MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  pige3 Structured version   Unicode version

Theorem pige3 22001
Description:  pi is greater or equal to 3. This proof is based on the geometric observation that a hexagon of unit side length has perimeter 6, which is less than the unit-radius circumcircle, of perimeter  2
pi. We translate this to algebra by looking at the function  _e ^ ( _i x ) as  x goes from  0 to  pi  /  3; it moves at unit speed and travels distance  1, hence  1  <_  pi 
/  3. (Contributed by Mario Carneiro, 21-May-2016.)
Assertion
Ref Expression
pige3  |-  3  <_  pi

Proof of Theorem pige3
Dummy variables  x  y are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 3cn 10417 . . 3  |-  3  e.  CC
21mulid2i 9410 . 2  |-  ( 1  x.  3 )  =  3
3 tru 1373 . . . . . 6  |- T.
4 0xr 9451 . . . . . . . 8  |-  0  e.  RR*
5 pire 21943 . . . . . . . . . . 11  |-  pi  e.  RR
6 pipos 21945 . . . . . . . . . . 11  |-  0  <  pi
75, 6elrpii 11015 . . . . . . . . . 10  |-  pi  e.  RR+
8 3re 10416 . . . . . . . . . . 11  |-  3  e.  RR
9 3pos 10436 . . . . . . . . . . 11  |-  0  <  3
108, 9elrpii 11015 . . . . . . . . . 10  |-  3  e.  RR+
11 rpdivcl 11034 . . . . . . . . . 10  |-  ( ( pi  e.  RR+  /\  3  e.  RR+ )  ->  (
pi  /  3 )  e.  RR+ )
127, 10, 11mp2an 672 . . . . . . . . 9  |-  ( pi 
/  3 )  e.  RR+
13 rpxr 11019 . . . . . . . . 9  |-  ( ( pi  /  3 )  e.  RR+  ->  ( pi 
/  3 )  e. 
RR* )
1412, 13ax-mp 5 . . . . . . . 8  |-  ( pi 
/  3 )  e. 
RR*
15 rpge0 11024 . . . . . . . . 9  |-  ( ( pi  /  3 )  e.  RR+  ->  0  <_ 
( pi  /  3
) )
1612, 15ax-mp 5 . . . . . . . 8  |-  0  <_  ( pi  /  3
)
17 lbicc2 11422 . . . . . . . 8  |-  ( ( 0  e.  RR*  /\  (
pi  /  3 )  e.  RR*  /\  0  <_  ( pi  /  3
) )  ->  0  e.  ( 0 [,] (
pi  /  3 ) ) )
184, 14, 16, 17mp3an 1314 . . . . . . 7  |-  0  e.  ( 0 [,] (
pi  /  3 ) )
19 ubicc2 11423 . . . . . . . 8  |-  ( ( 0  e.  RR*  /\  (
pi  /  3 )  e.  RR*  /\  0  <_  ( pi  /  3
) )  ->  (
pi  /  3 )  e.  ( 0 [,] ( pi  /  3
) ) )
204, 14, 16, 19mp3an 1314 . . . . . . 7  |-  ( pi 
/  3 )  e.  ( 0 [,] (
pi  /  3 ) )
2118, 20pm3.2i 455 . . . . . 6  |-  ( 0  e.  ( 0 [,] ( pi  /  3
) )  /\  (
pi  /  3 )  e.  ( 0 [,] ( pi  /  3
) ) )
22 0re 9407 . . . . . . . 8  |-  0  e.  RR
2322a1i 11 . . . . . . 7  |-  ( T. 
->  0  e.  RR )
24 3ne0 10437 . . . . . . . . 9  |-  3  =/=  0
255, 8, 24redivcli 10119 . . . . . . . 8  |-  ( pi 
/  3 )  e.  RR
2625a1i 11 . . . . . . 7  |-  ( T. 
->  ( pi  /  3
)  e.  RR )
27 efcn 21930 . . . . . . . . 9  |-  exp  e.  ( CC -cn-> CC )
2827a1i 11 . . . . . . . 8  |-  ( T. 
->  exp  e.  ( CC
-cn-> CC ) )
29 iccssre 11398 . . . . . . . . . . . 12  |-  ( ( 0  e.  RR  /\  ( pi  /  3
)  e.  RR )  ->  ( 0 [,] ( pi  /  3
) )  C_  RR )
3022, 25, 29mp2an 672 . . . . . . . . . . 11  |-  ( 0 [,] ( pi  / 
3 ) )  C_  RR
31 ax-resscn 9360 . . . . . . . . . . 11  |-  RR  C_  CC
3230, 31sstri 3386 . . . . . . . . . 10  |-  ( 0 [,] ( pi  / 
3 ) )  C_  CC
33 resmpt 5177 . . . . . . . . . 10  |-  ( ( 0 [,] ( pi 
/  3 ) ) 
C_  CC  ->  ( ( x  e.  CC  |->  ( _i  x.  x ) )  |`  ( 0 [,] ( pi  / 
3 ) ) )  =  ( x  e.  ( 0 [,] (
pi  /  3 ) )  |->  ( _i  x.  x ) ) )
3432, 33mp1i 12 . . . . . . . . 9  |-  ( T. 
->  ( ( x  e.  CC  |->  ( _i  x.  x ) )  |`  ( 0 [,] (
pi  /  3 ) ) )  =  ( x  e.  ( 0 [,] ( pi  / 
3 ) )  |->  ( _i  x.  x ) ) )
35 ssid 3396 . . . . . . . . . . . 12  |-  CC  C_  CC
3635a1i 11 . . . . . . . . . . 11  |-  ( T. 
->  CC  C_  CC )
37 ax-icn 9362 . . . . . . . . . . . . 13  |-  _i  e.  CC
38 simpr 461 . . . . . . . . . . . . 13  |-  ( ( T.  /\  x  e.  CC )  ->  x  e.  CC )
39 mulcl 9387 . . . . . . . . . . . . 13  |-  ( ( _i  e.  CC  /\  x  e.  CC )  ->  ( _i  x.  x
)  e.  CC )
4037, 38, 39sylancr 663 . . . . . . . . . . . 12  |-  ( ( T.  /\  x  e.  CC )  ->  (
_i  x.  x )  e.  CC )
41 eqid 2443 . . . . . . . . . . . 12  |-  ( x  e.  CC  |->  ( _i  x.  x ) )  =  ( x  e.  CC  |->  ( _i  x.  x ) )
4240, 41fmptd 5888 . . . . . . . . . . 11  |-  ( T. 
->  ( x  e.  CC  |->  ( _i  x.  x
) ) : CC --> CC )
43 cnelprrecn 9396 . . . . . . . . . . . . . . . 16  |-  CC  e.  { RR ,  CC }
4443a1i 11 . . . . . . . . . . . . . . 15  |-  ( T. 
->  CC  e.  { RR ,  CC } )
45 ax-1cn 9361 . . . . . . . . . . . . . . . 16  |-  1  e.  CC
4645a1i 11 . . . . . . . . . . . . . . 15  |-  ( ( T.  /\  x  e.  CC )  ->  1  e.  CC )
4744dvmptid 21453 . . . . . . . . . . . . . . 15  |-  ( T. 
->  ( CC  _D  (
x  e.  CC  |->  x ) )  =  ( x  e.  CC  |->  1 ) )
4837a1i 11 . . . . . . . . . . . . . . 15  |-  ( T. 
->  _i  e.  CC )
4944, 38, 46, 47, 48dvmptcmul 21460 . . . . . . . . . . . . . 14  |-  ( T. 
->  ( CC  _D  (
x  e.  CC  |->  ( _i  x.  x ) ) )  =  ( x  e.  CC  |->  ( _i  x.  1 ) ) )
5037mulid1i 9409 . . . . . . . . . . . . . . 15  |-  ( _i  x.  1 )  =  _i
5150mpteq2i 4396 . . . . . . . . . . . . . 14  |-  ( x  e.  CC  |->  ( _i  x.  1 ) )  =  ( x  e.  CC  |->  _i )
5249, 51syl6eq 2491 . . . . . . . . . . . . 13  |-  ( T. 
->  ( CC  _D  (
x  e.  CC  |->  ( _i  x.  x ) ) )  =  ( x  e.  CC  |->  _i ) )
5352dmeqd 5063 . . . . . . . . . . . 12  |-  ( T. 
->  dom  ( CC  _D  ( x  e.  CC  |->  ( _i  x.  x
) ) )  =  dom  ( x  e.  CC  |->  _i ) )
5437elexi 3003 . . . . . . . . . . . . 13  |-  _i  e.  _V
55 eqid 2443 . . . . . . . . . . . . 13  |-  ( x  e.  CC  |->  _i )  =  ( x  e.  CC  |->  _i )
5654, 55dmmpti 5561 . . . . . . . . . . . 12  |-  dom  (
x  e.  CC  |->  _i )  =  CC
5753, 56syl6eq 2491 . . . . . . . . . . 11  |-  ( T. 
->  dom  ( CC  _D  ( x  e.  CC  |->  ( _i  x.  x
) ) )  =  CC )
58 dvcn 21417 . . . . . . . . . . 11  |-  ( ( ( CC  C_  CC  /\  ( x  e.  CC  |->  ( _i  x.  x
) ) : CC --> CC  /\  CC  C_  CC )  /\  dom  ( CC 
_D  ( x  e.  CC  |->  ( _i  x.  x ) ) )  =  CC )  -> 
( x  e.  CC  |->  ( _i  x.  x
) )  e.  ( CC -cn-> CC ) )
5936, 42, 36, 57, 58syl31anc 1221 . . . . . . . . . 10  |-  ( T. 
->  ( x  e.  CC  |->  ( _i  x.  x
) )  e.  ( CC -cn-> CC ) )
60 rescncf 20495 . . . . . . . . . 10  |-  ( ( 0 [,] ( pi 
/  3 ) ) 
C_  CC  ->  ( ( x  e.  CC  |->  ( _i  x.  x ) )  e.  ( CC
-cn-> CC )  ->  (
( x  e.  CC  |->  ( _i  x.  x
) )  |`  (
0 [,] ( pi 
/  3 ) ) )  e.  ( ( 0 [,] ( pi 
/  3 ) )
-cn-> CC ) ) )
6132, 59, 60mpsyl 63 . . . . . . . . 9  |-  ( T. 
->  ( ( x  e.  CC  |->  ( _i  x.  x ) )  |`  ( 0 [,] (
pi  /  3 ) ) )  e.  ( ( 0 [,] (
pi  /  3 ) ) -cn-> CC ) )
6234, 61eqeltrrd 2518 . . . . . . . 8  |-  ( T. 
->  ( x  e.  ( 0 [,] ( pi 
/  3 ) ) 
|->  ( _i  x.  x
) )  e.  ( ( 0 [,] (
pi  /  3 ) ) -cn-> CC ) )
6328, 62cncfmpt1f 20511 . . . . . . 7  |-  ( T. 
->  ( x  e.  ( 0 [,] ( pi 
/  3 ) ) 
|->  ( exp `  (
_i  x.  x )
) )  e.  ( ( 0 [,] (
pi  /  3 ) ) -cn-> CC ) )
64 reelprrecn 9395 . . . . . . . . . . 11  |-  RR  e.  { RR ,  CC }
6564a1i 11 . . . . . . . . . 10  |-  ( T. 
->  RR  e.  { RR ,  CC } )
66 recn 9393 . . . . . . . . . . 11  |-  ( x  e.  RR  ->  x  e.  CC )
67 efcl 13389 . . . . . . . . . . . 12  |-  ( ( _i  x.  x )  e.  CC  ->  ( exp `  ( _i  x.  x ) )  e.  CC )
6840, 67syl 16 . . . . . . . . . . 11  |-  ( ( T.  /\  x  e.  CC )  ->  ( exp `  ( _i  x.  x ) )  e.  CC )
6966, 68sylan2 474 . . . . . . . . . 10  |-  ( ( T.  /\  x  e.  RR )  ->  ( exp `  ( _i  x.  x ) )  e.  CC )
70 mulcl 9387 . . . . . . . . . . . 12  |-  ( ( ( exp `  (
_i  x.  x )
)  e.  CC  /\  _i  e.  CC )  -> 
( ( exp `  (
_i  x.  x )
)  x.  _i )  e.  CC )
7168, 37, 70sylancl 662 . . . . . . . . . . 11  |-  ( ( T.  /\  x  e.  CC )  ->  (
( exp `  (
_i  x.  x )
)  x.  _i )  e.  CC )
7266, 71sylan2 474 . . . . . . . . . 10  |-  ( ( T.  /\  x  e.  RR )  ->  (
( exp `  (
_i  x.  x )
)  x.  _i )  e.  CC )
73 eqid 2443 . . . . . . . . . . 11  |-  ( TopOpen ` fld )  =  ( TopOpen ` fld )
7473cnfldtopon 20384 . . . . . . . . . . . 12  |-  ( TopOpen ` fld )  e.  (TopOn `  CC )
75 toponmax 18555 . . . . . . . . . . . 12  |-  ( (
TopOpen ` fld )  e.  (TopOn `  CC )  ->  CC  e.  ( TopOpen ` fld ) )
7674, 75mp1i 12 . . . . . . . . . . 11  |-  ( T. 
->  CC  e.  ( TopOpen ` fld )
)
7731a1i 11 . . . . . . . . . . . 12  |-  ( T. 
->  RR  C_  CC )
78 df-ss 3363 . . . . . . . . . . . 12  |-  ( RR  C_  CC  <->  ( RR  i^i  CC )  =  RR )
7977, 78sylib 196 . . . . . . . . . . 11  |-  ( T. 
->  ( RR  i^i  CC )  =  RR )
8037a1i 11 . . . . . . . . . . . 12  |-  ( ( T.  /\  x  e.  CC )  ->  _i  e.  CC )
81 efcl 13389 . . . . . . . . . . . . 13  |-  ( y  e.  CC  ->  ( exp `  y )  e.  CC )
8281adantl 466 . . . . . . . . . . . 12  |-  ( ( T.  /\  y  e.  CC )  ->  ( exp `  y )  e.  CC )
83 dvef 21474 . . . . . . . . . . . . 13  |-  ( CC 
_D  exp )  =  exp
84 eff 13388 . . . . . . . . . . . . . . . 16  |-  exp : CC
--> CC
8584a1i 11 . . . . . . . . . . . . . . 15  |-  ( T. 
->  exp : CC --> CC )
8685feqmptd 5765 . . . . . . . . . . . . . 14  |-  ( T. 
->  exp  =  ( y  e.  CC  |->  ( exp `  y ) ) )
8786oveq2d 6128 . . . . . . . . . . . . 13  |-  ( T. 
->  ( CC  _D  exp )  =  ( CC  _D  ( y  e.  CC  |->  ( exp `  y ) ) ) )
8883, 87, 863eqtr3a 2499 . . . . . . . . . . . 12  |-  ( T. 
->  ( CC  _D  (
y  e.  CC  |->  ( exp `  y ) ) )  =  ( y  e.  CC  |->  ( exp `  y ) ) )
89 fveq2 5712 . . . . . . . . . . . 12  |-  ( y  =  ( _i  x.  x )  ->  ( exp `  y )  =  ( exp `  (
_i  x.  x )
) )
9044, 44, 40, 80, 82, 82, 52, 88, 89, 89dvmptco 21468 . . . . . . . . . . 11  |-  ( T. 
->  ( CC  _D  (
x  e.  CC  |->  ( exp `  ( _i  x.  x ) ) ) )  =  ( x  e.  CC  |->  ( ( exp `  (
_i  x.  x )
)  x.  _i ) ) )
9173, 65, 76, 79, 68, 71, 90dvmptres3 21452 . . . . . . . . . 10  |-  ( T. 
->  ( RR  _D  (
x  e.  RR  |->  ( exp `  ( _i  x.  x ) ) ) )  =  ( x  e.  RR  |->  ( ( exp `  (
_i  x.  x )
)  x.  _i ) ) )
9230a1i 11 . . . . . . . . . 10  |-  ( T. 
->  ( 0 [,] (
pi  /  3 ) )  C_  RR )
9373tgioo2 20402 . . . . . . . . . 10  |-  ( topGen ` 
ran  (,) )  =  ( ( TopOpen ` fld )t  RR )
94 iccntr 20420 . . . . . . . . . . 11  |-  ( ( 0  e.  RR  /\  ( pi  /  3
)  e.  RR )  ->  ( ( int `  ( topGen `  ran  (,) )
) `  ( 0 [,] ( pi  /  3
) ) )  =  ( 0 (,) (
pi  /  3 ) ) )
9522, 26, 94sylancr 663 . . . . . . . . . 10  |-  ( T. 
->  ( ( int `  ( topGen `
 ran  (,) )
) `  ( 0 [,] ( pi  /  3
) ) )  =  ( 0 (,) (
pi  /  3 ) ) )
9665, 69, 72, 91, 92, 93, 73, 95dvmptres2 21458 . . . . . . . . 9  |-  ( T. 
->  ( RR  _D  (
x  e.  ( 0 [,] ( pi  / 
3 ) )  |->  ( exp `  ( _i  x.  x ) ) ) )  =  ( x  e.  ( 0 (,) ( pi  / 
3 ) )  |->  ( ( exp `  (
_i  x.  x )
)  x.  _i ) ) )
9796dmeqd 5063 . . . . . . . 8  |-  ( T. 
->  dom  ( RR  _D  ( x  e.  (
0 [,] ( pi 
/  3 ) ) 
|->  ( exp `  (
_i  x.  x )
) ) )  =  dom  ( x  e.  ( 0 (,) (
pi  /  3 ) )  |->  ( ( exp `  ( _i  x.  x
) )  x.  _i ) ) )
98 ovex 6137 . . . . . . . . 9  |-  ( ( exp `  ( _i  x.  x ) )  x.  _i )  e. 
_V
99 eqid 2443 . . . . . . . . 9  |-  ( x  e.  ( 0 (,) ( pi  /  3
) )  |->  ( ( exp `  ( _i  x.  x ) )  x.  _i ) )  =  ( x  e.  ( 0 (,) (
pi  /  3 ) )  |->  ( ( exp `  ( _i  x.  x
) )  x.  _i ) )
10098, 99dmmpti 5561 . . . . . . . 8  |-  dom  (
x  e.  ( 0 (,) ( pi  / 
3 ) )  |->  ( ( exp `  (
_i  x.  x )
)  x.  _i ) )  =  ( 0 (,) ( pi  / 
3 ) )
10197, 100syl6eq 2491 . . . . . . 7  |-  ( T. 
->  dom  ( RR  _D  ( x  e.  (
0 [,] ( pi 
/  3 ) ) 
|->  ( exp `  (
_i  x.  x )
) ) )  =  ( 0 (,) (
pi  /  3 ) ) )
102 1re 9406 . . . . . . . 8  |-  1  e.  RR
103102a1i 11 . . . . . . 7  |-  ( T. 
->  1  e.  RR )
10496fveq1d 5714 . . . . . . . . . . 11  |-  ( T. 
->  ( ( RR  _D  ( x  e.  (
0 [,] ( pi 
/  3 ) ) 
|->  ( exp `  (
_i  x.  x )
) ) ) `  y )  =  ( ( x  e.  ( 0 (,) ( pi 
/  3 ) ) 
|->  ( ( exp `  (
_i  x.  x )
)  x.  _i ) ) `  y ) )
105 oveq2 6120 . . . . . . . . . . . . . 14  |-  ( x  =  y  ->  (
_i  x.  x )  =  ( _i  x.  y ) )
106105fveq2d 5716 . . . . . . . . . . . . 13  |-  ( x  =  y  ->  ( exp `  ( _i  x.  x ) )  =  ( exp `  (
_i  x.  y )
) )
107106oveq1d 6127 . . . . . . . . . . . 12  |-  ( x  =  y  ->  (
( exp `  (
_i  x.  x )
)  x.  _i )  =  ( ( exp `  ( _i  x.  y
) )  x.  _i ) )
108107, 99, 98fvmpt3i 5799 . . . . . . . . . . 11  |-  ( y  e.  ( 0 (,) ( pi  /  3
) )  ->  (
( x  e.  ( 0 (,) ( pi 
/  3 ) ) 
|->  ( ( exp `  (
_i  x.  x )
)  x.  _i ) ) `  y )  =  ( ( exp `  ( _i  x.  y
) )  x.  _i ) )
109104, 108sylan9eq 2495 . . . . . . . . . 10  |-  ( ( T.  /\  y  e.  ( 0 (,) (
pi  /  3 ) ) )  ->  (
( RR  _D  (
x  e.  ( 0 [,] ( pi  / 
3 ) )  |->  ( exp `  ( _i  x.  x ) ) ) ) `  y
)  =  ( ( exp `  ( _i  x.  y ) )  x.  _i ) )
110109fveq2d 5716 . . . . . . . . 9  |-  ( ( T.  /\  y  e.  ( 0 (,) (
pi  /  3 ) ) )  ->  ( abs `  ( ( RR 
_D  ( x  e.  ( 0 [,] (
pi  /  3 ) )  |->  ( exp `  (
_i  x.  x )
) ) ) `  y ) )  =  ( abs `  (
( exp `  (
_i  x.  y )
)  x.  _i ) ) )
111 ioossre 11378 . . . . . . . . . . . . . . 15  |-  ( 0 (,) ( pi  / 
3 ) )  C_  RR
112111a1i 11 . . . . . . . . . . . . . 14  |-  ( T. 
->  ( 0 (,) (
pi  /  3 ) )  C_  RR )
113112sselda 3377 . . . . . . . . . . . . 13  |-  ( ( T.  /\  y  e.  ( 0 (,) (
pi  /  3 ) ) )  ->  y  e.  RR )
114113recnd 9433 . . . . . . . . . . . 12  |-  ( ( T.  /\  y  e.  ( 0 (,) (
pi  /  3 ) ) )  ->  y  e.  CC )
115 mulcl 9387 . . . . . . . . . . . 12  |-  ( ( _i  e.  CC  /\  y  e.  CC )  ->  ( _i  x.  y
)  e.  CC )
11637, 114, 115sylancr 663 . . . . . . . . . . 11  |-  ( ( T.  /\  y  e.  ( 0 (,) (
pi  /  3 ) ) )  ->  (
_i  x.  y )  e.  CC )
117 efcl 13389 . . . . . . . . . . 11  |-  ( ( _i  x.  y )  e.  CC  ->  ( exp `  ( _i  x.  y ) )  e.  CC )
118116, 117syl 16 . . . . . . . . . 10  |-  ( ( T.  /\  y  e.  ( 0 (,) (
pi  /  3 ) ) )  ->  ( exp `  ( _i  x.  y ) )  e.  CC )
119 absmul 12804 . . . . . . . . . 10  |-  ( ( ( exp `  (
_i  x.  y )
)  e.  CC  /\  _i  e.  CC )  -> 
( abs `  (
( exp `  (
_i  x.  y )
)  x.  _i ) )  =  ( ( abs `  ( exp `  ( _i  x.  y
) ) )  x.  ( abs `  _i ) ) )
120118, 37, 119sylancl 662 . . . . . . . . 9  |-  ( ( T.  /\  y  e.  ( 0 (,) (
pi  /  3 ) ) )  ->  ( abs `  ( ( exp `  ( _i  x.  y
) )  x.  _i ) )  =  ( ( abs `  ( exp `  ( _i  x.  y ) ) )  x.  ( abs `  _i ) ) )
121 absefi 13501 . . . . . . . . . . . 12  |-  ( y  e.  RR  ->  ( abs `  ( exp `  (
_i  x.  y )
) )  =  1 )
122113, 121syl 16 . . . . . . . . . . 11  |-  ( ( T.  /\  y  e.  ( 0 (,) (
pi  /  3 ) ) )  ->  ( abs `  ( exp `  (
_i  x.  y )
) )  =  1 )
123 absi 12796 . . . . . . . . . . . 12  |-  ( abs `  _i )  =  1
124123a1i 11 . . . . . . . . . . 11  |-  ( ( T.  /\  y  e.  ( 0 (,) (
pi  /  3 ) ) )  ->  ( abs `  _i )  =  1 )
125122, 124oveq12d 6130 . . . . . . . . . 10  |-  ( ( T.  /\  y  e.  ( 0 (,) (
pi  /  3 ) ) )  ->  (
( abs `  ( exp `  ( _i  x.  y ) ) )  x.  ( abs `  _i ) )  =  ( 1  x.  1 ) )
12645mulid1i 9409 . . . . . . . . . 10  |-  ( 1  x.  1 )  =  1
127125, 126syl6eq 2491 . . . . . . . . 9  |-  ( ( T.  /\  y  e.  ( 0 (,) (
pi  /  3 ) ) )  ->  (
( abs `  ( exp `  ( _i  x.  y ) ) )  x.  ( abs `  _i ) )  =  1 )
128110, 120, 1273eqtrd 2479 . . . . . . . 8  |-  ( ( T.  /\  y  e.  ( 0 (,) (
pi  /  3 ) ) )  ->  ( abs `  ( ( RR 
_D  ( x  e.  ( 0 [,] (
pi  /  3 ) )  |->  ( exp `  (
_i  x.  x )
) ) ) `  y ) )  =  1 )
129 1le1 9985 . . . . . . . 8  |-  1  <_  1
130128, 129syl6eqbr 4350 . . . . . . 7  |-  ( ( T.  /\  y  e.  ( 0 (,) (
pi  /  3 ) ) )  ->  ( abs `  ( ( RR 
_D  ( x  e.  ( 0 [,] (
pi  /  3 ) )  |->  ( exp `  (
_i  x.  x )
) ) ) `  y ) )  <_ 
1 )
13123, 26, 63, 101, 103, 130dvlip 21487 . . . . . 6  |-  ( ( T.  /\  ( 0  e.  ( 0 [,] ( pi  /  3
) )  /\  (
pi  /  3 )  e.  ( 0 [,] ( pi  /  3
) ) ) )  ->  ( abs `  (
( ( x  e.  ( 0 [,] (
pi  /  3 ) )  |->  ( exp `  (
_i  x.  x )
) ) `  0
)  -  ( ( x  e.  ( 0 [,] ( pi  / 
3 ) )  |->  ( exp `  ( _i  x.  x ) ) ) `  ( pi 
/  3 ) ) ) )  <_  (
1  x.  ( abs `  ( 0  -  (
pi  /  3 ) ) ) ) )
1323, 21, 131mp2an 672 . . . . 5  |-  ( abs `  ( ( ( x  e.  ( 0 [,] ( pi  /  3
) )  |->  ( exp `  ( _i  x.  x
) ) ) ` 
0 )  -  (
( x  e.  ( 0 [,] ( pi 
/  3 ) ) 
|->  ( exp `  (
_i  x.  x )
) ) `  (
pi  /  3 ) ) ) )  <_ 
( 1  x.  ( abs `  ( 0  -  ( pi  /  3
) ) ) )
133 oveq2 6120 . . . . . . . . . . . . 13  |-  ( x  =  0  ->  (
_i  x.  x )  =  ( _i  x.  0 ) )
134 it0e0 10568 . . . . . . . . . . . . 13  |-  ( _i  x.  0 )  =  0
135133, 134syl6eq 2491 . . . . . . . . . . . 12  |-  ( x  =  0  ->  (
_i  x.  x )  =  0 )
136135fveq2d 5716 . . . . . . . . . . 11  |-  ( x  =  0  ->  ( exp `  ( _i  x.  x ) )  =  ( exp `  0
) )
137 ef0 13397 . . . . . . . . . . 11  |-  ( exp `  0 )  =  1
138136, 137syl6eq 2491 . . . . . . . . . 10  |-  ( x  =  0  ->  ( exp `  ( _i  x.  x ) )  =  1 )
139 eqid 2443 . . . . . . . . . 10  |-  ( x  e.  ( 0 [,] ( pi  /  3
) )  |->  ( exp `  ( _i  x.  x
) ) )  =  ( x  e.  ( 0 [,] ( pi 
/  3 ) ) 
|->  ( exp `  (
_i  x.  x )
) )
140 fvex 5722 . . . . . . . . . 10  |-  ( exp `  ( _i  x.  x
) )  e.  _V
141138, 139, 140fvmpt3i 5799 . . . . . . . . 9  |-  ( 0  e.  ( 0 [,] ( pi  /  3
) )  ->  (
( x  e.  ( 0 [,] ( pi 
/  3 ) ) 
|->  ( exp `  (
_i  x.  x )
) ) `  0
)  =  1 )
14218, 141ax-mp 5 . . . . . . . 8  |-  ( ( x  e.  ( 0 [,] ( pi  / 
3 ) )  |->  ( exp `  ( _i  x.  x ) ) ) `  0 )  =  1
143 oveq2 6120 . . . . . . . . . . 11  |-  ( x  =  ( pi  / 
3 )  ->  (
_i  x.  x )  =  ( _i  x.  ( pi  /  3
) ) )
144143fveq2d 5716 . . . . . . . . . 10  |-  ( x  =  ( pi  / 
3 )  ->  ( exp `  ( _i  x.  x ) )  =  ( exp `  (
_i  x.  ( pi  /  3 ) ) ) )
145144, 139, 140fvmpt3i 5799 . . . . . . . . 9  |-  ( ( pi  /  3 )  e.  ( 0 [,] ( pi  /  3
) )  ->  (
( x  e.  ( 0 [,] ( pi 
/  3 ) ) 
|->  ( exp `  (
_i  x.  x )
) ) `  (
pi  /  3 ) )  =  ( exp `  ( _i  x.  (
pi  /  3 ) ) ) )
14620, 145ax-mp 5 . . . . . . . 8  |-  ( ( x  e.  ( 0 [,] ( pi  / 
3 ) )  |->  ( exp `  ( _i  x.  x ) ) ) `  ( pi 
/  3 ) )  =  ( exp `  (
_i  x.  ( pi  /  3 ) ) )
147142, 146oveq12i 6124 . . . . . . 7  |-  ( ( ( x  e.  ( 0 [,] ( pi 
/  3 ) ) 
|->  ( exp `  (
_i  x.  x )
) ) `  0
)  -  ( ( x  e.  ( 0 [,] ( pi  / 
3 ) )  |->  ( exp `  ( _i  x.  x ) ) ) `  ( pi 
/  3 ) ) )  =  ( 1  -  ( exp `  (
_i  x.  ( pi  /  3 ) ) ) )
14825recni 9419 . . . . . . . . . 10  |-  ( pi 
/  3 )  e.  CC
14937, 148mulcli 9412 . . . . . . . . 9  |-  ( _i  x.  ( pi  / 
3 ) )  e.  CC
150 efcl 13389 . . . . . . . . 9  |-  ( ( _i  x.  ( pi 
/  3 ) )  e.  CC  ->  ( exp `  ( _i  x.  ( pi  /  3
) ) )  e.  CC )
151149, 150ax-mp 5 . . . . . . . 8  |-  ( exp `  ( _i  x.  (
pi  /  3 ) ) )  e.  CC
152 negicn 9632 . . . . . . . . . 10  |-  -u _i  e.  CC
153152, 148mulcli 9412 . . . . . . . . 9  |-  ( -u _i  x.  ( pi  / 
3 ) )  e.  CC
154 efcl 13389 . . . . . . . . 9  |-  ( (
-u _i  x.  (
pi  /  3 ) )  e.  CC  ->  ( exp `  ( -u _i  x.  ( pi  / 
3 ) ) )  e.  CC )
155153, 154ax-mp 5 . . . . . . . 8  |-  ( exp `  ( -u _i  x.  ( pi  /  3
) ) )  e.  CC
156 cosval 13428 . . . . . . . . . . 11  |-  ( ( pi  /  3 )  e.  CC  ->  ( cos `  ( pi  / 
3 ) )  =  ( ( ( exp `  ( _i  x.  (
pi  /  3 ) ) )  +  ( exp `  ( -u _i  x.  ( pi  / 
3 ) ) ) )  /  2 ) )
157148, 156ax-mp 5 . . . . . . . . . 10  |-  ( cos `  ( pi  /  3
) )  =  ( ( ( exp `  (
_i  x.  ( pi  /  3 ) ) )  +  ( exp `  ( -u _i  x.  ( pi 
/  3 ) ) ) )  /  2
)
158 sincos3rdpi 22000 . . . . . . . . . . 11  |-  ( ( sin `  ( pi 
/  3 ) )  =  ( ( sqr `  3 )  / 
2 )  /\  ( cos `  ( pi  / 
3 ) )  =  ( 1  /  2
) )
159158simpri 462 . . . . . . . . . 10  |-  ( cos `  ( pi  /  3
) )  =  ( 1  /  2 )
160157, 159eqtr3i 2465 . . . . . . . . 9  |-  ( ( ( exp `  (
_i  x.  ( pi  /  3 ) ) )  +  ( exp `  ( -u _i  x.  ( pi 
/  3 ) ) ) )  /  2
)  =  ( 1  /  2 )
161151, 155addcli 9411 . . . . . . . . . 10  |-  ( ( exp `  ( _i  x.  ( pi  / 
3 ) ) )  +  ( exp `  ( -u _i  x.  ( pi 
/  3 ) ) ) )  e.  CC
162 2cn 10413 . . . . . . . . . 10  |-  2  e.  CC
163 2ne0 10435 . . . . . . . . . 10  |-  2  =/=  0
164161, 45, 162, 163div11i 10111 . . . . . . . . 9  |-  ( ( ( ( exp `  (
_i  x.  ( pi  /  3 ) ) )  +  ( exp `  ( -u _i  x.  ( pi 
/  3 ) ) ) )  /  2
)  =  ( 1  /  2 )  <->  ( ( exp `  ( _i  x.  ( pi  /  3
) ) )  +  ( exp `  ( -u _i  x.  ( pi 
/  3 ) ) ) )  =  1 )
165160, 164mpbi 208 . . . . . . . 8  |-  ( ( exp `  ( _i  x.  ( pi  / 
3 ) ) )  +  ( exp `  ( -u _i  x.  ( pi 
/  3 ) ) ) )  =  1
16645, 151, 155, 165subaddrii 9718 . . . . . . 7  |-  ( 1  -  ( exp `  (
_i  x.  ( pi  /  3 ) ) ) )  =  ( exp `  ( -u _i  x.  ( pi  /  3
) ) )
167 mulneg12 9804 . . . . . . . . 9  |-  ( ( _i  e.  CC  /\  ( pi  /  3
)  e.  CC )  ->  ( -u _i  x.  ( pi  /  3
) )  =  ( _i  x.  -u (
pi  /  3 ) ) )
16837, 148, 167mp2an 672 . . . . . . . 8  |-  ( -u _i  x.  ( pi  / 
3 ) )  =  ( _i  x.  -u (
pi  /  3 ) )
169168fveq2i 5715 . . . . . . 7  |-  ( exp `  ( -u _i  x.  ( pi  /  3
) ) )  =  ( exp `  (
_i  x.  -u ( pi 
/  3 ) ) )
170147, 166, 1693eqtri 2467 . . . . . 6  |-  ( ( ( x  e.  ( 0 [,] ( pi 
/  3 ) ) 
|->  ( exp `  (
_i  x.  x )
) ) `  0
)  -  ( ( x  e.  ( 0 [,] ( pi  / 
3 ) )  |->  ( exp `  ( _i  x.  x ) ) ) `  ( pi 
/  3 ) ) )  =  ( exp `  ( _i  x.  -u (
pi  /  3 ) ) )
171170fveq2i 5715 . . . . 5  |-  ( abs `  ( ( ( x  e.  ( 0 [,] ( pi  /  3
) )  |->  ( exp `  ( _i  x.  x
) ) ) ` 
0 )  -  (
( x  e.  ( 0 [,] ( pi 
/  3 ) ) 
|->  ( exp `  (
_i  x.  x )
) ) `  (
pi  /  3 ) ) ) )  =  ( abs `  ( exp `  ( _i  x.  -u ( pi  /  3
) ) ) )
172148absnegi 12908 . . . . . . . 8  |-  ( abs `  -u ( pi  / 
3 ) )  =  ( abs `  (
pi  /  3 ) )
173 df-neg 9619 . . . . . . . . 9  |-  -u (
pi  /  3 )  =  ( 0  -  ( pi  /  3
) )
174173fveq2i 5715 . . . . . . . 8  |-  ( abs `  -u ( pi  / 
3 ) )  =  ( abs `  (
0  -  ( pi 
/  3 ) ) )
175172, 174eqtr3i 2465 . . . . . . 7  |-  ( abs `  ( pi  /  3
) )  =  ( abs `  ( 0  -  ( pi  / 
3 ) ) )
176 rprege0 11026 . . . . . . . 8  |-  ( ( pi  /  3 )  e.  RR+  ->  ( ( pi  /  3 )  e.  RR  /\  0  <_  ( pi  /  3
) ) )
177 absid 12806 . . . . . . . 8  |-  ( ( ( pi  /  3
)  e.  RR  /\  0  <_  ( pi  / 
3 ) )  -> 
( abs `  (
pi  /  3 ) )  =  ( pi 
/  3 ) )
17812, 176, 177mp2b 10 . . . . . . 7  |-  ( abs `  ( pi  /  3
) )  =  ( pi  /  3 )
179175, 178eqtr3i 2465 . . . . . 6  |-  ( abs `  ( 0  -  (
pi  /  3 ) ) )  =  ( pi  /  3 )
180179oveq2i 6123 . . . . 5  |-  ( 1  x.  ( abs `  (
0  -  ( pi 
/  3 ) ) ) )  =  ( 1  x.  ( pi 
/  3 ) )
181132, 171, 1803brtr3i 4340 . . . 4  |-  ( abs `  ( exp `  (
_i  x.  -u ( pi 
/  3 ) ) ) )  <_  (
1  x.  ( pi 
/  3 ) )
18225renegcli 9691 . . . . 5  |-  -u (
pi  /  3 )  e.  RR
183 absefi 13501 . . . . 5  |-  ( -u ( pi  /  3
)  e.  RR  ->  ( abs `  ( exp `  ( _i  x.  -u (
pi  /  3 ) ) ) )  =  1 )
184182, 183ax-mp 5 . . . 4  |-  ( abs `  ( exp `  (
_i  x.  -u ( pi 
/  3 ) ) ) )  =  1
185148mulid2i 9410 . . . 4  |-  ( 1  x.  ( pi  / 
3 ) )  =  ( pi  /  3
)
186181, 184, 1853brtr3i 4340 . . 3  |-  1  <_  ( pi  /  3
)
1878, 9pm3.2i 455 . . . 4  |-  ( 3  e.  RR  /\  0  <  3 )
188 lemuldiv 10232 . . . 4  |-  ( ( 1  e.  RR  /\  pi  e.  RR  /\  (
3  e.  RR  /\  0  <  3 ) )  ->  ( ( 1  x.  3 )  <_  pi 
<->  1  <_  ( pi  /  3 ) ) )
189102, 5, 187, 188mp3an 1314 . . 3  |-  ( ( 1  x.  3 )  <_  pi  <->  1  <_  ( pi  /  3 ) )
190186, 189mpbir 209 . 2  |-  ( 1  x.  3 )  <_  pi
1912, 190eqbrtrri 4334 1  |-  3  <_  pi
Colors of variables: wff setvar class
Syntax hints:    <-> wb 184    /\ wa 369    = wceq 1369   T. wtru 1370    e. wcel 1756    i^i cin 3348    C_ wss 3349   {cpr 3900   class class class wbr 4313    e. cmpt 4371   dom cdm 4861   ran crn 4862    |` cres 4863   -->wf 5435   ` cfv 5439  (class class class)co 6112   CCcc 9301   RRcr 9302   0cc0 9303   1c1 9304   _ici 9305    + caddc 9306    x. cmul 9308   RR*cxr 9438    < clt 9439    <_ cle 9440    - cmin 9616   -ucneg 9617    / cdiv 10014   2c2 10392   3c3 10393   RR+crp 11012   (,)cioo 11321   [,]cicc 11324   sqrcsqr 12743   abscabs 12744   expce 13368   sincsin 13370   cosccos 13371   picpi 13373   TopOpenctopn 14381   topGenctg 14397  ℂfldccnfld 17840  TopOnctopon 18521   intcnt 18643   -cn->ccncf 20474    _D cdv 21360
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1591  ax-4 1602  ax-5 1670  ax-6 1708  ax-7 1728  ax-8 1758  ax-9 1760  ax-10 1775  ax-11 1780  ax-12 1792  ax-13 1943  ax-ext 2423  ax-rep 4424  ax-sep 4434  ax-nul 4442  ax-pow 4491  ax-pr 4552  ax-un 6393  ax-inf2 7868  ax-cnex 9359  ax-resscn 9360  ax-1cn 9361  ax-icn 9362  ax-addcl 9363  ax-addrcl 9364  ax-mulcl 9365  ax-mulrcl 9366  ax-mulcom 9367  ax-addass 9368  ax-mulass 9369  ax-distr 9370  ax-i2m1 9371  ax-1ne0 9372  ax-1rid 9373  ax-rnegex 9374  ax-rrecex 9375  ax-cnre 9376  ax-pre-lttri 9377  ax-pre-lttrn 9378  ax-pre-ltadd 9379  ax-pre-mulgt0 9380  ax-pre-sup 9381  ax-addf 9382  ax-mulf 9383
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3or 966  df-3an 967  df-tru 1372  df-fal 1375  df-ex 1587  df-nf 1590  df-sb 1701  df-eu 2257  df-mo 2258  df-clab 2430  df-cleq 2436  df-clel 2439  df-nfc 2577  df-ne 2622  df-nel 2623  df-ral 2741  df-rex 2742  df-reu 2743  df-rmo 2744  df-rab 2745  df-v 2995  df-sbc 3208  df-csb 3310  df-dif 3352  df-un 3354  df-in 3356  df-ss 3363  df-pss 3365  df-nul 3659  df-if 3813  df-pw 3883  df-sn 3899  df-pr 3901  df-tp 3903  df-op 3905  df-uni 4113  df-int 4150  df-iun 4194  df-iin 4195  df-br 4314  df-opab 4372  df-mpt 4373  df-tr 4407  df-eprel 4653  df-id 4657  df-po 4662  df-so 4663  df-fr 4700  df-se 4701  df-we 4702  df-ord 4743  df-on 4744  df-lim 4745  df-suc 4746  df-xp 4867  df-rel 4868  df-cnv 4869  df-co 4870  df-dm 4871  df-rn 4872  df-res 4873  df-ima 4874  df-iota 5402  df-fun 5441  df-fn 5442  df-f 5443  df-f1 5444  df-fo 5445  df-f1o 5446  df-fv 5447  df-isom 5448  df-riota 6073  df-ov 6115  df-oprab 6116  df-mpt2 6117  df-of 6341  df-om 6498  df-1st 6598  df-2nd 6599  df-supp 6712  df-recs 6853  df-rdg 6887  df-1o 6941  df-2o 6942  df-oadd 6945  df-er 7122  df-map 7237  df-pm 7238  df-ixp 7285  df-en 7332  df-dom 7333  df-sdom 7334  df-fin 7335  df-fsupp 7642  df-fi 7682  df-sup 7712  df-oi 7745  df-card 8130  df-cda 8358  df-pnf 9441  df-mnf 9442  df-xr 9443  df-ltxr 9444  df-le 9445  df-sub 9618  df-neg 9619  df-div 10015  df-nn 10344  df-2 10401  df-3 10402  df-4 10403  df-5 10404  df-6 10405  df-7 10406  df-8 10407  df-9 10408  df-10 10409  df-n0 10601  df-z 10668  df-dec 10777  df-uz 10883  df-q 10975  df-rp 11013  df-xneg 11110  df-xadd 11111  df-xmul 11112  df-ioo 11325  df-ioc 11326  df-ico 11327  df-icc 11328  df-fz 11459  df-fzo 11570  df-fl 11663  df-seq 11828  df-exp 11887  df-fac 12073  df-bc 12100  df-hash 12125  df-shft 12577  df-cj 12609  df-re 12610  df-im 12611  df-sqr 12745  df-abs 12746  df-limsup 12970  df-clim 12987  df-rlim 12988  df-sum 13185  df-ef 13374  df-sin 13376  df-cos 13377  df-pi 13379  df-struct 14197  df-ndx 14198  df-slot 14199  df-base 14200  df-sets 14201  df-ress 14202  df-plusg 14272  df-mulr 14273  df-starv 14274  df-sca 14275  df-vsca 14276  df-ip 14277  df-tset 14278  df-ple 14279  df-ds 14281  df-unif 14282  df-hom 14283  df-cco 14284  df-rest 14382  df-topn 14383  df-0g 14401  df-gsum 14402  df-topgen 14403  df-pt 14404  df-prds 14407  df-xrs 14461  df-qtop 14466  df-imas 14467  df-xps 14469  df-mre 14545  df-mrc 14546  df-acs 14548  df-mnd 15436  df-submnd 15486  df-mulg 15569  df-cntz 15856  df-cmn 16300  df-psmet 17831  df-xmet 17832  df-met 17833  df-bl 17834  df-mopn 17835  df-fbas 17836  df-fg 17837  df-cnfld 17841  df-top 18525  df-bases 18527  df-topon 18528  df-topsp 18529  df-cld 18645  df-ntr 18646  df-cls 18647  df-nei 18724  df-lp 18762  df-perf 18763  df-cn 18853  df-cnp 18854  df-haus 18941  df-cmp 19012  df-tx 19157  df-hmeo 19350  df-fil 19441  df-fm 19533  df-flim 19534  df-flf 19535  df-xms 19917  df-ms 19918  df-tms 19919  df-cncf 20476  df-limc 21363  df-dv 21364
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator