 1766  ax-6 1813  ax-7 1859  ax-8 1906  ax-9 1913  ax-10 1932  ax-11 1937  ax-12 1950  ax-13 2104  ax-ext 2451  ax-rep 4508  ax-sep 4518  ax-nul 4527  ax-pow 4579  ax-pr 4639  ax-un 6602
This theorem depends on definitions:  df-bi 190  df-or 377  df-an 378  df-3an 1009  df-tru 1455  df-ex 1672  df-nf 1676  df-sb 1806  df-eu 2323  df-mo 2324  df-clab 2458  df-cleq 2464  df-clel 2467  df-nfc 2601  df-ne 2643  df-ral 2761  df-rex 2762  df-reu 2763  df-rab 2765  df-v 3033  df-sbc 3256  df-csb 3350  df-dif 3393  df-un 3395  df-in 3397  df-ss 3404  df-nul 3723  df-if 3873  df-pw 3944  df-sn 3960  df-pr 3962  df-op 3966  df-uni 4191  df-iun 4271  df-br 4396  df-opab 4455  df-mpt 4456  df-id 4754  df-xp 4845  df-rel 4846  df-cnv 4847  df-co 4848  df-dm 4849  df-rn 4850  df-res 4851  df-ima 4852  df-iota 5553  df-fun 5591  df-fn 5592  df-f 5593  df-f1 5594  df-fo 5595  df-f1o 5596  df-fv 5597  df-ov 6311  df-oprab 6312  df-mpt2 6313  df-1st 6812  df-2nd 6813  df-pmap 33140  df-padd 33432
This theorem is referenced by:  pl42lem4N  33618
  Copyright terms: Public domain W3C validator