HSE Home Hilbert Space Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  HSE Home  >  Th. List  >  pjhthlem2 Structured version   Unicode version

Theorem pjhthlem2 25972
Description: Lemma for pjhth 25973. (Contributed by NM, 10-Oct-1999.) (Revised by Mario Carneiro, 15-May-2014.) (New usage is discouraged.)
Hypotheses
Ref Expression
pjhth.1  |-  H  e. 
CH
pjhth.2  |-  ( ph  ->  A  e.  ~H )
Assertion
Ref Expression
pjhthlem2  |-  ( ph  ->  E. x  e.  H  E. y  e.  ( _|_ `  H ) A  =  ( x  +h  y ) )
Distinct variable groups:    x, y, A    x, H, y    ph, x, y

Proof of Theorem pjhthlem2
Dummy variable  z is distinct from all other variables.
StepHypRef Expression
1 df-hba 25548 . . . 4  |-  ~H  =  ( BaseSet `  <. <.  +h  ,  .h  >. ,  normh >. )
2 eqid 2460 . . . . 5  |-  <. <.  +h  ,  .h  >. ,  normh >.  =  <. <.  +h  ,  .h  >. ,  normh >.
32hhvs 25749 . . . 4  |-  -h  =  ( -v `  <. <.  +h  ,  .h  >. ,  normh >. )
42hhnm 25750 . . . 4  |-  normh  =  (
normCV
`  <. <.  +h  ,  .h  >. ,  normh >. )
5 eqid 2460 . . . . 5  |-  <. <. (  +h  |`  ( H  X.  H ) ) ,  (  .h  |`  ( CC  X.  H ) )
>. ,  ( normh  |`  H ) >.  =  <. <.
(  +h  |`  ( H  X.  H ) ) ,  (  .h  |`  ( CC  X.  H ) )
>. ,  ( normh  |`  H ) >.
6 pjhth.1 . . . . . 6  |-  H  e. 
CH
76chshii 25807 . . . . 5  |-  H  e.  SH
85, 7hhssba 25849 . . . 4  |-  H  =  ( BaseSet `  <. <. (  +h  |`  ( H  X.  H ) ) ,  (  .h  |`  ( CC  X.  H ) )
>. ,  ( normh  |`  H ) >. )
92hhph 25757 . . . . 5  |-  <. <.  +h  ,  .h  >. ,  normh >.  e.  CPreHil OLD
109a1i 11 . . . 4  |-  ( ph  -> 
<. <.  +h  ,  .h  >. ,  normh >.  e.  CPreHil OLD )
112, 5hhsst 25844 . . . . . . 7  |-  ( H  e.  SH  ->  <. <. (  +h  |`  ( H  X.  H ) ) ,  (  .h  |`  ( CC  X.  H ) )
>. ,  ( normh  |`  H ) >.  e.  (
SubSp `  <. <.  +h  ,  .h  >. ,  normh >. ) )
127, 11ax-mp 5 . . . . . 6  |-  <. <. (  +h  |`  ( H  X.  H ) ) ,  (  .h  |`  ( CC  X.  H ) )
>. ,  ( normh  |`  H ) >.  e.  (
SubSp `  <. <.  +h  ,  .h  >. ,  normh >. )
135, 6hhssbn 25858 . . . . . 6  |-  <. <. (  +h  |`  ( H  X.  H ) ) ,  (  .h  |`  ( CC  X.  H ) )
>. ,  ( normh  |`  H ) >.  e.  CBan
14 elin 3680 . . . . . 6  |-  ( <. <. (  +h  |`  ( H  X.  H ) ) ,  (  .h  |`  ( CC  X.  H ) )
>. ,  ( normh  |`  H ) >.  e.  ( ( SubSp `  <. <.  +h  ,  .h  >. ,  normh >. )  i^i  CBan )  <->  ( <. <.
(  +h  |`  ( H  X.  H ) ) ,  (  .h  |`  ( CC  X.  H ) )
>. ,  ( normh  |`  H ) >.  e.  (
SubSp `  <. <.  +h  ,  .h  >. ,  normh >. )  /\  <. <.
(  +h  |`  ( H  X.  H ) ) ,  (  .h  |`  ( CC  X.  H ) )
>. ,  ( normh  |`  H ) >.  e.  CBan ) )
1512, 13, 14mpbir2an 913 . . . . 5  |-  <. <. (  +h  |`  ( H  X.  H ) ) ,  (  .h  |`  ( CC  X.  H ) )
>. ,  ( normh  |`  H ) >.  e.  ( ( SubSp `  <. <.  +h  ,  .h  >. ,  normh >. )  i^i  CBan )
1615a1i 11 . . . 4  |-  ( ph  -> 
<. <. (  +h  |`  ( H  X.  H ) ) ,  (  .h  |`  ( CC  X.  H ) )
>. ,  ( normh  |`  H ) >.  e.  ( ( SubSp `  <. <.  +h  ,  .h  >. ,  normh >. )  i^i  CBan ) )
17 pjhth.2 . . . 4  |-  ( ph  ->  A  e.  ~H )
181, 3, 4, 8, 10, 16, 17minveco 25462 . . 3  |-  ( ph  ->  E! x  e.  H  A. z  e.  H  ( normh `  ( A  -h  x ) )  <_ 
( normh `  ( A  -h  z ) ) )
19 reurex 3071 . . 3  |-  ( E! x  e.  H  A. z  e.  H  ( normh `  ( A  -h  x ) )  <_ 
( normh `  ( A  -h  z ) )  ->  E. x  e.  H  A. z  e.  H  ( normh `  ( A  -h  x ) )  <_ 
( normh `  ( A  -h  z ) ) )
2018, 19syl 16 . 2  |-  ( ph  ->  E. x  e.  H  A. z  e.  H  ( normh `  ( A  -h  x ) )  <_ 
( normh `  ( A  -h  z ) ) )
2117adantr 465 . . . . . . 7  |-  ( (
ph  /\  ( x  e.  H  /\  A. z  e.  H  ( normh `  ( A  -h  x
) )  <_  ( normh `  ( A  -h  z ) ) ) )  ->  A  e.  ~H )
226cheli 25812 . . . . . . . 8  |-  ( x  e.  H  ->  x  e.  ~H )
2322ad2antrl 727 . . . . . . 7  |-  ( (
ph  /\  ( x  e.  H  /\  A. z  e.  H  ( normh `  ( A  -h  x
) )  <_  ( normh `  ( A  -h  z ) ) ) )  ->  x  e.  ~H )
24 hvsubcl 25596 . . . . . . 7  |-  ( ( A  e.  ~H  /\  x  e.  ~H )  ->  ( A  -h  x
)  e.  ~H )
2521, 23, 24syl2anc 661 . . . . . 6  |-  ( (
ph  /\  ( x  e.  H  /\  A. z  e.  H  ( normh `  ( A  -h  x
) )  <_  ( normh `  ( A  -h  z ) ) ) )  ->  ( A  -h  x )  e.  ~H )
2621adantr 465 . . . . . . . 8  |-  ( ( ( ph  /\  (
x  e.  H  /\  A. z  e.  H  (
normh `  ( A  -h  x ) )  <_ 
( normh `  ( A  -h  z ) ) ) )  /\  y  e.  H )  ->  A  e.  ~H )
27 simplrl 759 . . . . . . . 8  |-  ( ( ( ph  /\  (
x  e.  H  /\  A. z  e.  H  (
normh `  ( A  -h  x ) )  <_ 
( normh `  ( A  -h  z ) ) ) )  /\  y  e.  H )  ->  x  e.  H )
28 simpr 461 . . . . . . . 8  |-  ( ( ( ph  /\  (
x  e.  H  /\  A. z  e.  H  (
normh `  ( A  -h  x ) )  <_ 
( normh `  ( A  -h  z ) ) ) )  /\  y  e.  H )  ->  y  e.  H )
29 simplrr 760 . . . . . . . 8  |-  ( ( ( ph  /\  (
x  e.  H  /\  A. z  e.  H  (
normh `  ( A  -h  x ) )  <_ 
( normh `  ( A  -h  z ) ) ) )  /\  y  e.  H )  ->  A. z  e.  H  ( normh `  ( A  -h  x
) )  <_  ( normh `  ( A  -h  z ) ) )
30 eqid 2460 . . . . . . . 8  |-  ( ( ( A  -h  x
)  .ih  y )  /  ( ( y 
.ih  y )  +  1 ) )  =  ( ( ( A  -h  x )  .ih  y )  /  (
( y  .ih  y
)  +  1 ) )
316, 26, 27, 28, 29, 30pjhthlem1 25971 . . . . . . 7  |-  ( ( ( ph  /\  (
x  e.  H  /\  A. z  e.  H  (
normh `  ( A  -h  x ) )  <_ 
( normh `  ( A  -h  z ) ) ) )  /\  y  e.  H )  ->  (
( A  -h  x
)  .ih  y )  =  0 )
3231ralrimiva 2871 . . . . . 6  |-  ( (
ph  /\  ( x  e.  H  /\  A. z  e.  H  ( normh `  ( A  -h  x
) )  <_  ( normh `  ( A  -h  z ) ) ) )  ->  A. y  e.  H  ( ( A  -h  x )  .ih  y )  =  0 )
33 shocel 25862 . . . . . . 7  |-  ( H  e.  SH  ->  (
( A  -h  x
)  e.  ( _|_ `  H )  <->  ( ( A  -h  x )  e. 
~H  /\  A. y  e.  H  ( ( A  -h  x )  .ih  y )  =  0 ) ) )
347, 33ax-mp 5 . . . . . 6  |-  ( ( A  -h  x )  e.  ( _|_ `  H
)  <->  ( ( A  -h  x )  e. 
~H  /\  A. y  e.  H  ( ( A  -h  x )  .ih  y )  =  0 ) )
3525, 32, 34sylanbrc 664 . . . . 5  |-  ( (
ph  /\  ( x  e.  H  /\  A. z  e.  H  ( normh `  ( A  -h  x
) )  <_  ( normh `  ( A  -h  z ) ) ) )  ->  ( A  -h  x )  e.  ( _|_ `  H ) )
36 hvpncan3 25621 . . . . . . 7  |-  ( ( x  e.  ~H  /\  A  e.  ~H )  ->  ( x  +h  ( A  -h  x ) )  =  A )
3723, 21, 36syl2anc 661 . . . . . 6  |-  ( (
ph  /\  ( x  e.  H  /\  A. z  e.  H  ( normh `  ( A  -h  x
) )  <_  ( normh `  ( A  -h  z ) ) ) )  ->  ( x  +h  ( A  -h  x
) )  =  A )
3837eqcomd 2468 . . . . 5  |-  ( (
ph  /\  ( x  e.  H  /\  A. z  e.  H  ( normh `  ( A  -h  x
) )  <_  ( normh `  ( A  -h  z ) ) ) )  ->  A  =  ( x  +h  ( A  -h  x ) ) )
39 oveq2 6283 . . . . . . 7  |-  ( y  =  ( A  -h  x )  ->  (
x  +h  y )  =  ( x  +h  ( A  -h  x
) ) )
4039eqeq2d 2474 . . . . . 6  |-  ( y  =  ( A  -h  x )  ->  ( A  =  ( x  +h  y )  <->  A  =  ( x  +h  ( A  -h  x ) ) ) )
4140rspcev 3207 . . . . 5  |-  ( ( ( A  -h  x
)  e.  ( _|_ `  H )  /\  A  =  ( x  +h  ( A  -h  x
) ) )  ->  E. y  e.  ( _|_ `  H ) A  =  ( x  +h  y ) )
4235, 38, 41syl2anc 661 . . . 4  |-  ( (
ph  /\  ( x  e.  H  /\  A. z  e.  H  ( normh `  ( A  -h  x
) )  <_  ( normh `  ( A  -h  z ) ) ) )  ->  E. y  e.  ( _|_ `  H
) A  =  ( x  +h  y ) )
4342expr 615 . . 3  |-  ( (
ph  /\  x  e.  H )  ->  ( A. z  e.  H  ( normh `  ( A  -h  x ) )  <_ 
( normh `  ( A  -h  z ) )  ->  E. y  e.  ( _|_ `  H ) A  =  ( x  +h  y ) ) )
4443reximdva 2931 . 2  |-  ( ph  ->  ( E. x  e.  H  A. z  e.  H  ( normh `  ( A  -h  x ) )  <_  ( normh `  ( A  -h  z ) )  ->  E. x  e.  H  E. y  e.  ( _|_ `  H ) A  =  ( x  +h  y ) ) )
4520, 44mpd 15 1  |-  ( ph  ->  E. x  e.  H  E. y  e.  ( _|_ `  H ) A  =  ( x  +h  y ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 184    /\ wa 369    = wceq 1374    e. wcel 1762   A.wral 2807   E.wrex 2808   E!wreu 2809    i^i cin 3468   <.cop 4026   class class class wbr 4440    X. cxp 4990    |` cres 4994   ` cfv 5579  (class class class)co 6275   CCcc 9479   0cc0 9481   1c1 9482    + caddc 9484    <_ cle 9618    / cdiv 10195   SubSpcss 25296   CPreHil OLDccphlo 25389   CBanccbn 25440   ~Hchil 25498    +h cva 25499    .h csm 25500    .ih csp 25501   normhcno 25502    -h cmv 25504   SHcsh 25507   CHcch 25508   _|_cort 25509
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1596  ax-4 1607  ax-5 1675  ax-6 1714  ax-7 1734  ax-8 1764  ax-9 1766  ax-10 1781  ax-11 1786  ax-12 1798  ax-13 1961  ax-ext 2438  ax-rep 4551  ax-sep 4561  ax-nul 4569  ax-pow 4618  ax-pr 4679  ax-un 6567  ax-inf2 8047  ax-cc 8804  ax-cnex 9537  ax-resscn 9538  ax-1cn 9539  ax-icn 9540  ax-addcl 9541  ax-addrcl 9542  ax-mulcl 9543  ax-mulrcl 9544  ax-mulcom 9545  ax-addass 9546  ax-mulass 9547  ax-distr 9548  ax-i2m1 9549  ax-1ne0 9550  ax-1rid 9551  ax-rnegex 9552  ax-rrecex 9553  ax-cnre 9554  ax-pre-lttri 9555  ax-pre-lttrn 9556  ax-pre-ltadd 9557  ax-pre-mulgt0 9558  ax-pre-sup 9559  ax-addf 9560  ax-mulf 9561  ax-hilex 25578  ax-hfvadd 25579  ax-hvcom 25580  ax-hvass 25581  ax-hv0cl 25582  ax-hvaddid 25583  ax-hfvmul 25584  ax-hvmulid 25585  ax-hvmulass 25586  ax-hvdistr1 25587  ax-hvdistr2 25588  ax-hvmul0 25589  ax-hfi 25658  ax-his1 25661  ax-his2 25662  ax-his3 25663  ax-his4 25664  ax-hcompl 25781
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3or 969  df-3an 970  df-tru 1377  df-ex 1592  df-nf 1595  df-sb 1707  df-eu 2272  df-mo 2273  df-clab 2446  df-cleq 2452  df-clel 2455  df-nfc 2610  df-ne 2657  df-nel 2658  df-ral 2812  df-rex 2813  df-reu 2814  df-rmo 2815  df-rab 2816  df-v 3108  df-sbc 3325  df-csb 3429  df-dif 3472  df-un 3474  df-in 3476  df-ss 3483  df-pss 3485  df-nul 3779  df-if 3933  df-pw 4005  df-sn 4021  df-pr 4023  df-tp 4025  df-op 4027  df-uni 4239  df-int 4276  df-iun 4320  df-iin 4321  df-br 4441  df-opab 4499  df-mpt 4500  df-tr 4534  df-eprel 4784  df-id 4788  df-po 4793  df-so 4794  df-fr 4831  df-se 4832  df-we 4833  df-ord 4874  df-on 4875  df-lim 4876  df-suc 4877  df-xp 4998  df-rel 4999  df-cnv 5000  df-co 5001  df-dm 5002  df-rn 5003  df-res 5004  df-ima 5005  df-iota 5542  df-fun 5581  df-fn 5582  df-f 5583  df-f1 5584  df-fo 5585  df-f1o 5586  df-fv 5587  df-isom 5588  df-riota 6236  df-ov 6278  df-oprab 6279  df-mpt2 6280  df-om 6672  df-1st 6774  df-2nd 6775  df-recs 7032  df-rdg 7066  df-1o 7120  df-oadd 7124  df-omul 7125  df-er 7301  df-map 7412  df-pm 7413  df-en 7507  df-dom 7508  df-sdom 7509  df-fin 7510  df-fi 7860  df-sup 7890  df-oi 7924  df-card 8309  df-acn 8312  df-pnf 9619  df-mnf 9620  df-xr 9621  df-ltxr 9622  df-le 9623  df-sub 9796  df-neg 9797  df-div 10196  df-nn 10526  df-2 10583  df-3 10584  df-4 10585  df-n0 10785  df-z 10854  df-uz 11072  df-q 11172  df-rp 11210  df-xneg 11307  df-xadd 11308  df-xmul 11309  df-ico 11524  df-icc 11525  df-fz 11662  df-fl 11886  df-seq 12064  df-exp 12123  df-cj 12882  df-re 12883  df-im 12884  df-sqr 13018  df-abs 13019  df-clim 13260  df-rlim 13261  df-rest 14667  df-topgen 14688  df-psmet 18175  df-xmet 18176  df-met 18177  df-bl 18178  df-mopn 18179  df-fbas 18180  df-fg 18181  df-top 19159  df-bases 19161  df-topon 19162  df-cld 19279  df-ntr 19280  df-cls 19281  df-nei 19358  df-lm 19489  df-haus 19575  df-fil 20075  df-fm 20167  df-flim 20168  df-flf 20169  df-cfil 21422  df-cau 21423  df-cmet 21424  df-grpo 24855  df-gid 24856  df-ginv 24857  df-gdiv 24858  df-ablo 24946  df-subgo 24966  df-vc 25101  df-nv 25147  df-va 25150  df-ba 25151  df-sm 25152  df-0v 25153  df-vs 25154  df-nmcv 25155  df-ims 25156  df-ssp 25297  df-ph 25390  df-cbn 25441  df-hnorm 25547  df-hba 25548  df-hvsub 25550  df-hlim 25551  df-hcau 25552  df-sh 25786  df-ch 25801  df-oc 25832  df-ch0 25833
This theorem is referenced by:  pjhth  25973  omlsii  25983
  Copyright terms: Public domain W3C validator