MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  pilem2 Structured version   Unicode version

Theorem pilem2 22609
Description: Lemma for pire 22613, pigt2lt4 22611 and sinpi 22612. (Contributed by Mario Carneiro, 12-Jun-2014.)
Hypotheses
Ref Expression
pilem.1  |-  ( ph  ->  A  e.  ( 2 (,) 4 ) )
pilem.2  |-  ( ph  ->  B  e.  RR+ )
pilem.3  |-  ( ph  ->  ( sin `  A
)  =  0 )
pilem.4  |-  ( ph  ->  ( sin `  B
)  =  0 )
pilem.5  |-  ( ph  ->  pi  <  A )
Assertion
Ref Expression
pilem2  |-  ( ph  ->  ( ( pi  +  A )  /  2
)  <_  B )

Proof of Theorem pilem2
Dummy variables  x  y are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 df-pi 13670 . . . 4  |-  pi  =  sup ( ( RR+  i^i  ( `' sin " { 0 } ) ) ,  RR ,  `'  <  )
2 inss1 3718 . . . . . . 7  |-  ( RR+  i^i  ( `' sin " {
0 } ) ) 
C_  RR+
3 rpssre 11230 . . . . . . 7  |-  RR+  C_  RR
42, 3sstri 3513 . . . . . 6  |-  ( RR+  i^i  ( `' sin " {
0 } ) ) 
C_  RR
54a1i 11 . . . . 5  |-  ( ph  ->  ( RR+  i^i  ( `' sin " { 0 } ) )  C_  RR )
6 0re 9596 . . . . . . 7  |-  0  e.  RR
72sseli 3500 . . . . . . . . 9  |-  ( y  e.  ( RR+  i^i  ( `' sin " { 0 } ) )  -> 
y  e.  RR+ )
87rpge0d 11260 . . . . . . . 8  |-  ( y  e.  ( RR+  i^i  ( `' sin " { 0 } ) )  -> 
0  <_  y )
98rgen 2824 . . . . . . 7  |-  A. y  e.  ( RR+  i^i  ( `' sin " { 0 } ) ) 0  <_  y
10 breq1 4450 . . . . . . . . 9  |-  ( x  =  0  ->  (
x  <_  y  <->  0  <_  y ) )
1110ralbidv 2903 . . . . . . . 8  |-  ( x  =  0  ->  ( A. y  e.  ( RR+  i^i  ( `' sin " { 0 } ) ) x  <_  y  <->  A. y  e.  ( RR+  i^i  ( `' sin " {
0 } ) ) 0  <_  y )
)
1211rspcev 3214 . . . . . . 7  |-  ( ( 0  e.  RR  /\  A. y  e.  ( RR+  i^i  ( `' sin " {
0 } ) ) 0  <_  y )  ->  E. x  e.  RR  A. y  e.  ( RR+  i^i  ( `' sin " {
0 } ) ) x  <_  y )
136, 9, 12mp2an 672 . . . . . 6  |-  E. x  e.  RR  A. y  e.  ( RR+  i^i  ( `' sin " { 0 } ) ) x  <_  y
1413a1i 11 . . . . 5  |-  ( ph  ->  E. x  e.  RR  A. y  e.  ( RR+  i^i  ( `' sin " {
0 } ) ) x  <_  y )
15 2re 10605 . . . . . . . . 9  |-  2  e.  RR
16 pilem.2 . . . . . . . . . 10  |-  ( ph  ->  B  e.  RR+ )
1716rpred 11256 . . . . . . . . 9  |-  ( ph  ->  B  e.  RR )
18 remulcl 9577 . . . . . . . . 9  |-  ( ( 2  e.  RR  /\  B  e.  RR )  ->  ( 2  x.  B
)  e.  RR )
1915, 17, 18sylancr 663 . . . . . . . 8  |-  ( ph  ->  ( 2  x.  B
)  e.  RR )
20 pilem.1 . . . . . . . . 9  |-  ( ph  ->  A  e.  ( 2 (,) 4 ) )
21 elioore 11559 . . . . . . . . 9  |-  ( A  e.  ( 2 (,) 4 )  ->  A  e.  RR )
2220, 21syl 16 . . . . . . . 8  |-  ( ph  ->  A  e.  RR )
2319, 22resubcld 9987 . . . . . . 7  |-  ( ph  ->  ( ( 2  x.  B )  -  A
)  e.  RR )
24 4re 10612 . . . . . . . . . 10  |-  4  e.  RR
2524a1i 11 . . . . . . . . 9  |-  ( ph  ->  4  e.  RR )
26 eliooord 11584 . . . . . . . . . . 11  |-  ( A  e.  ( 2 (,) 4 )  ->  (
2  <  A  /\  A  <  4 ) )
2720, 26syl 16 . . . . . . . . . 10  |-  ( ph  ->  ( 2  <  A  /\  A  <  4
) )
2827simprd 463 . . . . . . . . 9  |-  ( ph  ->  A  <  4 )
29 2t2e4 10685 . . . . . . . . . 10  |-  ( 2  x.  2 )  =  4
3015a1i 11 . . . . . . . . . . . 12  |-  ( ph  ->  2  e.  RR )
31 0red 9597 . . . . . . . . . . . . . . . . 17  |-  ( ph  ->  0  e.  RR )
32 2pos 10627 . . . . . . . . . . . . . . . . . 18  |-  0  <  2
3332a1i 11 . . . . . . . . . . . . . . . . 17  |-  ( ph  ->  0  <  2 )
3427simpld 459 . . . . . . . . . . . . . . . . 17  |-  ( ph  ->  2  <  A )
3531, 30, 22, 33, 34lttrd 9742 . . . . . . . . . . . . . . . 16  |-  ( ph  ->  0  <  A )
3622, 35elrpd 11254 . . . . . . . . . . . . . . 15  |-  ( ph  ->  A  e.  RR+ )
37 pilem.3 . . . . . . . . . . . . . . 15  |-  ( ph  ->  ( sin `  A
)  =  0 )
38 pilem1 22608 . . . . . . . . . . . . . . 15  |-  ( A  e.  ( RR+  i^i  ( `' sin " { 0 } ) )  <->  ( A  e.  RR+  /\  ( sin `  A )  =  0 ) )
3936, 37, 38sylanbrc 664 . . . . . . . . . . . . . 14  |-  ( ph  ->  A  e.  ( RR+  i^i  ( `' sin " {
0 } ) ) )
40 ne0i 3791 . . . . . . . . . . . . . 14  |-  ( A  e.  ( RR+  i^i  ( `' sin " { 0 } ) )  -> 
( RR+  i^i  ( `' sin " { 0 } ) )  =/=  (/) )
4139, 40syl 16 . . . . . . . . . . . . 13  |-  ( ph  ->  ( RR+  i^i  ( `' sin " { 0 } ) )  =/=  (/) )
42 infmrcl 10522 . . . . . . . . . . . . . 14  |-  ( ( ( RR+  i^i  ( `' sin " { 0 } ) )  C_  RR  /\  ( RR+  i^i  ( `' sin " { 0 } ) )  =/=  (/)  /\  E. x  e.  RR  A. y  e.  ( RR+  i^i  ( `' sin " { 0 } ) ) x  <_  y )  ->  sup ( ( RR+  i^i  ( `' sin " { 0 } ) ) ,  RR ,  `'  <  )  e.  RR )
434, 13, 42mp3an13 1315 . . . . . . . . . . . . 13  |-  ( (
RR+  i^i  ( `' sin " { 0 } ) )  =/=  (/)  ->  sup ( ( RR+  i^i  ( `' sin " { 0 } ) ) ,  RR ,  `'  <  )  e.  RR )
4441, 43syl 16 . . . . . . . . . . . 12  |-  ( ph  ->  sup ( ( RR+  i^i  ( `' sin " {
0 } ) ) ,  RR ,  `'  <  )  e.  RR )
45 pilem1 22608 . . . . . . . . . . . . . . 15  |-  ( x  e.  ( RR+  i^i  ( `' sin " { 0 } ) )  <->  ( x  e.  RR+  /\  ( sin `  x )  =  0 ) )
46 rpre 11226 . . . . . . . . . . . . . . . . . . . . 21  |-  ( x  e.  RR+  ->  x  e.  RR )
4746adantl 466 . . . . . . . . . . . . . . . . . . . 20  |-  ( (
ph  /\  x  e.  RR+ )  ->  x  e.  RR )
48 letric 9685 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( 2  e.  RR  /\  x  e.  RR )  ->  ( 2  <_  x  \/  x  <_  2 ) )
4915, 47, 48sylancr 663 . . . . . . . . . . . . . . . . . . 19  |-  ( (
ph  /\  x  e.  RR+ )  ->  ( 2  <_  x  \/  x  <_  2 ) )
5049ord 377 . . . . . . . . . . . . . . . . . 18  |-  ( (
ph  /\  x  e.  RR+ )  ->  ( -.  2  <_  x  ->  x  <_  2 ) )
5146ad2antlr 726 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( ( ( ph  /\  x  e.  RR+ )  /\  x  <_  2 )  ->  x  e.  RR )
52 rpgt0 11231 . . . . . . . . . . . . . . . . . . . . . . 23  |-  ( x  e.  RR+  ->  0  < 
x )
5352ad2antlr 726 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( ( ( ph  /\  x  e.  RR+ )  /\  x  <_  2 )  ->  0  <  x )
54 simpr 461 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( ( ( ph  /\  x  e.  RR+ )  /\  x  <_  2 )  ->  x  <_  2 )
55 0xr 9640 . . . . . . . . . . . . . . . . . . . . . . 23  |-  0  e.  RR*
56 elioc2 11587 . . . . . . . . . . . . . . . . . . . . . . 23  |-  ( ( 0  e.  RR*  /\  2  e.  RR )  ->  (
x  e.  ( 0 (,] 2 )  <->  ( x  e.  RR  /\  0  < 
x  /\  x  <_  2 ) ) )
5755, 15, 56mp2an 672 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( x  e.  ( 0 (,] 2 )  <->  ( x  e.  RR  /\  0  < 
x  /\  x  <_  2 ) )
5851, 53, 54, 57syl3anbrc 1180 . . . . . . . . . . . . . . . . . . . . 21  |-  ( ( ( ph  /\  x  e.  RR+ )  /\  x  <_  2 )  ->  x  e.  ( 0 (,] 2
) )
59 sin02gt0 13788 . . . . . . . . . . . . . . . . . . . . 21  |-  ( x  e.  ( 0 (,] 2 )  ->  0  <  ( sin `  x
) )
6058, 59syl 16 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( ( ph  /\  x  e.  RR+ )  /\  x  <_  2 )  ->  0  <  ( sin `  x
) )
6160gt0ne0d 10117 . . . . . . . . . . . . . . . . . . 19  |-  ( ( ( ph  /\  x  e.  RR+ )  /\  x  <_  2 )  ->  ( sin `  x )  =/=  0 )
6261ex 434 . . . . . . . . . . . . . . . . . 18  |-  ( (
ph  /\  x  e.  RR+ )  ->  ( x  <_  2  ->  ( sin `  x )  =/=  0
) )
6350, 62syld 44 . . . . . . . . . . . . . . . . 17  |-  ( (
ph  /\  x  e.  RR+ )  ->  ( -.  2  <_  x  ->  ( sin `  x )  =/=  0 ) )
6463necon4bd 2689 . . . . . . . . . . . . . . . 16  |-  ( (
ph  /\  x  e.  RR+ )  ->  ( ( sin `  x )  =  0  ->  2  <_  x ) )
6564expimpd 603 . . . . . . . . . . . . . . 15  |-  ( ph  ->  ( ( x  e.  RR+  /\  ( sin `  x
)  =  0 )  ->  2  <_  x
) )
6645, 65syl5bi 217 . . . . . . . . . . . . . 14  |-  ( ph  ->  ( x  e.  (
RR+  i^i  ( `' sin " { 0 } ) )  ->  2  <_  x ) )
6766ralrimiv 2876 . . . . . . . . . . . . 13  |-  ( ph  ->  A. x  e.  (
RR+  i^i  ( `' sin " { 0 } ) ) 2  <_  x )
68 infmrgelb 10523 . . . . . . . . . . . . . 14  |-  ( ( ( ( RR+  i^i  ( `' sin " { 0 } ) )  C_  RR  /\  ( RR+  i^i  ( `' sin " { 0 } ) )  =/=  (/)  /\  E. x  e.  RR  A. y  e.  ( RR+  i^i  ( `' sin " { 0 } ) ) x  <_  y )  /\  2  e.  RR )  ->  ( 2  <_  sup ( ( RR+  i^i  ( `' sin " { 0 } ) ) ,  RR ,  `'  <  )  <->  A. x  e.  ( RR+  i^i  ( `' sin " { 0 } ) ) 2  <_  x
) )
695, 41, 14, 30, 68syl31anc 1231 . . . . . . . . . . . . 13  |-  ( ph  ->  ( 2  <_  sup ( ( RR+  i^i  ( `' sin " { 0 } ) ) ,  RR ,  `'  <  )  <->  A. x  e.  ( RR+  i^i  ( `' sin " { 0 } ) ) 2  <_  x
) )
7067, 69mpbird 232 . . . . . . . . . . . 12  |-  ( ph  ->  2  <_  sup (
( RR+  i^i  ( `' sin " { 0 } ) ) ,  RR ,  `'  <  ) )
71 pilem.4 . . . . . . . . . . . . . 14  |-  ( ph  ->  ( sin `  B
)  =  0 )
72 pilem1 22608 . . . . . . . . . . . . . 14  |-  ( B  e.  ( RR+  i^i  ( `' sin " { 0 } ) )  <->  ( B  e.  RR+  /\  ( sin `  B )  =  0 ) )
7316, 71, 72sylanbrc 664 . . . . . . . . . . . . 13  |-  ( ph  ->  B  e.  ( RR+  i^i  ( `' sin " {
0 } ) ) )
74 infmrlb 10524 . . . . . . . . . . . . 13  |-  ( ( ( RR+  i^i  ( `' sin " { 0 } ) )  C_  RR  /\  E. x  e.  RR  A. y  e.  ( RR+  i^i  ( `' sin " { 0 } ) ) x  <_  y  /\  B  e.  ( RR+  i^i  ( `' sin " { 0 } ) ) )  ->  sup ( ( RR+  i^i  ( `' sin " {
0 } ) ) ,  RR ,  `'  <  )  <_  B )
755, 14, 73, 74syl3anc 1228 . . . . . . . . . . . 12  |-  ( ph  ->  sup ( ( RR+  i^i  ( `' sin " {
0 } ) ) ,  RR ,  `'  <  )  <_  B )
7630, 44, 17, 70, 75letrd 9738 . . . . . . . . . . 11  |-  ( ph  ->  2  <_  B )
7715, 32pm3.2i 455 . . . . . . . . . . . . 13  |-  ( 2  e.  RR  /\  0  <  2 )
7877a1i 11 . . . . . . . . . . . 12  |-  ( ph  ->  ( 2  e.  RR  /\  0  <  2 ) )
79 lemul2 10395 . . . . . . . . . . . 12  |-  ( ( 2  e.  RR  /\  B  e.  RR  /\  (
2  e.  RR  /\  0  <  2 ) )  ->  ( 2  <_  B 
<->  ( 2  x.  2 )  <_  ( 2  x.  B ) ) )
8030, 17, 78, 79syl3anc 1228 . . . . . . . . . . 11  |-  ( ph  ->  ( 2  <_  B  <->  ( 2  x.  2 )  <_  ( 2  x.  B ) ) )
8176, 80mpbid 210 . . . . . . . . . 10  |-  ( ph  ->  ( 2  x.  2 )  <_  ( 2  x.  B ) )
8229, 81syl5eqbrr 4481 . . . . . . . . 9  |-  ( ph  ->  4  <_  ( 2  x.  B ) )
8322, 25, 19, 28, 82ltletrd 9741 . . . . . . . 8  |-  ( ph  ->  A  <  ( 2  x.  B ) )
8422, 19posdifd 10139 . . . . . . . 8  |-  ( ph  ->  ( A  <  (
2  x.  B )  <->  0  <  ( ( 2  x.  B )  -  A ) ) )
8583, 84mpbid 210 . . . . . . 7  |-  ( ph  ->  0  <  ( ( 2  x.  B )  -  A ) )
8623, 85elrpd 11254 . . . . . 6  |-  ( ph  ->  ( ( 2  x.  B )  -  A
)  e.  RR+ )
8719recnd 9622 . . . . . . . 8  |-  ( ph  ->  ( 2  x.  B
)  e.  CC )
8822recnd 9622 . . . . . . . 8  |-  ( ph  ->  A  e.  CC )
89 sinsub 13764 . . . . . . . 8  |-  ( ( ( 2  x.  B
)  e.  CC  /\  A  e.  CC )  ->  ( sin `  (
( 2  x.  B
)  -  A ) )  =  ( ( ( sin `  (
2  x.  B ) )  x.  ( cos `  A ) )  -  ( ( cos `  (
2  x.  B ) )  x.  ( sin `  A ) ) ) )
9087, 88, 89syl2anc 661 . . . . . . 7  |-  ( ph  ->  ( sin `  (
( 2  x.  B
)  -  A ) )  =  ( ( ( sin `  (
2  x.  B ) )  x.  ( cos `  A ) )  -  ( ( cos `  (
2  x.  B ) )  x.  ( sin `  A ) ) ) )
9117recnd 9622 . . . . . . . . . . . . 13  |-  ( ph  ->  B  e.  CC )
92 sin2t 13773 . . . . . . . . . . . . 13  |-  ( B  e.  CC  ->  ( sin `  ( 2  x.  B ) )  =  ( 2  x.  (
( sin `  B
)  x.  ( cos `  B ) ) ) )
9391, 92syl 16 . . . . . . . . . . . 12  |-  ( ph  ->  ( sin `  (
2  x.  B ) )  =  ( 2  x.  ( ( sin `  B )  x.  ( cos `  B ) ) ) )
9471oveq1d 6299 . . . . . . . . . . . . . . 15  |-  ( ph  ->  ( ( sin `  B
)  x.  ( cos `  B ) )  =  ( 0  x.  ( cos `  B ) ) )
9591coscld 13727 . . . . . . . . . . . . . . . 16  |-  ( ph  ->  ( cos `  B
)  e.  CC )
9695mul02d 9777 . . . . . . . . . . . . . . 15  |-  ( ph  ->  ( 0  x.  ( cos `  B ) )  =  0 )
9794, 96eqtrd 2508 . . . . . . . . . . . . . 14  |-  ( ph  ->  ( ( sin `  B
)  x.  ( cos `  B ) )  =  0 )
9897oveq2d 6300 . . . . . . . . . . . . 13  |-  ( ph  ->  ( 2  x.  (
( sin `  B
)  x.  ( cos `  B ) ) )  =  ( 2  x.  0 ) )
99 2t0e0 10691 . . . . . . . . . . . . 13  |-  ( 2  x.  0 )  =  0
10098, 99syl6eq 2524 . . . . . . . . . . . 12  |-  ( ph  ->  ( 2  x.  (
( sin `  B
)  x.  ( cos `  B ) ) )  =  0 )
10193, 100eqtrd 2508 . . . . . . . . . . 11  |-  ( ph  ->  ( sin `  (
2  x.  B ) )  =  0 )
102101oveq1d 6299 . . . . . . . . . 10  |-  ( ph  ->  ( ( sin `  (
2  x.  B ) )  x.  ( cos `  A ) )  =  ( 0  x.  ( cos `  A ) ) )
10388coscld 13727 . . . . . . . . . . 11  |-  ( ph  ->  ( cos `  A
)  e.  CC )
104103mul02d 9777 . . . . . . . . . 10  |-  ( ph  ->  ( 0  x.  ( cos `  A ) )  =  0 )
105102, 104eqtrd 2508 . . . . . . . . 9  |-  ( ph  ->  ( ( sin `  (
2  x.  B ) )  x.  ( cos `  A ) )  =  0 )
10637oveq2d 6300 . . . . . . . . . 10  |-  ( ph  ->  ( ( cos `  (
2  x.  B ) )  x.  ( sin `  A ) )  =  ( ( cos `  (
2  x.  B ) )  x.  0 ) )
10787coscld 13727 . . . . . . . . . . 11  |-  ( ph  ->  ( cos `  (
2  x.  B ) )  e.  CC )
108107mul01d 9778 . . . . . . . . . 10  |-  ( ph  ->  ( ( cos `  (
2  x.  B ) )  x.  0 )  =  0 )
109106, 108eqtrd 2508 . . . . . . . . 9  |-  ( ph  ->  ( ( cos `  (
2  x.  B ) )  x.  ( sin `  A ) )  =  0 )
110105, 109oveq12d 6302 . . . . . . . 8  |-  ( ph  ->  ( ( ( sin `  ( 2  x.  B
) )  x.  ( cos `  A ) )  -  ( ( cos `  ( 2  x.  B
) )  x.  ( sin `  A ) ) )  =  ( 0  -  0 ) )
111 0m0e0 10645 . . . . . . . 8  |-  ( 0  -  0 )  =  0
112110, 111syl6eq 2524 . . . . . . 7  |-  ( ph  ->  ( ( ( sin `  ( 2  x.  B
) )  x.  ( cos `  A ) )  -  ( ( cos `  ( 2  x.  B
) )  x.  ( sin `  A ) ) )  =  0 )
11390, 112eqtrd 2508 . . . . . 6  |-  ( ph  ->  ( sin `  (
( 2  x.  B
)  -  A ) )  =  0 )
114 pilem1 22608 . . . . . 6  |-  ( ( ( 2  x.  B
)  -  A )  e.  ( RR+  i^i  ( `' sin " { 0 } ) )  <->  ( (
( 2  x.  B
)  -  A )  e.  RR+  /\  ( sin `  ( ( 2  x.  B )  -  A ) )  =  0 ) )
11586, 113, 114sylanbrc 664 . . . . 5  |-  ( ph  ->  ( ( 2  x.  B )  -  A
)  e.  ( RR+  i^i  ( `' sin " {
0 } ) ) )
116 infmrlb 10524 . . . . 5  |-  ( ( ( RR+  i^i  ( `' sin " { 0 } ) )  C_  RR  /\  E. x  e.  RR  A. y  e.  ( RR+  i^i  ( `' sin " { 0 } ) ) x  <_  y  /\  (
( 2  x.  B
)  -  A )  e.  ( RR+  i^i  ( `' sin " { 0 } ) ) )  ->  sup ( ( RR+  i^i  ( `' sin " {
0 } ) ) ,  RR ,  `'  <  )  <_  ( (
2  x.  B )  -  A ) )
1175, 14, 115, 116syl3anc 1228 . . . 4  |-  ( ph  ->  sup ( ( RR+  i^i  ( `' sin " {
0 } ) ) ,  RR ,  `'  <  )  <_  ( (
2  x.  B )  -  A ) )
1181, 117syl5eqbr 4480 . . 3  |-  ( ph  ->  pi  <_  ( (
2  x.  B )  -  A ) )
1191, 44syl5eqel 2559 . . . 4  |-  ( ph  ->  pi  e.  RR )
120 leaddsub 10028 . . . 4  |-  ( ( pi  e.  RR  /\  A  e.  RR  /\  (
2  x.  B )  e.  RR )  -> 
( ( pi  +  A )  <_  (
2  x.  B )  <-> 
pi  <_  ( ( 2  x.  B )  -  A ) ) )
121119, 22, 19, 120syl3anc 1228 . . 3  |-  ( ph  ->  ( ( pi  +  A )  <_  (
2  x.  B )  <-> 
pi  <_  ( ( 2  x.  B )  -  A ) ) )
122118, 121mpbird 232 . 2  |-  ( ph  ->  ( pi  +  A
)  <_  ( 2  x.  B ) )
123119, 22readdcld 9623 . . 3  |-  ( ph  ->  ( pi  +  A
)  e.  RR )
124 ledivmul 10418 . . 3  |-  ( ( ( pi  +  A
)  e.  RR  /\  B  e.  RR  /\  (
2  e.  RR  /\  0  <  2 ) )  ->  ( ( ( pi  +  A )  /  2 )  <_  B 
<->  ( pi  +  A
)  <_  ( 2  x.  B ) ) )
125123, 17, 78, 124syl3anc 1228 . 2  |-  ( ph  ->  ( ( ( pi  +  A )  / 
2 )  <_  B  <->  ( pi  +  A )  <_  ( 2  x.  B ) ) )
126122, 125mpbird 232 1  |-  ( ph  ->  ( ( pi  +  A )  /  2
)  <_  B )
Colors of variables: wff setvar class
Syntax hints:   -. wn 3    -> wi 4    <-> wb 184    \/ wo 368    /\ wa 369    /\ w3a 973    = wceq 1379    e. wcel 1767    =/= wne 2662   A.wral 2814   E.wrex 2815    i^i cin 3475    C_ wss 3476   (/)c0 3785   {csn 4027   class class class wbr 4447   `'ccnv 4998   "cima 5002   ` cfv 5588  (class class class)co 6284   supcsup 7900   CCcc 9490   RRcr 9491   0cc0 9492    + caddc 9495    x. cmul 9497   RR*cxr 9627    < clt 9628    <_ cle 9629    - cmin 9805    / cdiv 10206   2c2 10585   4c4 10587   RR+crp 11220   (,)cioo 11529   (,]cioc 11530   sincsin 13661   cosccos 13662   picpi 13664
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1601  ax-4 1612  ax-5 1680  ax-6 1719  ax-7 1739  ax-8 1769  ax-9 1771  ax-10 1786  ax-11 1791  ax-12 1803  ax-13 1968  ax-ext 2445  ax-rep 4558  ax-sep 4568  ax-nul 4576  ax-pow 4625  ax-pr 4686  ax-un 6576  ax-inf2 8058  ax-cnex 9548  ax-resscn 9549  ax-1cn 9550  ax-icn 9551  ax-addcl 9552  ax-addrcl 9553  ax-mulcl 9554  ax-mulrcl 9555  ax-mulcom 9556  ax-addass 9557  ax-mulass 9558  ax-distr 9559  ax-i2m1 9560  ax-1ne0 9561  ax-1rid 9562  ax-rnegex 9563  ax-rrecex 9564  ax-cnre 9565  ax-pre-lttri 9566  ax-pre-lttrn 9567  ax-pre-ltadd 9568  ax-pre-mulgt0 9569  ax-pre-sup 9570  ax-addf 9571  ax-mulf 9572
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3or 974  df-3an 975  df-tru 1382  df-fal 1385  df-ex 1597  df-nf 1600  df-sb 1712  df-eu 2279  df-mo 2280  df-clab 2453  df-cleq 2459  df-clel 2462  df-nfc 2617  df-ne 2664  df-nel 2665  df-ral 2819  df-rex 2820  df-reu 2821  df-rmo 2822  df-rab 2823  df-v 3115  df-sbc 3332  df-csb 3436  df-dif 3479  df-un 3481  df-in 3483  df-ss 3490  df-pss 3492  df-nul 3786  df-if 3940  df-pw 4012  df-sn 4028  df-pr 4030  df-tp 4032  df-op 4034  df-uni 4246  df-int 4283  df-iun 4327  df-br 4448  df-opab 4506  df-mpt 4507  df-tr 4541  df-eprel 4791  df-id 4795  df-po 4800  df-so 4801  df-fr 4838  df-se 4839  df-we 4840  df-ord 4881  df-on 4882  df-lim 4883  df-suc 4884  df-xp 5005  df-rel 5006  df-cnv 5007  df-co 5008  df-dm 5009  df-rn 5010  df-res 5011  df-ima 5012  df-iota 5551  df-fun 5590  df-fn 5591  df-f 5592  df-f1 5593  df-fo 5594  df-f1o 5595  df-fv 5596  df-isom 5597  df-riota 6245  df-ov 6287  df-oprab 6288  df-mpt2 6289  df-om 6685  df-1st 6784  df-2nd 6785  df-recs 7042  df-rdg 7076  df-1o 7130  df-oadd 7134  df-er 7311  df-pm 7423  df-en 7517  df-dom 7518  df-sdom 7519  df-fin 7520  df-sup 7901  df-oi 7935  df-card 8320  df-pnf 9630  df-mnf 9631  df-xr 9632  df-ltxr 9633  df-le 9634  df-sub 9807  df-neg 9808  df-div 10207  df-nn 10537  df-2 10594  df-3 10595  df-4 10596  df-5 10597  df-6 10598  df-7 10599  df-8 10600  df-n0 10796  df-z 10865  df-uz 11083  df-rp 11221  df-ioo 11533  df-ioc 11534  df-ico 11535  df-fz 11673  df-fzo 11793  df-fl 11897  df-seq 12076  df-exp 12135  df-fac 12322  df-bc 12349  df-hash 12374  df-shft 12863  df-cj 12895  df-re 12896  df-im 12897  df-sqrt 13031  df-abs 13032  df-limsup 13257  df-clim 13274  df-rlim 13275  df-sum 13472  df-ef 13665  df-sin 13667  df-cos 13668  df-pi 13670
This theorem is referenced by:  pilem3  22610
  Copyright terms: Public domain W3C validator