MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  pjfval Unicode version

Theorem pjfval 16888
Description: The value of the projection function. (Contributed by Mario Carneiro, 16-Oct-2015.)
Hypotheses
Ref Expression
pjfval.v  |-  V  =  ( Base `  W
)
pjfval.l  |-  L  =  ( LSubSp `  W )
pjfval.o  |-  ._|_  =  ( ocv `  W )
pjfval.p  |-  P  =  ( proj 1 `  W )
pjfval.k  |-  K  =  ( proj `  W
)
Assertion
Ref Expression
pjfval  |-  K  =  ( ( x  e.  L  |->  ( x P (  ._|_  `  x ) ) )  i^i  ( _V  X.  ( V  ^m  V ) ) )
Distinct variable groups:    x,  ._|_    x, L    x, P    x, V    x, W
Allowed substitution hint:    K( x)

Proof of Theorem pjfval
Dummy variable  w is distinct from all other variables.
StepHypRef Expression
1 pjfval.k . 2  |-  K  =  ( proj `  W
)
2 fveq2 5687 . . . . . . 7  |-  ( w  =  W  ->  ( LSubSp `
 w )  =  ( LSubSp `  W )
)
3 pjfval.l . . . . . . 7  |-  L  =  ( LSubSp `  W )
42, 3syl6eqr 2454 . . . . . 6  |-  ( w  =  W  ->  ( LSubSp `
 w )  =  L )
5 fveq2 5687 . . . . . . . 8  |-  ( w  =  W  ->  ( proj 1 `  w )  =  ( proj 1 `  W ) )
6 pjfval.p . . . . . . . 8  |-  P  =  ( proj 1 `  W )
75, 6syl6eqr 2454 . . . . . . 7  |-  ( w  =  W  ->  ( proj 1 `  w )  =  P )
8 eqidd 2405 . . . . . . 7  |-  ( w  =  W  ->  x  =  x )
9 fveq2 5687 . . . . . . . . 9  |-  ( w  =  W  ->  ( ocv `  w )  =  ( ocv `  W
) )
10 pjfval.o . . . . . . . . 9  |-  ._|_  =  ( ocv `  W )
119, 10syl6eqr 2454 . . . . . . . 8  |-  ( w  =  W  ->  ( ocv `  w )  = 
._|_  )
1211fveq1d 5689 . . . . . . 7  |-  ( w  =  W  ->  (
( ocv `  w
) `  x )  =  (  ._|_  `  x
) )
137, 8, 12oveq123d 6061 . . . . . 6  |-  ( w  =  W  ->  (
x ( proj 1 `  w ) ( ( ocv `  w ) `
 x ) )  =  ( x P (  ._|_  `  x ) ) )
144, 13mpteq12dv 4247 . . . . 5  |-  ( w  =  W  ->  (
x  e.  ( LSubSp `  w )  |->  ( x ( proj 1 `  w ) ( ( ocv `  w ) `
 x ) ) )  =  ( x  e.  L  |->  ( x P (  ._|_  `  x
) ) ) )
15 fveq2 5687 . . . . . . . 8  |-  ( w  =  W  ->  ( Base `  w )  =  ( Base `  W
) )
16 pjfval.v . . . . . . . 8  |-  V  =  ( Base `  W
)
1715, 16syl6eqr 2454 . . . . . . 7  |-  ( w  =  W  ->  ( Base `  w )  =  V )
1817, 17oveq12d 6058 . . . . . 6  |-  ( w  =  W  ->  (
( Base `  w )  ^m  ( Base `  w
) )  =  ( V  ^m  V ) )
1918xpeq2d 4861 . . . . 5  |-  ( w  =  W  ->  ( _V  X.  ( ( Base `  w )  ^m  ( Base `  w ) ) )  =  ( _V 
X.  ( V  ^m  V ) ) )
2014, 19ineq12d 3503 . . . 4  |-  ( w  =  W  ->  (
( x  e.  (
LSubSp `  w )  |->  ( x ( proj 1 `  w ) ( ( ocv `  w ) `
 x ) ) )  i^i  ( _V 
X.  ( ( Base `  w )  ^m  ( Base `  w ) ) ) )  =  ( ( x  e.  L  |->  ( x P ( 
._|_  `  x ) ) )  i^i  ( _V 
X.  ( V  ^m  V ) ) ) )
21 df-pj 16885 . . . 4  |-  proj  =  ( w  e.  _V  |->  ( ( x  e.  ( LSubSp `  w )  |->  ( x ( proj
1 `  w )
( ( ocv `  w
) `  x )
) )  i^i  ( _V  X.  ( ( Base `  w )  ^m  ( Base `  w ) ) ) ) )
22 fvex 5701 . . . . . . . 8  |-  ( LSubSp `  W )  e.  _V
233, 22eqeltri 2474 . . . . . . 7  |-  L  e. 
_V
2423inex1 4304 . . . . . 6  |-  ( L  i^i  _V )  e. 
_V
25 ovex 6065 . . . . . . 7  |-  ( V  ^m  V )  e. 
_V
2625inex2 4305 . . . . . 6  |-  ( _V 
i^i  ( V  ^m  V ) )  e. 
_V
2724, 26xpex 4949 . . . . 5  |-  ( ( L  i^i  _V )  X.  ( _V  i^i  ( V  ^m  V ) ) )  e.  _V
28 eqid 2404 . . . . . . . 8  |-  ( x  e.  L  |->  ( x P (  ._|_  `  x
) ) )  =  ( x  e.  L  |->  ( x P ( 
._|_  `  x ) ) )
29 ovex 6065 . . . . . . . . 9  |-  ( x P (  ._|_  `  x
) )  e.  _V
3029a1i 11 . . . . . . . 8  |-  ( x  e.  L  ->  (
x P (  ._|_  `  x ) )  e. 
_V )
3128, 30fmpti 5851 . . . . . . 7  |-  ( x  e.  L  |->  ( x P (  ._|_  `  x
) ) ) : L --> _V
32 fssxp 5561 . . . . . . 7  |-  ( ( x  e.  L  |->  ( x P (  ._|_  `  x ) ) ) : L --> _V  ->  ( x  e.  L  |->  ( x P (  ._|_  `  x ) ) ) 
C_  ( L  X.  _V ) )
33 ssrin 3526 . . . . . . 7  |-  ( ( x  e.  L  |->  ( x P (  ._|_  `  x ) ) ) 
C_  ( L  X.  _V )  ->  ( ( x  e.  L  |->  ( x P (  ._|_  `  x ) ) )  i^i  ( _V  X.  ( V  ^m  V ) ) )  C_  (
( L  X.  _V )  i^i  ( _V  X.  ( V  ^m  V ) ) ) )
3431, 32, 33mp2b 10 . . . . . 6  |-  ( ( x  e.  L  |->  ( x P (  ._|_  `  x ) ) )  i^i  ( _V  X.  ( V  ^m  V ) ) )  C_  (
( L  X.  _V )  i^i  ( _V  X.  ( V  ^m  V ) ) )
35 inxp 4966 . . . . . 6  |-  ( ( L  X.  _V )  i^i  ( _V  X.  ( V  ^m  V ) ) )  =  ( ( L  i^i  _V )  X.  ( _V  i^i  ( V  ^m  V ) ) )
3634, 35sseqtri 3340 . . . . 5  |-  ( ( x  e.  L  |->  ( x P (  ._|_  `  x ) ) )  i^i  ( _V  X.  ( V  ^m  V ) ) )  C_  (
( L  i^i  _V )  X.  ( _V  i^i  ( V  ^m  V ) ) )
3727, 36ssexi 4308 . . . 4  |-  ( ( x  e.  L  |->  ( x P (  ._|_  `  x ) ) )  i^i  ( _V  X.  ( V  ^m  V ) ) )  e.  _V
3820, 21, 37fvmpt 5765 . . 3  |-  ( W  e.  _V  ->  ( proj `  W )  =  ( ( x  e.  L  |->  ( x P (  ._|_  `  x ) ) )  i^i  ( _V  X.  ( V  ^m  V ) ) ) )
39 fvprc 5681 . . . 4  |-  ( -.  W  e.  _V  ->  (
proj `  W )  =  (/) )
40 inss1 3521 . . . . 5  |-  ( ( x  e.  L  |->  ( x P (  ._|_  `  x ) ) )  i^i  ( _V  X.  ( V  ^m  V ) ) )  C_  (
x  e.  L  |->  ( x P (  ._|_  `  x ) ) )
41 fvprc 5681 . . . . . . . 8  |-  ( -.  W  e.  _V  ->  (
LSubSp `  W )  =  (/) )
423, 41syl5eq 2448 . . . . . . 7  |-  ( -.  W  e.  _V  ->  L  =  (/) )
4342mpteq1d 4250 . . . . . 6  |-  ( -.  W  e.  _V  ->  ( x  e.  L  |->  ( x P (  ._|_  `  x ) ) )  =  ( x  e.  (/)  |->  ( x P (  ._|_  `  x ) ) ) )
44 mpt0 5531 . . . . . 6  |-  ( x  e.  (/)  |->  ( x P (  ._|_  `  x ) ) )  =  (/)
4543, 44syl6eq 2452 . . . . 5  |-  ( -.  W  e.  _V  ->  ( x  e.  L  |->  ( x P (  ._|_  `  x ) ) )  =  (/) )
46 sseq0 3619 . . . . 5  |-  ( ( ( ( x  e.  L  |->  ( x P (  ._|_  `  x ) ) )  i^i  ( _V  X.  ( V  ^m  V ) ) ) 
C_  ( x  e.  L  |->  ( x P (  ._|_  `  x ) ) )  /\  (
x  e.  L  |->  ( x P (  ._|_  `  x ) ) )  =  (/) )  ->  (
( x  e.  L  |->  ( x P ( 
._|_  `  x ) ) )  i^i  ( _V 
X.  ( V  ^m  V ) ) )  =  (/) )
4740, 45, 46sylancr 645 . . . 4  |-  ( -.  W  e.  _V  ->  ( ( x  e.  L  |->  ( x P ( 
._|_  `  x ) ) )  i^i  ( _V 
X.  ( V  ^m  V ) ) )  =  (/) )
4839, 47eqtr4d 2439 . . 3  |-  ( -.  W  e.  _V  ->  (
proj `  W )  =  ( ( x  e.  L  |->  ( x P (  ._|_  `  x
) ) )  i^i  ( _V  X.  ( V  ^m  V ) ) ) )
4938, 48pm2.61i 158 . 2  |-  ( proj `  W )  =  ( ( x  e.  L  |->  ( x P ( 
._|_  `  x ) ) )  i^i  ( _V 
X.  ( V  ^m  V ) ) )
501, 49eqtri 2424 1  |-  K  =  ( ( x  e.  L  |->  ( x P (  ._|_  `  x ) ) )  i^i  ( _V  X.  ( V  ^m  V ) ) )
Colors of variables: wff set class
Syntax hints:   -. wn 3    = wceq 1649    e. wcel 1721   _Vcvv 2916    i^i cin 3279    C_ wss 3280   (/)c0 3588    e. cmpt 4226    X. cxp 4835   -->wf 5409   ` cfv 5413  (class class class)co 6040    ^m cmap 6977   Basecbs 13424   proj 1cpj1 15224   LSubSpclss 15963   ocvcocv 16842   projcpj 16882
This theorem is referenced by:  pjdm  16889  pjpm  16890  pjfval2  16891
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1552  ax-5 1563  ax-17 1623  ax-9 1662  ax-8 1683  ax-13 1723  ax-14 1725  ax-6 1740  ax-7 1745  ax-11 1757  ax-12 1946  ax-ext 2385  ax-sep 4290  ax-nul 4298  ax-pow 4337  ax-pr 4363  ax-un 4660
This theorem depends on definitions:  df-bi 178  df-or 360  df-an 361  df-3an 938  df-tru 1325  df-ex 1548  df-nf 1551  df-sb 1656  df-eu 2258  df-mo 2259  df-clab 2391  df-cleq 2397  df-clel 2400  df-nfc 2529  df-ne 2569  df-ral 2671  df-rex 2672  df-rab 2675  df-v 2918  df-sbc 3122  df-dif 3283  df-un 3285  df-in 3287  df-ss 3294  df-nul 3589  df-if 3700  df-pw 3761  df-sn 3780  df-pr 3781  df-op 3783  df-uni 3976  df-br 4173  df-opab 4227  df-mpt 4228  df-id 4458  df-xp 4843  df-rel 4844  df-cnv 4845  df-co 4846  df-dm 4847  df-rn 4848  df-res 4849  df-ima 4850  df-iota 5377  df-fun 5415  df-fn 5416  df-f 5417  df-fv 5421  df-ov 6043  df-pj 16885
  Copyright terms: Public domain W3C validator