HSE Home Hilbert Space Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  HSE Home  >  Th. List  >  pjhclii Structured version   Unicode version

Theorem pjhclii 26754
Description: Closure of a projection in Hilbert space. (Contributed by NM, 30-Oct-1999.) (New usage is discouraged.)
Hypotheses
Ref Expression
pjcli.1  |-  H  e. 
CH
pjcli.2  |-  A  e. 
~H
Assertion
Ref Expression
pjhclii  |-  ( (
proj h `  H ) `
 A )  e. 
~H

Proof of Theorem pjhclii
StepHypRef Expression
1 pjcli.2 . 2  |-  A  e. 
~H
2 pjcli.1 . . 3  |-  H  e. 
CH
32pjhcli 26750 . 2  |-  ( A  e.  ~H  ->  (
( proj h `  H ) `  A
)  e.  ~H )
41, 3ax-mp 5 1  |-  ( (
proj h `  H ) `
 A )  e. 
~H
Colors of variables: wff setvar class
Syntax hints:    e. wcel 1842   ` cfv 5569   ~Hchil 26250   CHcch 26260   proj hcpjh 26268
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1639  ax-4 1652  ax-5 1725  ax-6 1771  ax-7 1814  ax-8 1844  ax-9 1846  ax-10 1861  ax-11 1866  ax-12 1878  ax-13 2026  ax-ext 2380  ax-rep 4507  ax-sep 4517  ax-nul 4525  ax-pow 4572  ax-pr 4630  ax-un 6574  ax-inf2 8091  ax-cc 8847  ax-cnex 9578  ax-resscn 9579  ax-1cn 9580  ax-icn 9581  ax-addcl 9582  ax-addrcl 9583  ax-mulcl 9584  ax-mulrcl 9585  ax-mulcom 9586  ax-addass 9587  ax-mulass 9588  ax-distr 9589  ax-i2m1 9590  ax-1ne0 9591  ax-1rid 9592  ax-rnegex 9593  ax-rrecex 9594  ax-cnre 9595  ax-pre-lttri 9596  ax-pre-lttrn 9597  ax-pre-ltadd 9598  ax-pre-mulgt0 9599  ax-pre-sup 9600  ax-addf 9601  ax-mulf 9602  ax-hilex 26330  ax-hfvadd 26331  ax-hvcom 26332  ax-hvass 26333  ax-hv0cl 26334  ax-hvaddid 26335  ax-hfvmul 26336  ax-hvmulid 26337  ax-hvmulass 26338  ax-hvdistr1 26339  ax-hvdistr2 26340  ax-hvmul0 26341  ax-hfi 26410  ax-his1 26413  ax-his2 26414  ax-his3 26415  ax-his4 26416  ax-hcompl 26533
This theorem depends on definitions:  df-bi 185  df-or 368  df-an 369  df-3or 975  df-3an 976  df-tru 1408  df-ex 1634  df-nf 1638  df-sb 1764  df-eu 2242  df-mo 2243  df-clab 2388  df-cleq 2394  df-clel 2397  df-nfc 2552  df-ne 2600  df-nel 2601  df-ral 2759  df-rex 2760  df-reu 2761  df-rmo 2762  df-rab 2763  df-v 3061  df-sbc 3278  df-csb 3374  df-dif 3417  df-un 3419  df-in 3421  df-ss 3428  df-pss 3430  df-nul 3739  df-if 3886  df-pw 3957  df-sn 3973  df-pr 3975  df-tp 3977  df-op 3979  df-uni 4192  df-int 4228  df-iun 4273  df-iin 4274  df-br 4396  df-opab 4454  df-mpt 4455  df-tr 4490  df-eprel 4734  df-id 4738  df-po 4744  df-so 4745  df-fr 4782  df-se 4783  df-we 4784  df-xp 4829  df-rel 4830  df-cnv 4831  df-co 4832  df-dm 4833  df-rn 4834  df-res 4835  df-ima 4836  df-pred 5367  df-ord 5413  df-on 5414  df-lim 5415  df-suc 5416  df-iota 5533  df-fun 5571  df-fn 5572  df-f 5573  df-f1 5574  df-fo 5575  df-f1o 5576  df-fv 5577  df-isom 5578  df-riota 6240  df-ov 6281  df-oprab 6282  df-mpt2 6283  df-om 6684  df-1st 6784  df-2nd 6785  df-wrecs 7013  df-recs 7075  df-rdg 7113  df-1o 7167  df-oadd 7171  df-omul 7172  df-er 7348  df-map 7459  df-pm 7460  df-en 7555  df-dom 7556  df-sdom 7557  df-fin 7558  df-fi 7905  df-sup 7935  df-oi 7969  df-card 8352  df-acn 8355  df-pnf 9660  df-mnf 9661  df-xr 9662  df-ltxr 9663  df-le 9664  df-sub 9843  df-neg 9844  df-div 10248  df-nn 10577  df-2 10635  df-3 10636  df-4 10637  df-n0 10837  df-z 10906  df-uz 11128  df-q 11228  df-rp 11266  df-xneg 11371  df-xadd 11372  df-xmul 11373  df-ico 11588  df-icc 11589  df-fz 11727  df-fl 11966  df-seq 12152  df-exp 12211  df-cj 13081  df-re 13082  df-im 13083  df-sqrt 13217  df-abs 13218  df-clim 13460  df-rlim 13461  df-rest 15037  df-topgen 15058  df-psmet 18731  df-xmet 18732  df-met 18733  df-bl 18734  df-mopn 18735  df-fbas 18736  df-fg 18737  df-top 19691  df-bases 19693  df-topon 19694  df-cld 19812  df-ntr 19813  df-cls 19814  df-nei 19892  df-lm 20023  df-haus 20109  df-fil 20639  df-fm 20731  df-flim 20732  df-flf 20733  df-cfil 21986  df-cau 21987  df-cmet 21988  df-grpo 25607  df-gid 25608  df-ginv 25609  df-gdiv 25610  df-ablo 25698  df-subgo 25718  df-vc 25853  df-nv 25899  df-va 25902  df-ba 25903  df-sm 25904  df-0v 25905  df-vs 25906  df-nmcv 25907  df-ims 25908  df-ssp 26049  df-ph 26142  df-cbn 26193  df-hnorm 26299  df-hba 26300  df-hvsub 26302  df-hlim 26303  df-hcau 26304  df-sh 26538  df-ch 26553  df-oc 26584  df-ch0 26585  df-shs 26640  df-pjh 26727
This theorem is referenced by:  pjoc1i  26763  pjchi  26764  spansnpji  26910  spanunsni  26911  spansnji  26978  pjidmi  27005  pjadjii  27006  pjaddii  27007  pjinormii  27008  pjmulii  27009  pjsubii  27010  pjsslem  27011  pjss2i  27012  pjssmii  27013  pjssge0ii  27014  pjdifnormii  27015  pjcji  27016  pjopythi  27051  pjnormi  27053  pjneli  27055
  Copyright terms: Public domain W3C validator