MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  pj1fval Structured version   Visualization version   Unicode version

Theorem pj1fval 17392
Description: The left projection function (for a direct product of group subspaces). (Contributed by Mario Carneiro, 15-Oct-2015.) (Revised by Mario Carneiro, 21-Apr-2016.)
Hypotheses
Ref Expression
pj1fval.v  |-  B  =  ( Base `  G
)
pj1fval.a  |-  .+  =  ( +g  `  G )
pj1fval.s  |-  .(+)  =  (
LSSum `  G )
pj1fval.p  |-  P  =  ( proj1 `  G )
Assertion
Ref Expression
pj1fval  |-  ( ( G  e.  V  /\  T  C_  B  /\  U  C_  B )  ->  ( T P U )  =  ( z  e.  ( T  .(+)  U )  |->  ( iota_ x  e.  T  E. y  e.  U  z  =  ( x  .+  y ) ) ) )
Distinct variable groups:    z,  .+    x, y, z, B    x, T, y, z    x, U, y, z    x,  .(+) , y, z    x, G, y, z    x, V, y, z
Allowed substitution hints:    P( x, y, z)    .+ ( x, y)

Proof of Theorem pj1fval
Dummy variables  t 
g  u are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 pj1fval.p . . 3  |-  P  =  ( proj1 `  G )
2 elex 3065 . . . . 5  |-  ( G  e.  V  ->  G  e.  _V )
323ad2ant1 1035 . . . 4  |-  ( ( G  e.  V  /\  T  C_  B  /\  U  C_  B )  ->  G  e.  _V )
4 fveq2 5887 . . . . . . . 8  |-  ( g  =  G  ->  ( Base `  g )  =  ( Base `  G
) )
5 pj1fval.v . . . . . . . 8  |-  B  =  ( Base `  G
)
64, 5syl6eqr 2513 . . . . . . 7  |-  ( g  =  G  ->  ( Base `  g )  =  B )
76pweqd 3967 . . . . . 6  |-  ( g  =  G  ->  ~P ( Base `  g )  =  ~P B )
8 fveq2 5887 . . . . . . . . 9  |-  ( g  =  G  ->  ( LSSum `  g )  =  ( LSSum `  G )
)
9 pj1fval.s . . . . . . . . 9  |-  .(+)  =  (
LSSum `  G )
108, 9syl6eqr 2513 . . . . . . . 8  |-  ( g  =  G  ->  ( LSSum `  g )  = 
.(+)  )
1110oveqd 6331 . . . . . . 7  |-  ( g  =  G  ->  (
t ( LSSum `  g
) u )  =  ( t  .(+)  u ) )
12 fveq2 5887 . . . . . . . . . . . 12  |-  ( g  =  G  ->  ( +g  `  g )  =  ( +g  `  G
) )
13 pj1fval.a . . . . . . . . . . . 12  |-  .+  =  ( +g  `  G )
1412, 13syl6eqr 2513 . . . . . . . . . . 11  |-  ( g  =  G  ->  ( +g  `  g )  = 
.+  )
1514oveqd 6331 . . . . . . . . . 10  |-  ( g  =  G  ->  (
x ( +g  `  g
) y )  =  ( x  .+  y
) )
1615eqeq2d 2471 . . . . . . . . 9  |-  ( g  =  G  ->  (
z  =  ( x ( +g  `  g
) y )  <->  z  =  ( x  .+  y ) ) )
1716rexbidv 2912 . . . . . . . 8  |-  ( g  =  G  ->  ( E. y  e.  u  z  =  ( x
( +g  `  g ) y )  <->  E. y  e.  u  z  =  ( x  .+  y ) ) )
1817riotabidv 6278 . . . . . . 7  |-  ( g  =  G  ->  ( iota_ x  e.  t  E. y  e.  u  z  =  ( x ( +g  `  g ) y ) )  =  ( iota_ x  e.  t  E. y  e.  u  z  =  ( x  .+  y ) ) )
1911, 18mpteq12dv 4494 . . . . . 6  |-  ( g  =  G  ->  (
z  e.  ( t ( LSSum `  g )
u )  |->  ( iota_ x  e.  t  E. y  e.  u  z  =  ( x ( +g  `  g ) y ) ) )  =  ( z  e.  ( t 
.(+)  u )  |->  ( iota_ x  e.  t  E. y  e.  u  z  =  ( x  .+  y ) ) ) )
207, 7, 19mpt2eq123dv 6379 . . . . 5  |-  ( g  =  G  ->  (
t  e.  ~P ( Base `  g ) ,  u  e.  ~P ( Base `  g )  |->  ( z  e.  ( t ( LSSum `  g )
u )  |->  ( iota_ x  e.  t  E. y  e.  u  z  =  ( x ( +g  `  g ) y ) ) ) )  =  ( t  e.  ~P B ,  u  e.  ~P B  |->  ( z  e.  ( t  .(+)  u )  |->  ( iota_ x  e.  t  E. y  e.  u  z  =  ( x  .+  y ) ) ) ) )
21 df-pj1 17337 . . . . 5  |-  proj1 
=  ( g  e. 
_V  |->  ( t  e. 
~P ( Base `  g
) ,  u  e. 
~P ( Base `  g
)  |->  ( z  e.  ( t ( LSSum `  g ) u ) 
|->  ( iota_ x  e.  t  E. y  e.  u  z  =  ( x
( +g  `  g ) y ) ) ) ) )
22 fvex 5897 . . . . . . . 8  |-  ( Base `  G )  e.  _V
235, 22eqeltri 2535 . . . . . . 7  |-  B  e. 
_V
2423pwex 4599 . . . . . 6  |-  ~P B  e.  _V
2524, 24mpt2ex 6896 . . . . 5  |-  ( t  e.  ~P B ,  u  e.  ~P B  |->  ( z  e.  ( t  .(+)  u )  |->  ( iota_ x  e.  t  E. y  e.  u  z  =  ( x  .+  y ) ) ) )  e.  _V
2620, 21, 25fvmpt 5970 . . . 4  |-  ( G  e.  _V  ->  ( proj1 `  G )  =  ( t  e. 
~P B ,  u  e.  ~P B  |->  ( z  e.  ( t  .(+)  u )  |->  ( iota_ x  e.  t  E. y  e.  u  z  =  ( x  .+  y ) ) ) ) )
273, 26syl 17 . . 3  |-  ( ( G  e.  V  /\  T  C_  B  /\  U  C_  B )  ->  ( proj1 `  G )  =  ( t  e. 
~P B ,  u  e.  ~P B  |->  ( z  e.  ( t  .(+)  u )  |->  ( iota_ x  e.  t  E. y  e.  u  z  =  ( x  .+  y ) ) ) ) )
281, 27syl5eq 2507 . 2  |-  ( ( G  e.  V  /\  T  C_  B  /\  U  C_  B )  ->  P  =  ( t  e. 
~P B ,  u  e.  ~P B  |->  ( z  e.  ( t  .(+)  u )  |->  ( iota_ x  e.  t  E. y  e.  u  z  =  ( x  .+  y ) ) ) ) )
29 oveq12 6323 . . . 4  |-  ( ( t  =  T  /\  u  =  U )  ->  ( t  .(+)  u )  =  ( T  .(+)  U ) )
3029adantl 472 . . 3  |-  ( ( ( G  e.  V  /\  T  C_  B  /\  U  C_  B )  /\  ( t  =  T  /\  u  =  U ) )  ->  (
t  .(+)  u )  =  ( T  .(+)  U ) )
31 simprl 769 . . . 4  |-  ( ( ( G  e.  V  /\  T  C_  B  /\  U  C_  B )  /\  ( t  =  T  /\  u  =  U ) )  ->  t  =  T )
32 simprr 771 . . . . 5  |-  ( ( ( G  e.  V  /\  T  C_  B  /\  U  C_  B )  /\  ( t  =  T  /\  u  =  U ) )  ->  u  =  U )
3332rexeqdv 3005 . . . 4  |-  ( ( ( G  e.  V  /\  T  C_  B  /\  U  C_  B )  /\  ( t  =  T  /\  u  =  U ) )  ->  ( E. y  e.  u  z  =  ( x  .+  y )  <->  E. y  e.  U  z  =  ( x  .+  y ) ) )
3431, 33riotaeqbidv 6279 . . 3  |-  ( ( ( G  e.  V  /\  T  C_  B  /\  U  C_  B )  /\  ( t  =  T  /\  u  =  U ) )  ->  ( iota_ x  e.  t  E. y  e.  u  z  =  ( x  .+  y ) )  =  ( iota_ x  e.  T  E. y  e.  U  z  =  ( x  .+  y ) ) )
3530, 34mpteq12dv 4494 . 2  |-  ( ( ( G  e.  V  /\  T  C_  B  /\  U  C_  B )  /\  ( t  =  T  /\  u  =  U ) )  ->  (
z  e.  ( t 
.(+)  u )  |->  ( iota_ x  e.  t  E. y  e.  u  z  =  ( x  .+  y ) ) )  =  ( z  e.  ( T 
.(+)  U )  |->  ( iota_ x  e.  T  E. y  e.  U  z  =  ( x  .+  y ) ) ) )
36 simp2 1015 . . 3  |-  ( ( G  e.  V  /\  T  C_  B  /\  U  C_  B )  ->  T  C_  B )
3723elpw2 4580 . . 3  |-  ( T  e.  ~P B  <->  T  C_  B
)
3836, 37sylibr 217 . 2  |-  ( ( G  e.  V  /\  T  C_  B  /\  U  C_  B )  ->  T  e.  ~P B )
39 simp3 1016 . . 3  |-  ( ( G  e.  V  /\  T  C_  B  /\  U  C_  B )  ->  U  C_  B )
4023elpw2 4580 . . 3  |-  ( U  e.  ~P B  <->  U  C_  B
)
4139, 40sylibr 217 . 2  |-  ( ( G  e.  V  /\  T  C_  B  /\  U  C_  B )  ->  U  e.  ~P B )
42 ovex 6342 . . . 4  |-  ( T 
.(+)  U )  e.  _V
4342mptex 6160 . . 3  |-  ( z  e.  ( T  .(+)  U )  |->  ( iota_ x  e.  T  E. y  e.  U  z  =  ( x  .+  y ) ) )  e.  _V
4443a1i 11 . 2  |-  ( ( G  e.  V  /\  T  C_  B  /\  U  C_  B )  ->  (
z  e.  ( T 
.(+)  U )  |->  ( iota_ x  e.  T  E. y  e.  U  z  =  ( x  .+  y ) ) )  e.  _V )
4528, 35, 38, 41, 44ovmpt2d 6450 1  |-  ( ( G  e.  V  /\  T  C_  B  /\  U  C_  B )  ->  ( T P U )  =  ( z  e.  ( T  .(+)  U )  |->  ( iota_ x  e.  T  E. y  e.  U  z  =  ( x  .+  y ) ) ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    /\ wa 375    /\ w3a 991    = wceq 1454    e. wcel 1897   E.wrex 2749   _Vcvv 3056    C_ wss 3415   ~Pcpw 3962    |-> cmpt 4474   ` cfv 5600   iota_crio 6275  (class class class)co 6314    |-> cmpt2 6316   Basecbs 15169   +g cplusg 15238   LSSumclsm 17334   proj1cpj1 17335
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1679  ax-4 1692  ax-5 1768  ax-6 1815  ax-7 1861  ax-8 1899  ax-9 1906  ax-10 1925  ax-11 1930  ax-12 1943  ax-13 2101  ax-ext 2441  ax-rep 4528  ax-sep 4538  ax-nul 4547  ax-pow 4594  ax-pr 4652  ax-un 6609
This theorem depends on definitions:  df-bi 190  df-or 376  df-an 377  df-3an 993  df-tru 1457  df-ex 1674  df-nf 1678  df-sb 1808  df-eu 2313  df-mo 2314  df-clab 2448  df-cleq 2454  df-clel 2457  df-nfc 2591  df-ne 2634  df-ral 2753  df-rex 2754  df-reu 2755  df-rab 2757  df-v 3058  df-sbc 3279  df-csb 3375  df-dif 3418  df-un 3420  df-in 3422  df-ss 3429  df-nul 3743  df-if 3893  df-pw 3964  df-sn 3980  df-pr 3982  df-op 3986  df-uni 4212  df-iun 4293  df-br 4416  df-opab 4475  df-mpt 4476  df-id 4767  df-xp 4858  df-rel 4859  df-cnv 4860  df-co 4861  df-dm 4862  df-rn 4863  df-res 4864  df-ima 4865  df-iota 5564  df-fun 5602  df-fn 5603  df-f 5604  df-f1 5605  df-fo 5606  df-f1o 5607  df-fv 5608  df-riota 6276  df-ov 6317  df-oprab 6318  df-mpt2 6319  df-1st 6819  df-2nd 6820  df-pj1 17337
This theorem is referenced by:  pj1val  17393  pj1f  17395
  Copyright terms: Public domain W3C validator