Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  pl42N Structured version   Unicode version

Theorem pl42N 34779
Description: Law holding in a Hilbert lattice that fails in orthomodular lattice L42 (Figure 7 in [MegPav2000] p. 2366). (Contributed by NM, 8-Apr-2012.) (New usage is discouraged.)
Hypotheses
Ref Expression
pl42.b  |-  B  =  ( Base `  K
)
pl42.l  |-  .<_  =  ( le `  K )
pl42.j  |-  .\/  =  ( join `  K )
pl42.m  |-  ./\  =  ( meet `  K )
pl42.o  |-  ._|_  =  ( oc `  K )
Assertion
Ref Expression
pl42N  |-  ( ( ( K  e.  HL  /\  X  e.  B  /\  Y  e.  B )  /\  ( Z  e.  B  /\  W  e.  B  /\  V  e.  B
) )  ->  (
( X  .<_  (  ._|_  `  Y )  /\  Z  .<_  (  ._|_  `  W ) )  ->  ( (
( ( X  .\/  Y )  ./\  Z )  .\/  W )  ./\  V
)  .<_  ( ( X 
.\/  Y )  .\/  ( ( X  .\/  W )  ./\  ( Y  .\/  V ) ) ) ) )

Proof of Theorem pl42N
StepHypRef Expression
1 pl42.b . . 3  |-  B  =  ( Base `  K
)
2 pl42.l . . 3  |-  .<_  =  ( le `  K )
3 pl42.j . . 3  |-  .\/  =  ( join `  K )
4 pl42.m . . 3  |-  ./\  =  ( meet `  K )
5 pl42.o . . 3  |-  ._|_  =  ( oc `  K )
6 eqid 2467 . . 3  |-  ( pmap `  K )  =  (
pmap `  K )
7 eqid 2467 . . 3  |-  ( +P `  K )  =  ( +P `  K )
81, 2, 3, 4, 5, 6, 7pl42lem4N 34778 . 2  |-  ( ( ( K  e.  HL  /\  X  e.  B  /\  Y  e.  B )  /\  ( Z  e.  B  /\  W  e.  B  /\  V  e.  B
) )  ->  (
( X  .<_  (  ._|_  `  Y )  /\  Z  .<_  (  ._|_  `  W ) )  ->  ( ( pmap `  K ) `  ( ( ( ( X  .\/  Y ) 
./\  Z )  .\/  W )  ./\  V )
)  C_  ( ( pmap `  K ) `  ( ( X  .\/  Y )  .\/  ( ( X  .\/  W ) 
./\  ( Y  .\/  V ) ) ) ) ) )
9 simpl1 999 . . 3  |-  ( ( ( K  e.  HL  /\  X  e.  B  /\  Y  e.  B )  /\  ( Z  e.  B  /\  W  e.  B  /\  V  e.  B
) )  ->  K  e.  HL )
10 hllat 34160 . . . . 5  |-  ( K  e.  HL  ->  K  e.  Lat )
119, 10syl 16 . . . 4  |-  ( ( ( K  e.  HL  /\  X  e.  B  /\  Y  e.  B )  /\  ( Z  e.  B  /\  W  e.  B  /\  V  e.  B
) )  ->  K  e.  Lat )
12 simpl2 1000 . . . . . . 7  |-  ( ( ( K  e.  HL  /\  X  e.  B  /\  Y  e.  B )  /\  ( Z  e.  B  /\  W  e.  B  /\  V  e.  B
) )  ->  X  e.  B )
13 simpl3 1001 . . . . . . 7  |-  ( ( ( K  e.  HL  /\  X  e.  B  /\  Y  e.  B )  /\  ( Z  e.  B  /\  W  e.  B  /\  V  e.  B
) )  ->  Y  e.  B )
141, 3latjcl 15534 . . . . . . 7  |-  ( ( K  e.  Lat  /\  X  e.  B  /\  Y  e.  B )  ->  ( X  .\/  Y
)  e.  B )
1511, 12, 13, 14syl3anc 1228 . . . . . 6  |-  ( ( ( K  e.  HL  /\  X  e.  B  /\  Y  e.  B )  /\  ( Z  e.  B  /\  W  e.  B  /\  V  e.  B
) )  ->  ( X  .\/  Y )  e.  B )
16 simpr1 1002 . . . . . 6  |-  ( ( ( K  e.  HL  /\  X  e.  B  /\  Y  e.  B )  /\  ( Z  e.  B  /\  W  e.  B  /\  V  e.  B
) )  ->  Z  e.  B )
171, 4latmcl 15535 . . . . . 6  |-  ( ( K  e.  Lat  /\  ( X  .\/  Y )  e.  B  /\  Z  e.  B )  ->  (
( X  .\/  Y
)  ./\  Z )  e.  B )
1811, 15, 16, 17syl3anc 1228 . . . . 5  |-  ( ( ( K  e.  HL  /\  X  e.  B  /\  Y  e.  B )  /\  ( Z  e.  B  /\  W  e.  B  /\  V  e.  B
) )  ->  (
( X  .\/  Y
)  ./\  Z )  e.  B )
19 simpr2 1003 . . . . 5  |-  ( ( ( K  e.  HL  /\  X  e.  B  /\  Y  e.  B )  /\  ( Z  e.  B  /\  W  e.  B  /\  V  e.  B
) )  ->  W  e.  B )
201, 3latjcl 15534 . . . . 5  |-  ( ( K  e.  Lat  /\  ( ( X  .\/  Y )  ./\  Z )  e.  B  /\  W  e.  B )  ->  (
( ( X  .\/  Y )  ./\  Z )  .\/  W )  e.  B
)
2111, 18, 19, 20syl3anc 1228 . . . 4  |-  ( ( ( K  e.  HL  /\  X  e.  B  /\  Y  e.  B )  /\  ( Z  e.  B  /\  W  e.  B  /\  V  e.  B
) )  ->  (
( ( X  .\/  Y )  ./\  Z )  .\/  W )  e.  B
)
22 simpr3 1004 . . . 4  |-  ( ( ( K  e.  HL  /\  X  e.  B  /\  Y  e.  B )  /\  ( Z  e.  B  /\  W  e.  B  /\  V  e.  B
) )  ->  V  e.  B )
231, 4latmcl 15535 . . . 4  |-  ( ( K  e.  Lat  /\  ( ( ( X 
.\/  Y )  ./\  Z )  .\/  W )  e.  B  /\  V  e.  B )  ->  (
( ( ( X 
.\/  Y )  ./\  Z )  .\/  W ) 
./\  V )  e.  B )
2411, 21, 22, 23syl3anc 1228 . . 3  |-  ( ( ( K  e.  HL  /\  X  e.  B  /\  Y  e.  B )  /\  ( Z  e.  B  /\  W  e.  B  /\  V  e.  B
) )  ->  (
( ( ( X 
.\/  Y )  ./\  Z )  .\/  W ) 
./\  V )  e.  B )
251, 3latjcl 15534 . . . . . 6  |-  ( ( K  e.  Lat  /\  X  e.  B  /\  W  e.  B )  ->  ( X  .\/  W
)  e.  B )
2611, 12, 19, 25syl3anc 1228 . . . . 5  |-  ( ( ( K  e.  HL  /\  X  e.  B  /\  Y  e.  B )  /\  ( Z  e.  B  /\  W  e.  B  /\  V  e.  B
) )  ->  ( X  .\/  W )  e.  B )
271, 3latjcl 15534 . . . . . 6  |-  ( ( K  e.  Lat  /\  Y  e.  B  /\  V  e.  B )  ->  ( Y  .\/  V
)  e.  B )
2811, 13, 22, 27syl3anc 1228 . . . . 5  |-  ( ( ( K  e.  HL  /\  X  e.  B  /\  Y  e.  B )  /\  ( Z  e.  B  /\  W  e.  B  /\  V  e.  B
) )  ->  ( Y  .\/  V )  e.  B )
291, 4latmcl 15535 . . . . 5  |-  ( ( K  e.  Lat  /\  ( X  .\/  W )  e.  B  /\  ( Y  .\/  V )  e.  B )  ->  (
( X  .\/  W
)  ./\  ( Y  .\/  V ) )  e.  B )
3011, 26, 28, 29syl3anc 1228 . . . 4  |-  ( ( ( K  e.  HL  /\  X  e.  B  /\  Y  e.  B )  /\  ( Z  e.  B  /\  W  e.  B  /\  V  e.  B
) )  ->  (
( X  .\/  W
)  ./\  ( Y  .\/  V ) )  e.  B )
311, 3latjcl 15534 . . . 4  |-  ( ( K  e.  Lat  /\  ( X  .\/  Y )  e.  B  /\  (
( X  .\/  W
)  ./\  ( Y  .\/  V ) )  e.  B )  ->  (
( X  .\/  Y
)  .\/  ( ( X  .\/  W )  ./\  ( Y  .\/  V ) ) )  e.  B
)
3211, 15, 30, 31syl3anc 1228 . . 3  |-  ( ( ( K  e.  HL  /\  X  e.  B  /\  Y  e.  B )  /\  ( Z  e.  B  /\  W  e.  B  /\  V  e.  B
) )  ->  (
( X  .\/  Y
)  .\/  ( ( X  .\/  W )  ./\  ( Y  .\/  V ) ) )  e.  B
)
331, 2, 6pmaple 34557 . . 3  |-  ( ( K  e.  HL  /\  ( ( ( ( X  .\/  Y ) 
./\  Z )  .\/  W )  ./\  V )  e.  B  /\  (
( X  .\/  Y
)  .\/  ( ( X  .\/  W )  ./\  ( Y  .\/  V ) ) )  e.  B
)  ->  ( (
( ( ( X 
.\/  Y )  ./\  Z )  .\/  W ) 
./\  V )  .<_  ( ( X  .\/  Y )  .\/  ( ( X  .\/  W ) 
./\  ( Y  .\/  V ) ) )  <->  ( ( pmap `  K ) `  ( ( ( ( X  .\/  Y ) 
./\  Z )  .\/  W )  ./\  V )
)  C_  ( ( pmap `  K ) `  ( ( X  .\/  Y )  .\/  ( ( X  .\/  W ) 
./\  ( Y  .\/  V ) ) ) ) ) )
349, 24, 32, 33syl3anc 1228 . 2  |-  ( ( ( K  e.  HL  /\  X  e.  B  /\  Y  e.  B )  /\  ( Z  e.  B  /\  W  e.  B  /\  V  e.  B
) )  ->  (
( ( ( ( X  .\/  Y ) 
./\  Z )  .\/  W )  ./\  V )  .<_  ( ( X  .\/  Y )  .\/  ( ( X  .\/  W ) 
./\  ( Y  .\/  V ) ) )  <->  ( ( pmap `  K ) `  ( ( ( ( X  .\/  Y ) 
./\  Z )  .\/  W )  ./\  V )
)  C_  ( ( pmap `  K ) `  ( ( X  .\/  Y )  .\/  ( ( X  .\/  W ) 
./\  ( Y  .\/  V ) ) ) ) ) )
358, 34sylibrd 234 1  |-  ( ( ( K  e.  HL  /\  X  e.  B  /\  Y  e.  B )  /\  ( Z  e.  B  /\  W  e.  B  /\  V  e.  B
) )  ->  (
( X  .<_  (  ._|_  `  Y )  /\  Z  .<_  (  ._|_  `  W ) )  ->  ( (
( ( X  .\/  Y )  ./\  Z )  .\/  W )  ./\  V
)  .<_  ( ( X 
.\/  Y )  .\/  ( ( X  .\/  W )  ./\  ( Y  .\/  V ) ) ) ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 184    /\ wa 369    /\ w3a 973    = wceq 1379    e. wcel 1767    C_ wss 3476   class class class wbr 4447   ` cfv 5586  (class class class)co 6282   Basecbs 14486   lecple 14558   occoc 14559   joincjn 15427   meetcmee 15428   Latclat 15528   HLchlt 34147   pmapcpmap 34293   +Pcpadd 34591
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1601  ax-4 1612  ax-5 1680  ax-6 1719  ax-7 1739  ax-8 1769  ax-9 1771  ax-10 1786  ax-11 1791  ax-12 1803  ax-13 1968  ax-ext 2445  ax-rep 4558  ax-sep 4568  ax-nul 4576  ax-pow 4625  ax-pr 4686  ax-un 6574  ax-riotaBAD 33756
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3an 975  df-tru 1382  df-fal 1385  df-ex 1597  df-nf 1600  df-sb 1712  df-eu 2279  df-mo 2280  df-clab 2453  df-cleq 2459  df-clel 2462  df-nfc 2617  df-ne 2664  df-nel 2665  df-ral 2819  df-rex 2820  df-reu 2821  df-rmo 2822  df-rab 2823  df-v 3115  df-sbc 3332  df-csb 3436  df-dif 3479  df-un 3481  df-in 3483  df-ss 3490  df-pss 3492  df-nul 3786  df-if 3940  df-pw 4012  df-sn 4028  df-pr 4030  df-op 4034  df-uni 4246  df-iun 4327  df-iin 4328  df-br 4448  df-opab 4506  df-mpt 4507  df-id 4795  df-xp 5005  df-rel 5006  df-cnv 5007  df-co 5008  df-dm 5009  df-rn 5010  df-res 5011  df-ima 5012  df-iota 5549  df-fun 5588  df-fn 5589  df-f 5590  df-f1 5591  df-fo 5592  df-f1o 5593  df-fv 5594  df-riota 6243  df-ov 6285  df-oprab 6286  df-mpt2 6287  df-1st 6781  df-2nd 6782  df-undef 6999  df-poset 15429  df-plt 15441  df-lub 15457  df-glb 15458  df-join 15459  df-meet 15460  df-p0 15522  df-p1 15523  df-lat 15529  df-clat 15591  df-oposet 33973  df-ol 33975  df-oml 33976  df-covers 34063  df-ats 34064  df-atl 34095  df-cvlat 34119  df-hlat 34148  df-psubsp 34299  df-pmap 34300  df-padd 34592  df-polarityN 34699  df-psubclN 34731
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator