MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  pjth Unicode version

Theorem pjth 19293
Description: Projection Theorem: Any Hilbert space vector  A can be decomposed uniquely into a member  x of a closed subspace  H and a member  y of the complement of the subspace. Theorem 3.7(i) of [Beran] p. 102 (existence part). (Contributed by NM, 23-Oct-1999.) (Revised by Mario Carneiro, 14-May-2014.)
Hypotheses
Ref Expression
pjth.v  |-  V  =  ( Base `  W
)
pjth.s  |-  .(+)  =  (
LSSum `  W )
pjth.o  |-  O  =  ( ocv `  W
)
pjth.j  |-  J  =  ( TopOpen `  W )
pjth.l  |-  L  =  ( LSubSp `  W )
Assertion
Ref Expression
pjth  |-  ( ( W  e.  CHil  /\  U  e.  L  /\  U  e.  ( Clsd `  J
) )  ->  ( U  .(+)  ( O `  U ) )  =  V )

Proof of Theorem pjth
Dummy variable  x is distinct from all other variables.
StepHypRef Expression
1 hlphl 19272 . . . . . 6  |-  ( W  e.  CHil  ->  W  e. 
PreHil )
213ad2ant1 978 . . . . 5  |-  ( ( W  e.  CHil  /\  U  e.  L  /\  U  e.  ( Clsd `  J
) )  ->  W  e.  PreHil )
3 phllmod 16816 . . . . 5  |-  ( W  e.  PreHil  ->  W  e.  LMod )
42, 3syl 16 . . . 4  |-  ( ( W  e.  CHil  /\  U  e.  L  /\  U  e.  ( Clsd `  J
) )  ->  W  e.  LMod )
5 simp2 958 . . . 4  |-  ( ( W  e.  CHil  /\  U  e.  L  /\  U  e.  ( Clsd `  J
) )  ->  U  e.  L )
6 pjth.v . . . . . . 7  |-  V  =  ( Base `  W
)
7 pjth.l . . . . . . 7  |-  L  =  ( LSubSp `  W )
86, 7lssss 15968 . . . . . 6  |-  ( U  e.  L  ->  U  C_  V )
983ad2ant2 979 . . . . 5  |-  ( ( W  e.  CHil  /\  U  e.  L  /\  U  e.  ( Clsd `  J
) )  ->  U  C_  V )
10 pjth.o . . . . . 6  |-  O  =  ( ocv `  W
)
116, 10, 7ocvlss 16854 . . . . 5  |-  ( ( W  e.  PreHil  /\  U  C_  V )  ->  ( O `  U )  e.  L )
122, 9, 11syl2anc 643 . . . 4  |-  ( ( W  e.  CHil  /\  U  e.  L  /\  U  e.  ( Clsd `  J
) )  ->  ( O `  U )  e.  L )
13 pjth.s . . . . 5  |-  .(+)  =  (
LSSum `  W )
147, 13lsmcl 16110 . . . 4  |-  ( ( W  e.  LMod  /\  U  e.  L  /\  ( O `  U )  e.  L )  ->  ( U  .(+)  ( O `  U ) )  e.  L )
154, 5, 12, 14syl3anc 1184 . . 3  |-  ( ( W  e.  CHil  /\  U  e.  L  /\  U  e.  ( Clsd `  J
) )  ->  ( U  .(+)  ( O `  U ) )  e.  L )
166, 7lssss 15968 . . 3  |-  ( ( U  .(+)  ( O `  U ) )  e.  L  ->  ( U  .(+) 
( O `  U
) )  C_  V
)
1715, 16syl 16 . 2  |-  ( ( W  e.  CHil  /\  U  e.  L  /\  U  e.  ( Clsd `  J
) )  ->  ( U  .(+)  ( O `  U ) )  C_  V )
18 eqid 2404 . . . . 5  |-  ( norm `  W )  =  (
norm `  W )
19 eqid 2404 . . . . 5  |-  ( +g  `  W )  =  ( +g  `  W )
20 eqid 2404 . . . . 5  |-  ( -g `  W )  =  (
-g `  W )
21 eqid 2404 . . . . 5  |-  ( .i
`  W )  =  ( .i `  W
)
22 simpl1 960 . . . . 5  |-  ( ( ( W  e.  CHil  /\  U  e.  L  /\  U  e.  ( Clsd `  J ) )  /\  x  e.  V )  ->  W  e.  CHil )
23 simpl2 961 . . . . 5  |-  ( ( ( W  e.  CHil  /\  U  e.  L  /\  U  e.  ( Clsd `  J ) )  /\  x  e.  V )  ->  U  e.  L )
24 simpr 448 . . . . 5  |-  ( ( ( W  e.  CHil  /\  U  e.  L  /\  U  e.  ( Clsd `  J ) )  /\  x  e.  V )  ->  x  e.  V )
25 pjth.j . . . . 5  |-  J  =  ( TopOpen `  W )
26 simpl3 962 . . . . 5  |-  ( ( ( W  e.  CHil  /\  U  e.  L  /\  U  e.  ( Clsd `  J ) )  /\  x  e.  V )  ->  U  e.  ( Clsd `  J ) )
276, 18, 19, 20, 21, 7, 22, 23, 24, 25, 13, 10, 26pjthlem2 19292 . . . 4  |-  ( ( ( W  e.  CHil  /\  U  e.  L  /\  U  e.  ( Clsd `  J ) )  /\  x  e.  V )  ->  x  e.  ( U 
.(+)  ( O `  U ) ) )
2827ex 424 . . 3  |-  ( ( W  e.  CHil  /\  U  e.  L  /\  U  e.  ( Clsd `  J
) )  ->  (
x  e.  V  ->  x  e.  ( U  .(+) 
( O `  U
) ) ) )
2928ssrdv 3314 . 2  |-  ( ( W  e.  CHil  /\  U  e.  L  /\  U  e.  ( Clsd `  J
) )  ->  V  C_  ( U  .(+)  ( O `
 U ) ) )
3017, 29eqssd 3325 1  |-  ( ( W  e.  CHil  /\  U  e.  L  /\  U  e.  ( Clsd `  J
) )  ->  ( U  .(+)  ( O `  U ) )  =  V )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 359    /\ w3a 936    = wceq 1649    e. wcel 1721    C_ wss 3280   ` cfv 5413  (class class class)co 6040   Basecbs 13424   +g cplusg 13484   .icip 13489   TopOpenctopn 13604   -gcsg 14643   LSSumclsm 15223   LModclmod 15905   LSubSpclss 15963   PreHilcphl 16810   ocvcocv 16842   Clsdccld 17035   normcnm 18577   CHilchl 19240
This theorem is referenced by:  pjth2  19294
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1552  ax-5 1563  ax-17 1623  ax-9 1662  ax-8 1683  ax-13 1723  ax-14 1725  ax-6 1740  ax-7 1745  ax-11 1757  ax-12 1946  ax-ext 2385  ax-rep 4280  ax-sep 4290  ax-nul 4298  ax-pow 4337  ax-pr 4363  ax-un 4660  ax-inf2 7552  ax-cnex 9002  ax-resscn 9003  ax-1cn 9004  ax-icn 9005  ax-addcl 9006  ax-addrcl 9007  ax-mulcl 9008  ax-mulrcl 9009  ax-mulcom 9010  ax-addass 9011  ax-mulass 9012  ax-distr 9013  ax-i2m1 9014  ax-1ne0 9015  ax-1rid 9016  ax-rnegex 9017  ax-rrecex 9018  ax-cnre 9019  ax-pre-lttri 9020  ax-pre-lttrn 9021  ax-pre-ltadd 9022  ax-pre-mulgt0 9023  ax-pre-sup 9024  ax-addf 9025  ax-mulf 9026
This theorem depends on definitions:  df-bi 178  df-or 360  df-an 361  df-3or 937  df-3an 938  df-tru 1325  df-ex 1548  df-nf 1551  df-sb 1656  df-eu 2258  df-mo 2259  df-clab 2391  df-cleq 2397  df-clel 2400  df-nfc 2529  df-ne 2569  df-nel 2570  df-ral 2671  df-rex 2672  df-reu 2673  df-rmo 2674  df-rab 2675  df-v 2918  df-sbc 3122  df-csb 3212  df-dif 3283  df-un 3285  df-in 3287  df-ss 3294  df-pss 3296  df-nul 3589  df-if 3700  df-pw 3761  df-sn 3780  df-pr 3781  df-tp 3782  df-op 3783  df-uni 3976  df-int 4011  df-iun 4055  df-iin 4056  df-br 4173  df-opab 4227  df-mpt 4228  df-tr 4263  df-eprel 4454  df-id 4458  df-po 4463  df-so 4464  df-fr 4501  df-se 4502  df-we 4503  df-ord 4544  df-on 4545  df-lim 4546  df-suc 4547  df-om 4805  df-xp 4843  df-rel 4844  df-cnv 4845  df-co 4846  df-dm 4847  df-rn 4848  df-res 4849  df-ima 4850  df-iota 5377  df-fun 5415  df-fn 5416  df-f 5417  df-f1 5418  df-fo 5419  df-f1o 5420  df-fv 5421  df-isom 5422  df-ov 6043  df-oprab 6044  df-mpt2 6045  df-of 6264  df-1st 6308  df-2nd 6309  df-tpos 6438  df-riota 6508  df-recs 6592  df-rdg 6627  df-1o 6683  df-2o 6684  df-oadd 6687  df-er 6864  df-map 6979  df-ixp 7023  df-en 7069  df-dom 7070  df-sdom 7071  df-fin 7072  df-fi 7374  df-sup 7404  df-oi 7435  df-card 7782  df-cda 8004  df-pnf 9078  df-mnf 9079  df-xr 9080  df-ltxr 9081  df-le 9082  df-sub 9249  df-neg 9250  df-div 9634  df-nn 9957  df-2 10014  df-3 10015  df-4 10016  df-5 10017  df-6 10018  df-7 10019  df-8 10020  df-9 10021  df-10 10022  df-n0 10178  df-z 10239  df-dec 10339  df-uz 10445  df-q 10531  df-rp 10569  df-xneg 10666  df-xadd 10667  df-xmul 10668  df-ioo 10876  df-ico 10878  df-icc 10879  df-fz 11000  df-fzo 11091  df-seq 11279  df-exp 11338  df-hash 11574  df-cj 11859  df-re 11860  df-im 11861  df-sqr 11995  df-abs 11996  df-struct 13426  df-ndx 13427  df-slot 13428  df-base 13429  df-sets 13430  df-ress 13431  df-plusg 13497  df-mulr 13498  df-starv 13499  df-sca 13500  df-vsca 13501  df-tset 13503  df-ple 13504  df-ds 13506  df-unif 13507  df-hom 13508  df-cco 13509  df-rest 13605  df-topn 13606  df-topgen 13622  df-pt 13623  df-prds 13626  df-xrs 13681  df-0g 13682  df-gsum 13683  df-qtop 13688  df-imas 13689  df-xps 13691  df-mre 13766  df-mrc 13767  df-acs 13769  df-mnd 14645  df-mhm 14693  df-submnd 14694  df-grp 14767  df-minusg 14768  df-sbg 14769  df-mulg 14770  df-subg 14896  df-ghm 14959  df-cntz 15071  df-lsm 15225  df-cmn 15369  df-abl 15370  df-mgp 15604  df-rng 15618  df-cring 15619  df-ur 15620  df-oppr 15683  df-dvdsr 15701  df-unit 15702  df-invr 15732  df-dvr 15743  df-rnghom 15774  df-drng 15792  df-subrg 15821  df-staf 15888  df-srng 15889  df-lmod 15907  df-lss 15964  df-lmhm 16053  df-lvec 16130  df-sra 16199  df-rgmod 16200  df-psmet 16649  df-xmet 16650  df-met 16651  df-bl 16652  df-mopn 16653  df-fbas 16654  df-fg 16655  df-cnfld 16659  df-phl 16812  df-ocv 16845  df-top 16918  df-bases 16920  df-topon 16921  df-topsp 16922  df-cld 17038  df-ntr 17039  df-cls 17040  df-nei 17117  df-cn 17245  df-cnp 17246  df-haus 17333  df-cmp 17404  df-tx 17547  df-hmeo 17740  df-fil 17831  df-flim 17924  df-fcls 17926  df-xms 18303  df-ms 18304  df-tms 18305  df-nm 18583  df-ngp 18584  df-nlm 18587  df-cncf 18861  df-clm 19041  df-cph 19084  df-cfil 19161  df-cmet 19163  df-cms 19241  df-bn 19242  df-hl 19243
  Copyright terms: Public domain W3C validator