HSE Home Hilbert Space Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  HSE Home  >  Th. List  >  pjpreeq Structured version   Unicode version

Theorem pjpreeq 26730
Description: Equality with a projection. This version of pjeq 26731 does not assume the Axiom of Choice via pjhth 26725. (Contributed by Mario Carneiro, 15-May-2014.) (New usage is discouraged.)
Assertion
Ref Expression
pjpreeq  |-  ( ( H  e.  CH  /\  A  e.  ( H  +H  ( _|_ `  H
) ) )  -> 
( ( ( proj h `  H ) `  A )  =  B  <-> 
( B  e.  H  /\  E. x  e.  ( _|_ `  H ) A  =  ( B  +h  x ) ) ) )
Distinct variable groups:    x, H    x, A    x, B

Proof of Theorem pjpreeq
Dummy variable  y is distinct from all other variables.
StepHypRef Expression
1 chsh 26556 . . . . . . . 8  |-  ( H  e.  CH  ->  H  e.  SH )
2 shocsh 26616 . . . . . . . . 9  |-  ( H  e.  SH  ->  ( _|_ `  H )  e.  SH )
31, 2syl 17 . . . . . . . 8  |-  ( H  e.  CH  ->  ( _|_ `  H )  e.  SH )
4 shsel 26646 . . . . . . . 8  |-  ( ( H  e.  SH  /\  ( _|_ `  H )  e.  SH )  -> 
( A  e.  ( H  +H  ( _|_ `  H ) )  <->  E. y  e.  H  E. x  e.  ( _|_ `  H
) A  =  ( y  +h  x ) ) )
51, 3, 4syl2anc 659 . . . . . . 7  |-  ( H  e.  CH  ->  ( A  e.  ( H  +H  ( _|_ `  H
) )  <->  E. y  e.  H  E. x  e.  ( _|_ `  H
) A  =  ( y  +h  x ) ) )
65biimpa 482 . . . . . 6  |-  ( ( H  e.  CH  /\  A  e.  ( H  +H  ( _|_ `  H
) ) )  ->  E. y  e.  H  E. x  e.  ( _|_ `  H ) A  =  ( y  +h  x ) )
7 ocin 26628 . . . . . . . . 9  |-  ( H  e.  SH  ->  ( H  i^i  ( _|_ `  H
) )  =  0H )
81, 7syl 17 . . . . . . . 8  |-  ( H  e.  CH  ->  ( H  i^i  ( _|_ `  H
) )  =  0H )
9 pjhthmo 26634 . . . . . . . 8  |-  ( ( H  e.  SH  /\  ( _|_ `  H )  e.  SH  /\  ( H  i^i  ( _|_ `  H
) )  =  0H )  ->  E* y
( y  e.  H  /\  E. x  e.  ( _|_ `  H ) A  =  ( y  +h  x ) ) )
101, 3, 8, 9syl3anc 1230 . . . . . . 7  |-  ( H  e.  CH  ->  E* y ( y  e.  H  /\  E. x  e.  ( _|_ `  H
) A  =  ( y  +h  x ) ) )
1110adantr 463 . . . . . 6  |-  ( ( H  e.  CH  /\  A  e.  ( H  +H  ( _|_ `  H
) ) )  ->  E* y ( y  e.  H  /\  E. x  e.  ( _|_ `  H
) A  =  ( y  +h  x ) ) )
12 reu5 3023 . . . . . . 7  |-  ( E! y  e.  H  E. x  e.  ( _|_ `  H ) A  =  ( y  +h  x
)  <->  ( E. y  e.  H  E. x  e.  ( _|_ `  H
) A  =  ( y  +h  x )  /\  E* y  e.  H  E. x  e.  ( _|_ `  H
) A  =  ( y  +h  x ) ) )
13 df-rmo 2762 . . . . . . . 8  |-  ( E* y  e.  H  E. x  e.  ( _|_ `  H ) A  =  ( y  +h  x
)  <->  E* y ( y  e.  H  /\  E. x  e.  ( _|_ `  H ) A  =  ( y  +h  x
) ) )
1413anbi2i 692 . . . . . . 7  |-  ( ( E. y  e.  H  E. x  e.  ( _|_ `  H ) A  =  ( y  +h  x )  /\  E* y  e.  H  E. x  e.  ( _|_ `  H ) A  =  ( y  +h  x
) )  <->  ( E. y  e.  H  E. x  e.  ( _|_ `  H ) A  =  ( y  +h  x
)  /\  E* y
( y  e.  H  /\  E. x  e.  ( _|_ `  H ) A  =  ( y  +h  x ) ) ) )
1512, 14bitri 249 . . . . . 6  |-  ( E! y  e.  H  E. x  e.  ( _|_ `  H ) A  =  ( y  +h  x
)  <->  ( E. y  e.  H  E. x  e.  ( _|_ `  H
) A  =  ( y  +h  x )  /\  E* y ( y  e.  H  /\  E. x  e.  ( _|_ `  H ) A  =  ( y  +h  x
) ) ) )
166, 11, 15sylanbrc 662 . . . . 5  |-  ( ( H  e.  CH  /\  A  e.  ( H  +H  ( _|_ `  H
) ) )  ->  E! y  e.  H  E. x  e.  ( _|_ `  H ) A  =  ( y  +h  x ) )
17 riotacl 6254 . . . . 5  |-  ( E! y  e.  H  E. x  e.  ( _|_ `  H ) A  =  ( y  +h  x
)  ->  ( iota_ y  e.  H  E. x  e.  ( _|_ `  H
) A  =  ( y  +h  x ) )  e.  H )
1816, 17syl 17 . . . 4  |-  ( ( H  e.  CH  /\  A  e.  ( H  +H  ( _|_ `  H
) ) )  -> 
( iota_ y  e.  H  E. x  e.  ( _|_ `  H ) A  =  ( y  +h  x ) )  e.  H )
19 eleq1 2474 . . . 4  |-  ( (
iota_ y  e.  H  E. x  e.  ( _|_ `  H ) A  =  ( y  +h  x ) )  =  B  ->  ( ( iota_ y  e.  H  E. x  e.  ( _|_ `  H ) A  =  ( y  +h  x
) )  e.  H  <->  B  e.  H ) )
2018, 19syl5ibcom 220 . . 3  |-  ( ( H  e.  CH  /\  A  e.  ( H  +H  ( _|_ `  H
) ) )  -> 
( ( iota_ y  e.  H  E. x  e.  ( _|_ `  H
) A  =  ( y  +h  x ) )  =  B  ->  B  e.  H )
)
2120pm4.71rd 633 . 2  |-  ( ( H  e.  CH  /\  A  e.  ( H  +H  ( _|_ `  H
) ) )  -> 
( ( iota_ y  e.  H  E. x  e.  ( _|_ `  H
) A  =  ( y  +h  x ) )  =  B  <->  ( B  e.  H  /\  ( iota_ y  e.  H  E. x  e.  ( _|_ `  H ) A  =  ( y  +h  x
) )  =  B ) ) )
22 shsss 26645 . . . . . 6  |-  ( ( H  e.  SH  /\  ( _|_ `  H )  e.  SH )  -> 
( H  +H  ( _|_ `  H ) ) 
C_  ~H )
231, 3, 22syl2anc 659 . . . . 5  |-  ( H  e.  CH  ->  ( H  +H  ( _|_ `  H
) )  C_  ~H )
2423sselda 3442 . . . 4  |-  ( ( H  e.  CH  /\  A  e.  ( H  +H  ( _|_ `  H
) ) )  ->  A  e.  ~H )
25 pjhval 26729 . . . 4  |-  ( ( H  e.  CH  /\  A  e.  ~H )  ->  ( ( proj h `  H ) `  A
)  =  ( iota_ y  e.  H  E. x  e.  ( _|_ `  H
) A  =  ( y  +h  x ) ) )
2624, 25syldan 468 . . 3  |-  ( ( H  e.  CH  /\  A  e.  ( H  +H  ( _|_ `  H
) ) )  -> 
( ( proj h `  H ) `  A
)  =  ( iota_ y  e.  H  E. x  e.  ( _|_ `  H
) A  =  ( y  +h  x ) ) )
2726eqeq1d 2404 . 2  |-  ( ( H  e.  CH  /\  A  e.  ( H  +H  ( _|_ `  H
) ) )  -> 
( ( ( proj h `  H ) `  A )  =  B  <-> 
( iota_ y  e.  H  E. x  e.  ( _|_ `  H ) A  =  ( y  +h  x ) )  =  B ) )
28 id 22 . . . 4  |-  ( B  e.  H  ->  B  e.  H )
29 oveq1 6285 . . . . . . 7  |-  ( y  =  B  ->  (
y  +h  x )  =  ( B  +h  x ) )
3029eqeq2d 2416 . . . . . 6  |-  ( y  =  B  ->  ( A  =  ( y  +h  x )  <->  A  =  ( B  +h  x
) ) )
3130rexbidv 2918 . . . . 5  |-  ( y  =  B  ->  ( E. x  e.  ( _|_ `  H ) A  =  ( y  +h  x )  <->  E. x  e.  ( _|_ `  H
) A  =  ( B  +h  x ) ) )
3231riota2 6262 . . . 4  |-  ( ( B  e.  H  /\  E! y  e.  H  E. x  e.  ( _|_ `  H ) A  =  ( y  +h  x ) )  -> 
( E. x  e.  ( _|_ `  H
) A  =  ( B  +h  x )  <-> 
( iota_ y  e.  H  E. x  e.  ( _|_ `  H ) A  =  ( y  +h  x ) )  =  B ) )
3328, 16, 32syl2anr 476 . . 3  |-  ( ( ( H  e.  CH  /\  A  e.  ( H  +H  ( _|_ `  H
) ) )  /\  B  e.  H )  ->  ( E. x  e.  ( _|_ `  H
) A  =  ( B  +h  x )  <-> 
( iota_ y  e.  H  E. x  e.  ( _|_ `  H ) A  =  ( y  +h  x ) )  =  B ) )
3433pm5.32da 639 . 2  |-  ( ( H  e.  CH  /\  A  e.  ( H  +H  ( _|_ `  H
) ) )  -> 
( ( B  e.  H  /\  E. x  e.  ( _|_ `  H
) A  =  ( B  +h  x ) )  <->  ( B  e.  H  /\  ( iota_ y  e.  H  E. x  e.  ( _|_ `  H
) A  =  ( y  +h  x ) )  =  B ) ) )
3521, 27, 343bitr4d 285 1  |-  ( ( H  e.  CH  /\  A  e.  ( H  +H  ( _|_ `  H
) ) )  -> 
( ( ( proj h `  H ) `  A )  =  B  <-> 
( B  e.  H  /\  E. x  e.  ( _|_ `  H ) A  =  ( B  +h  x ) ) ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 184    /\ wa 367    = wceq 1405    e. wcel 1842   E*wmo 2239   E.wrex 2755   E!wreu 2756   E*wrmo 2757    i^i cin 3413    C_ wss 3414   ` cfv 5569   iota_crio 6239  (class class class)co 6278   ~Hchil 26250    +h cva 26251   SHcsh 26259   CHcch 26260   _|_cort 26261    +H cph 26262   0Hc0h 26266   proj hcpjh 26268
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1639  ax-4 1652  ax-5 1725  ax-6 1771  ax-7 1814  ax-8 1844  ax-9 1846  ax-10 1861  ax-11 1866  ax-12 1878  ax-13 2026  ax-ext 2380  ax-rep 4507  ax-sep 4517  ax-nul 4525  ax-pow 4572  ax-pr 4630  ax-un 6574  ax-resscn 9579  ax-1cn 9580  ax-icn 9581  ax-addcl 9582  ax-addrcl 9583  ax-mulcl 9584  ax-mulrcl 9585  ax-mulcom 9586  ax-addass 9587  ax-mulass 9588  ax-distr 9589  ax-i2m1 9590  ax-1ne0 9591  ax-1rid 9592  ax-rnegex 9593  ax-rrecex 9594  ax-cnre 9595  ax-pre-lttri 9596  ax-pre-lttrn 9597  ax-pre-ltadd 9598  ax-pre-mulgt0 9599  ax-hilex 26330  ax-hfvadd 26331  ax-hvcom 26332  ax-hvass 26333  ax-hv0cl 26334  ax-hvaddid 26335  ax-hfvmul 26336  ax-hvmulid 26337  ax-hvmulass 26338  ax-hvdistr1 26339  ax-hvdistr2 26340  ax-hvmul0 26341  ax-hfi 26410  ax-his2 26414  ax-his3 26415  ax-his4 26416
This theorem depends on definitions:  df-bi 185  df-or 368  df-an 369  df-3or 975  df-3an 976  df-tru 1408  df-ex 1634  df-nf 1638  df-sb 1764  df-eu 2242  df-mo 2243  df-clab 2388  df-cleq 2394  df-clel 2397  df-nfc 2552  df-ne 2600  df-nel 2601  df-ral 2759  df-rex 2760  df-reu 2761  df-rmo 2762  df-rab 2763  df-v 3061  df-sbc 3278  df-csb 3374  df-dif 3417  df-un 3419  df-in 3421  df-ss 3428  df-nul 3739  df-if 3886  df-pw 3957  df-sn 3973  df-pr 3975  df-op 3979  df-uni 4192  df-iun 4273  df-br 4396  df-opab 4454  df-mpt 4455  df-id 4738  df-po 4744  df-so 4745  df-xp 4829  df-rel 4830  df-cnv 4831  df-co 4832  df-dm 4833  df-rn 4834  df-res 4835  df-ima 4836  df-iota 5533  df-fun 5571  df-fn 5572  df-f 5573  df-f1 5574  df-fo 5575  df-f1o 5576  df-fv 5577  df-riota 6240  df-ov 6281  df-oprab 6282  df-mpt2 6283  df-er 7348  df-en 7555  df-dom 7556  df-sdom 7557  df-pnf 9660  df-mnf 9661  df-xr 9662  df-ltxr 9663  df-le 9664  df-sub 9843  df-neg 9844  df-div 10248  df-grpo 25607  df-ablo 25698  df-hvsub 26302  df-sh 26538  df-ch 26553  df-oc 26584  df-ch0 26585  df-shs 26640  df-pjh 26727
This theorem is referenced by:  pjeq  26731  pjpjpre  26751  chscllem1  26969  chscllem2  26970  chscllem3  26971
  Copyright terms: Public domain W3C validator