MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  pinq Structured version   Unicode version

Theorem pinq 9092
Description: The representatives of positive integers as positive fractions. (Contributed by NM, 29-Oct-1995.) (Revised by Mario Carneiro, 6-May-2013.) (New usage is discouraged.)
Assertion
Ref Expression
pinq  |-  ( A  e.  N.  ->  <. A ,  1o >.  e.  Q. )

Proof of Theorem pinq
Dummy variables  x  y are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 1pi 9048 . . . 4  |-  1o  e.  N.
2 opelxpi 4867 . . . 4  |-  ( ( A  e.  N.  /\  1o  e.  N. )  ->  <. A ,  1o >.  e.  ( N.  X.  N. ) )
31, 2mpan2 666 . . 3  |-  ( A  e.  N.  ->  <. A ,  1o >.  e.  ( N. 
X.  N. ) )
4 nlt1pi 9071 . . . . . 6  |-  -.  ( 2nd `  y )  <N  1o
51elexi 2980 . . . . . . . 8  |-  1o  e.  _V
6 op2ndg 6589 . . . . . . . 8  |-  ( ( A  e.  N.  /\  1o  e.  _V )  -> 
( 2nd `  <. A ,  1o >. )  =  1o )
75, 6mpan2 666 . . . . . . 7  |-  ( A  e.  N.  ->  ( 2nd `  <. A ,  1o >. )  =  1o )
87breq2d 4301 . . . . . 6  |-  ( A  e.  N.  ->  (
( 2nd `  y
)  <N  ( 2nd `  <. A ,  1o >. )  <->  ( 2nd `  y ) 
<N  1o ) )
94, 8mtbiri 303 . . . . 5  |-  ( A  e.  N.  ->  -.  ( 2nd `  y ) 
<N  ( 2nd `  <. A ,  1o >. )
)
109a1d 25 . . . 4  |-  ( A  e.  N.  ->  ( <. A ,  1o >.  ~Q  y  ->  -.  ( 2nd `  y )  <N 
( 2nd `  <. A ,  1o >. )
) )
1110ralrimivw 2798 . . 3  |-  ( A  e.  N.  ->  A. y  e.  ( N.  X.  N. ) ( <. A ,  1o >.  ~Q  y  ->  -.  ( 2nd `  y
)  <N  ( 2nd `  <. A ,  1o >. )
) )
12 breq1 4292 . . . . . 6  |-  ( x  =  <. A ,  1o >.  ->  ( x  ~Q  y 
<-> 
<. A ,  1o >.  ~Q  y ) )
13 fveq2 5688 . . . . . . . 8  |-  ( x  =  <. A ,  1o >.  ->  ( 2nd `  x
)  =  ( 2nd `  <. A ,  1o >. ) )
1413breq2d 4301 . . . . . . 7  |-  ( x  =  <. A ,  1o >.  ->  ( ( 2nd `  y )  <N  ( 2nd `  x )  <->  ( 2nd `  y )  <N  ( 2nd `  <. A ,  1o >. ) ) )
1514notbid 294 . . . . . 6  |-  ( x  =  <. A ,  1o >.  ->  ( -.  ( 2nd `  y )  <N 
( 2nd `  x
)  <->  -.  ( 2nd `  y )  <N  ( 2nd `  <. A ,  1o >. ) ) )
1612, 15imbi12d 320 . . . . 5  |-  ( x  =  <. A ,  1o >.  ->  ( ( x  ~Q  y  ->  -.  ( 2nd `  y ) 
<N  ( 2nd `  x
) )  <->  ( <. A ,  1o >.  ~Q  y  ->  -.  ( 2nd `  y
)  <N  ( 2nd `  <. A ,  1o >. )
) ) )
1716ralbidv 2733 . . . 4  |-  ( x  =  <. A ,  1o >.  ->  ( A. y  e.  ( N.  X.  N. ) ( x  ~Q  y  ->  -.  ( 2nd `  y )  <N  ( 2nd `  x ) )  <->  A. y  e.  ( N.  X.  N. ) (
<. A ,  1o >.  ~Q  y  ->  -.  ( 2nd `  y )  <N 
( 2nd `  <. A ,  1o >. )
) ) )
1817elrab 3114 . . 3  |-  ( <. A ,  1o >.  e.  {
x  e.  ( N. 
X.  N. )  |  A. y  e.  ( N.  X.  N. ) ( x  ~Q  y  ->  -.  ( 2nd `  y ) 
<N  ( 2nd `  x
) ) }  <->  ( <. A ,  1o >.  e.  ( N.  X.  N. )  /\  A. y  e.  ( N.  X.  N. )
( <. A ,  1o >.  ~Q  y  ->  -.  ( 2nd `  y ) 
<N  ( 2nd `  <. A ,  1o >. )
) ) )
193, 11, 18sylanbrc 659 . 2  |-  ( A  e.  N.  ->  <. A ,  1o >.  e.  { x  e.  ( N.  X.  N. )  |  A. y  e.  ( N.  X.  N. ) ( x  ~Q  y  ->  -.  ( 2nd `  y )  <N  ( 2nd `  x ) ) } )
20 df-nq 9077 . 2  |-  Q.  =  { x  e.  ( N.  X.  N. )  | 
A. y  e.  ( N.  X.  N. )
( x  ~Q  y  ->  -.  ( 2nd `  y
)  <N  ( 2nd `  x
) ) }
2119, 20syl6eleqr 2532 1  |-  ( A  e.  N.  ->  <. A ,  1o >.  e.  Q. )
Colors of variables: wff setvar class
Syntax hints:   -. wn 3    -> wi 4    = wceq 1364    e. wcel 1761   A.wral 2713   {crab 2717   _Vcvv 2970   <.cop 3880   class class class wbr 4289    X. cxp 4834   ` cfv 5415   2ndc2nd 6575   1oc1o 6909   N.cnpi 9007    <N clti 9010    ~Q ceq 9014   Q.cnq 9015
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1596  ax-4 1607  ax-5 1675  ax-6 1713  ax-7 1733  ax-8 1763  ax-9 1765  ax-10 1780  ax-11 1785  ax-12 1797  ax-13 1948  ax-ext 2422  ax-sep 4410  ax-nul 4418  ax-pow 4467  ax-pr 4528  ax-un 6371
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3or 961  df-3an 962  df-tru 1367  df-ex 1592  df-nf 1595  df-sb 1706  df-eu 2261  df-mo 2262  df-clab 2428  df-cleq 2434  df-clel 2437  df-nfc 2566  df-ne 2606  df-ral 2718  df-rex 2719  df-rab 2722  df-v 2972  df-sbc 3184  df-dif 3328  df-un 3330  df-in 3332  df-ss 3339  df-pss 3341  df-nul 3635  df-if 3789  df-pw 3859  df-sn 3875  df-pr 3877  df-tp 3879  df-op 3881  df-uni 4089  df-br 4290  df-opab 4348  df-mpt 4349  df-tr 4383  df-eprel 4628  df-id 4632  df-po 4637  df-so 4638  df-fr 4675  df-we 4677  df-ord 4718  df-on 4719  df-lim 4720  df-suc 4721  df-xp 4842  df-rel 4843  df-cnv 4844  df-co 4845  df-dm 4846  df-rn 4847  df-iota 5378  df-fun 5417  df-fv 5423  df-om 6476  df-2nd 6577  df-1o 6916  df-ni 9037  df-lti 9040  df-nq 9077
This theorem is referenced by:  1nq  9093  archnq  9145  prlem934  9198
  Copyright terms: Public domain W3C validator