MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  pinq Structured version   Unicode version

Theorem pinq 9238
Description: The representatives of positive integers as positive fractions. (Contributed by NM, 29-Oct-1995.) (Revised by Mario Carneiro, 6-May-2013.) (New usage is discouraged.)
Assertion
Ref Expression
pinq  |-  ( A  e.  N.  ->  <. A ,  1o >.  e.  Q. )

Proof of Theorem pinq
Dummy variables  x  y are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 1pi 9194 . . . 4  |-  1o  e.  N.
2 opelxpi 4962 . . . 4  |-  ( ( A  e.  N.  /\  1o  e.  N. )  ->  <. A ,  1o >.  e.  ( N.  X.  N. ) )
31, 2mpan2 669 . . 3  |-  ( A  e.  N.  ->  <. A ,  1o >.  e.  ( N. 
X.  N. ) )
4 nlt1pi 9217 . . . . . 6  |-  -.  ( 2nd `  y )  <N  1o
51elexi 3061 . . . . . . . 8  |-  1o  e.  _V
6 op2ndg 6734 . . . . . . . 8  |-  ( ( A  e.  N.  /\  1o  e.  _V )  -> 
( 2nd `  <. A ,  1o >. )  =  1o )
75, 6mpan2 669 . . . . . . 7  |-  ( A  e.  N.  ->  ( 2nd `  <. A ,  1o >. )  =  1o )
87breq2d 4396 . . . . . 6  |-  ( A  e.  N.  ->  (
( 2nd `  y
)  <N  ( 2nd `  <. A ,  1o >. )  <->  ( 2nd `  y ) 
<N  1o ) )
94, 8mtbiri 301 . . . . 5  |-  ( A  e.  N.  ->  -.  ( 2nd `  y ) 
<N  ( 2nd `  <. A ,  1o >. )
)
109a1d 25 . . . 4  |-  ( A  e.  N.  ->  ( <. A ,  1o >.  ~Q  y  ->  -.  ( 2nd `  y )  <N 
( 2nd `  <. A ,  1o >. )
) )
1110ralrimivw 2811 . . 3  |-  ( A  e.  N.  ->  A. y  e.  ( N.  X.  N. ) ( <. A ,  1o >.  ~Q  y  ->  -.  ( 2nd `  y
)  <N  ( 2nd `  <. A ,  1o >. )
) )
12 breq1 4387 . . . . . 6  |-  ( x  =  <. A ,  1o >.  ->  ( x  ~Q  y 
<-> 
<. A ,  1o >.  ~Q  y ) )
13 fveq2 5791 . . . . . . . 8  |-  ( x  =  <. A ,  1o >.  ->  ( 2nd `  x
)  =  ( 2nd `  <. A ,  1o >. ) )
1413breq2d 4396 . . . . . . 7  |-  ( x  =  <. A ,  1o >.  ->  ( ( 2nd `  y )  <N  ( 2nd `  x )  <->  ( 2nd `  y )  <N  ( 2nd `  <. A ,  1o >. ) ) )
1514notbid 292 . . . . . 6  |-  ( x  =  <. A ,  1o >.  ->  ( -.  ( 2nd `  y )  <N 
( 2nd `  x
)  <->  -.  ( 2nd `  y )  <N  ( 2nd `  <. A ,  1o >. ) ) )
1612, 15imbi12d 318 . . . . 5  |-  ( x  =  <. A ,  1o >.  ->  ( ( x  ~Q  y  ->  -.  ( 2nd `  y ) 
<N  ( 2nd `  x
) )  <->  ( <. A ,  1o >.  ~Q  y  ->  -.  ( 2nd `  y
)  <N  ( 2nd `  <. A ,  1o >. )
) ) )
1716ralbidv 2835 . . . 4  |-  ( x  =  <. A ,  1o >.  ->  ( A. y  e.  ( N.  X.  N. ) ( x  ~Q  y  ->  -.  ( 2nd `  y )  <N  ( 2nd `  x ) )  <->  A. y  e.  ( N.  X.  N. ) (
<. A ,  1o >.  ~Q  y  ->  -.  ( 2nd `  y )  <N 
( 2nd `  <. A ,  1o >. )
) ) )
1817elrab 3199 . . 3  |-  ( <. A ,  1o >.  e.  {
x  e.  ( N. 
X.  N. )  |  A. y  e.  ( N.  X.  N. ) ( x  ~Q  y  ->  -.  ( 2nd `  y ) 
<N  ( 2nd `  x
) ) }  <->  ( <. A ,  1o >.  e.  ( N.  X.  N. )  /\  A. y  e.  ( N.  X.  N. )
( <. A ,  1o >.  ~Q  y  ->  -.  ( 2nd `  y ) 
<N  ( 2nd `  <. A ,  1o >. )
) ) )
193, 11, 18sylanbrc 662 . 2  |-  ( A  e.  N.  ->  <. A ,  1o >.  e.  { x  e.  ( N.  X.  N. )  |  A. y  e.  ( N.  X.  N. ) ( x  ~Q  y  ->  -.  ( 2nd `  y )  <N  ( 2nd `  x ) ) } )
20 df-nq 9223 . 2  |-  Q.  =  { x  e.  ( N.  X.  N. )  | 
A. y  e.  ( N.  X.  N. )
( x  ~Q  y  ->  -.  ( 2nd `  y
)  <N  ( 2nd `  x
) ) }
2119, 20syl6eleqr 2495 1  |-  ( A  e.  N.  ->  <. A ,  1o >.  e.  Q. )
Colors of variables: wff setvar class
Syntax hints:   -. wn 3    -> wi 4    = wceq 1399    e. wcel 1836   A.wral 2746   {crab 2750   _Vcvv 3051   <.cop 3967   class class class wbr 4384    X. cxp 4928   ` cfv 5513   2ndc2nd 6720   1oc1o 7063   N.cnpi 9155    <N clti 9158    ~Q ceq 9162   Q.cnq 9163
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1633  ax-4 1646  ax-5 1719  ax-6 1765  ax-7 1808  ax-8 1838  ax-9 1840  ax-10 1855  ax-11 1860  ax-12 1872  ax-13 2020  ax-ext 2374  ax-sep 4505  ax-nul 4513  ax-pow 4560  ax-pr 4618  ax-un 6513
This theorem depends on definitions:  df-bi 185  df-or 368  df-an 369  df-3or 972  df-3an 973  df-tru 1402  df-ex 1628  df-nf 1632  df-sb 1758  df-eu 2236  df-mo 2237  df-clab 2382  df-cleq 2388  df-clel 2391  df-nfc 2546  df-ne 2593  df-ral 2751  df-rex 2752  df-rab 2755  df-v 3053  df-sbc 3270  df-dif 3409  df-un 3411  df-in 3413  df-ss 3420  df-pss 3422  df-nul 3729  df-if 3875  df-pw 3946  df-sn 3962  df-pr 3964  df-tp 3966  df-op 3968  df-uni 4181  df-br 4385  df-opab 4443  df-mpt 4444  df-tr 4478  df-eprel 4722  df-id 4726  df-po 4731  df-so 4732  df-fr 4769  df-we 4771  df-ord 4812  df-on 4813  df-lim 4814  df-suc 4815  df-xp 4936  df-rel 4937  df-cnv 4938  df-co 4939  df-dm 4940  df-rn 4941  df-iota 5477  df-fun 5515  df-fv 5521  df-om 6622  df-2nd 6722  df-1o 7070  df-ni 9183  df-lti 9186  df-nq 9223
This theorem is referenced by:  1nq  9239  archnq  9291  prlem934  9344
  Copyright terms: Public domain W3C validator