MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  pi1xfrcnvlem Structured version   Unicode version

Theorem pi1xfrcnvlem 21429
Description: Given a path  F between two basepoints, there is an induced group homomorphism on the fundamental groups. (Contributed by Mario Carneiro, 12-Feb-2015.) (Proof shortened by Mario Carneiro, 23-Dec-2016.)
Hypotheses
Ref Expression
pi1xfr.p  |-  P  =  ( J  pi1 
( F `  0
) )
pi1xfr.q  |-  Q  =  ( J  pi1 
( F `  1
) )
pi1xfr.b  |-  B  =  ( Base `  P
)
pi1xfr.g  |-  G  =  ran  ( g  e. 
U. B  |->  <. [ g ] (  ~=ph  `  J
) ,  [ ( I ( *p `  J ) ( g ( *p `  J
) F ) ) ] (  ~=ph  `  J
) >. )
pi1xfr.j  |-  ( ph  ->  J  e.  (TopOn `  X ) )
pi1xfr.f  |-  ( ph  ->  F  e.  ( II 
Cn  J ) )
pi1xfr.i  |-  I  =  ( x  e.  ( 0 [,] 1 ) 
|->  ( F `  (
1  -  x ) ) )
pi1xfrcnv.h  |-  H  =  ran  ( h  e. 
U. ( Base `  Q
)  |->  <. [ h ]
(  ~=ph  `  J ) ,  [ ( F ( *p `  J ) ( h ( *p
`  J ) I ) ) ] ( 
~=ph  `  J ) >.
)
Assertion
Ref Expression
pi1xfrcnvlem  |-  ( ph  ->  `' G  C_  H )
Distinct variable groups:    g, h, x, B    g, F, h, x    g, I, h, x    h, G    ph, g, h, x    g, J, h, x    P, g, h, x    Q, g, h, x
Allowed substitution hints:    G( x, g)    H( x, g, h)    X( x, g, h)

Proof of Theorem pi1xfrcnvlem
StepHypRef Expression
1 pi1xfr.g . . . 4  |-  G  =  ran  ( g  e. 
U. B  |->  <. [ g ] (  ~=ph  `  J
) ,  [ ( I ( *p `  J ) ( g ( *p `  J
) F ) ) ] (  ~=ph  `  J
) >. )
2 fvex 5866 . . . . 5  |-  (  ~=ph  `  J )  e.  _V
3 ecexg 7317 . . . . 5  |-  ( ( 
~=ph  `  J )  e. 
_V  ->  [ g ] (  ~=ph  `  J )  e.  _V )
42, 3mp1i 12 . . . 4  |-  ( (
ph  /\  g  e.  U. B )  ->  [ g ] (  ~=ph  `  J
)  e.  _V )
5 ecexg 7317 . . . . 5  |-  ( ( 
~=ph  `  J )  e. 
_V  ->  [ ( I ( *p `  J
) ( g ( *p `  J ) F ) ) ] (  ~=ph  `  J )  e.  _V )
62, 5mp1i 12 . . . 4  |-  ( (
ph  /\  g  e.  U. B )  ->  [ ( I ( *p `  J ) ( g ( *p `  J
) F ) ) ] (  ~=ph  `  J
)  e.  _V )
71, 4, 6fliftcnv 6194 . . 3  |-  ( ph  ->  `' G  =  ran  ( g  e.  U. B  |->  <. [ ( I ( *p `  J
) ( g ( *p `  J ) F ) ) ] (  ~=ph  `  J ) ,  [ g ] (  ~=ph  `  J )
>. ) )
8 pi1xfr.f . . . . . . . . . . 11  |-  ( ph  ->  F  e.  ( II 
Cn  J ) )
9 pi1xfr.i . . . . . . . . . . . 12  |-  I  =  ( x  e.  ( 0 [,] 1 ) 
|->  ( F `  (
1  -  x ) ) )
109pcorevcl 21398 . . . . . . . . . . 11  |-  ( F  e.  ( II  Cn  J )  ->  (
I  e.  ( II 
Cn  J )  /\  ( I `  0
)  =  ( F `
 1 )  /\  ( I `  1
)  =  ( F `
 0 ) ) )
118, 10syl 16 . . . . . . . . . 10  |-  ( ph  ->  ( I  e.  ( II  Cn  J )  /\  ( I ` 
0 )  =  ( F `  1 )  /\  ( I ` 
1 )  =  ( F `  0 ) ) )
1211simp1d 1009 . . . . . . . . 9  |-  ( ph  ->  I  e.  ( II 
Cn  J ) )
1312adantr 465 . . . . . . . 8  |-  ( (
ph  /\  g  e.  U. B )  ->  I  e.  ( II  Cn  J
) )
14 pi1xfr.p . . . . . . . . . . . 12  |-  P  =  ( J  pi1 
( F `  0
) )
15 pi1xfr.j . . . . . . . . . . . 12  |-  ( ph  ->  J  e.  (TopOn `  X ) )
16 iitopon 21256 . . . . . . . . . . . . . . 15  |-  II  e.  (TopOn `  ( 0 [,] 1 ) )
1716a1i 11 . . . . . . . . . . . . . 14  |-  ( ph  ->  II  e.  (TopOn `  ( 0 [,] 1
) ) )
18 cnf2 19623 . . . . . . . . . . . . . 14  |-  ( ( II  e.  (TopOn `  ( 0 [,] 1
) )  /\  J  e.  (TopOn `  X )  /\  F  e.  (
II  Cn  J )
)  ->  F :
( 0 [,] 1
) --> X )
1917, 15, 8, 18syl3anc 1229 . . . . . . . . . . . . 13  |-  ( ph  ->  F : ( 0 [,] 1 ) --> X )
20 0elunit 11647 . . . . . . . . . . . . 13  |-  0  e.  ( 0 [,] 1
)
21 ffvelrn 6014 . . . . . . . . . . . . 13  |-  ( ( F : ( 0 [,] 1 ) --> X  /\  0  e.  ( 0 [,] 1 ) )  ->  ( F `  0 )  e.  X )
2219, 20, 21sylancl 662 . . . . . . . . . . . 12  |-  ( ph  ->  ( F `  0
)  e.  X )
23 pi1xfr.b . . . . . . . . . . . . 13  |-  B  =  ( Base `  P
)
2423a1i 11 . . . . . . . . . . . 12  |-  ( ph  ->  B  =  ( Base `  P ) )
2514, 15, 22, 24pi1eluni 21415 . . . . . . . . . . 11  |-  ( ph  ->  ( g  e.  U. B 
<->  ( g  e.  ( II  Cn  J )  /\  ( g ` 
0 )  =  ( F `  0 )  /\  ( g ` 
1 )  =  ( F `  0 ) ) ) )
2625biimpa 484 . . . . . . . . . 10  |-  ( (
ph  /\  g  e.  U. B )  ->  (
g  e.  ( II 
Cn  J )  /\  ( g `  0
)  =  ( F `
 0 )  /\  ( g `  1
)  =  ( F `
 0 ) ) )
2726simp1d 1009 . . . . . . . . 9  |-  ( (
ph  /\  g  e.  U. B )  ->  g  e.  ( II  Cn  J
) )
288adantr 465 . . . . . . . . 9  |-  ( (
ph  /\  g  e.  U. B )  ->  F  e.  ( II  Cn  J
) )
2926simp3d 1011 . . . . . . . . 9  |-  ( (
ph  /\  g  e.  U. B )  ->  (
g `  1 )  =  ( F ` 
0 ) )
3027, 28, 29pcocn 21390 . . . . . . . 8  |-  ( (
ph  /\  g  e.  U. B )  ->  (
g ( *p `  J ) F )  e.  ( II  Cn  J ) )
3111simp3d 1011 . . . . . . . . . . 11  |-  ( ph  ->  ( I `  1
)  =  ( F `
 0 ) )
3231adantr 465 . . . . . . . . . 10  |-  ( (
ph  /\  g  e.  U. B )  ->  (
I `  1 )  =  ( F ` 
0 ) )
3326simp2d 1010 . . . . . . . . . 10  |-  ( (
ph  /\  g  e.  U. B )  ->  (
g `  0 )  =  ( F ` 
0 ) )
3432, 33eqtr4d 2487 . . . . . . . . 9  |-  ( (
ph  /\  g  e.  U. B )  ->  (
I `  1 )  =  ( g ` 
0 ) )
3527, 28pco0 21387 . . . . . . . . 9  |-  ( (
ph  /\  g  e.  U. B )  ->  (
( g ( *p
`  J ) F ) `  0 )  =  ( g ` 
0 ) )
3634, 35eqtr4d 2487 . . . . . . . 8  |-  ( (
ph  /\  g  e.  U. B )  ->  (
I `  1 )  =  ( ( g ( *p `  J
) F ) ` 
0 ) )
3713, 30, 36pcocn 21390 . . . . . . 7  |-  ( (
ph  /\  g  e.  U. B )  ->  (
I ( *p `  J ) ( g ( *p `  J
) F ) )  e.  ( II  Cn  J ) )
3813, 30pco0 21387 . . . . . . . 8  |-  ( (
ph  /\  g  e.  U. B )  ->  (
( I ( *p
`  J ) ( g ( *p `  J ) F ) ) `  0 )  =  ( I ` 
0 ) )
3911simp2d 1010 . . . . . . . . 9  |-  ( ph  ->  ( I `  0
)  =  ( F `
 1 ) )
4039adantr 465 . . . . . . . 8  |-  ( (
ph  /\  g  e.  U. B )  ->  (
I `  0 )  =  ( F ` 
1 ) )
4138, 40eqtrd 2484 . . . . . . 7  |-  ( (
ph  /\  g  e.  U. B )  ->  (
( I ( *p
`  J ) ( g ( *p `  J ) F ) ) `  0 )  =  ( F ` 
1 ) )
4213, 30pco1 21388 . . . . . . . 8  |-  ( (
ph  /\  g  e.  U. B )  ->  (
( I ( *p
`  J ) ( g ( *p `  J ) F ) ) `  1 )  =  ( ( g ( *p `  J
) F ) ` 
1 ) )
4327, 28pco1 21388 . . . . . . . 8  |-  ( (
ph  /\  g  e.  U. B )  ->  (
( g ( *p
`  J ) F ) `  1 )  =  ( F ` 
1 ) )
4442, 43eqtrd 2484 . . . . . . 7  |-  ( (
ph  /\  g  e.  U. B )  ->  (
( I ( *p
`  J ) ( g ( *p `  J ) F ) ) `  1 )  =  ( F ` 
1 ) )
45 pi1xfr.q . . . . . . . . 9  |-  Q  =  ( J  pi1 
( F `  1
) )
46 1elunit 11648 . . . . . . . . . 10  |-  1  e.  ( 0 [,] 1
)
47 ffvelrn 6014 . . . . . . . . . 10  |-  ( ( F : ( 0 [,] 1 ) --> X  /\  1  e.  ( 0 [,] 1 ) )  ->  ( F `  1 )  e.  X )
4819, 46, 47sylancl 662 . . . . . . . . 9  |-  ( ph  ->  ( F `  1
)  e.  X )
49 eqidd 2444 . . . . . . . . 9  |-  ( ph  ->  ( Base `  Q
)  =  ( Base `  Q ) )
5045, 15, 48, 49pi1eluni 21415 . . . . . . . 8  |-  ( ph  ->  ( ( I ( *p `  J ) ( g ( *p
`  J ) F ) )  e.  U. ( Base `  Q )  <->  ( ( I ( *p
`  J ) ( g ( *p `  J ) F ) )  e.  ( II 
Cn  J )  /\  ( ( I ( *p `  J ) ( g ( *p
`  J ) F ) ) `  0
)  =  ( F `
 1 )  /\  ( ( I ( *p `  J ) ( g ( *p
`  J ) F ) ) `  1
)  =  ( F `
 1 ) ) ) )
5150adantr 465 . . . . . . 7  |-  ( (
ph  /\  g  e.  U. B )  ->  (
( I ( *p
`  J ) ( g ( *p `  J ) F ) )  e.  U. ( Base `  Q )  <->  ( (
I ( *p `  J ) ( g ( *p `  J
) F ) )  e.  ( II  Cn  J )  /\  (
( I ( *p
`  J ) ( g ( *p `  J ) F ) ) `  0 )  =  ( F ` 
1 )  /\  (
( I ( *p
`  J ) ( g ( *p `  J ) F ) ) `  1 )  =  ( F ` 
1 ) ) ) )
5237, 41, 44, 51mpbir3and 1180 . . . . . 6  |-  ( (
ph  /\  g  e.  U. B )  ->  (
I ( *p `  J ) ( g ( *p `  J
) F ) )  e.  U. ( Base `  Q ) )
53 eqidd 2444 . . . . . 6  |-  ( ph  ->  ( g  e.  U. B  |->  ( I ( *p `  J ) ( g ( *p
`  J ) F ) ) )  =  ( g  e.  U. B  |->  ( I ( *p `  J ) ( g ( *p
`  J ) F ) ) ) )
54 eqidd 2444 . . . . . 6  |-  ( ph  ->  ( h  e.  U. ( Base `  Q )  |-> 
<. [ h ] ( 
~=ph  `  J ) ,  [ ( F ( *p `  J ) ( h ( *p
`  J ) I ) ) ] ( 
~=ph  `  J ) >.
)  =  ( h  e.  U. ( Base `  Q )  |->  <. [ h ] (  ~=ph  `  J
) ,  [ ( F ( *p `  J ) ( h ( *p `  J
) I ) ) ] (  ~=ph  `  J
) >. ) )
55 eceq1 7349 . . . . . . 7  |-  ( h  =  ( I ( *p `  J ) ( g ( *p
`  J ) F ) )  ->  [ h ] (  ~=ph  `  J
)  =  [ ( I ( *p `  J ) ( g ( *p `  J
) F ) ) ] (  ~=ph  `  J
) )
56 oveq1 6288 . . . . . . . . 9  |-  ( h  =  ( I ( *p `  J ) ( g ( *p
`  J ) F ) )  ->  (
h ( *p `  J ) I )  =  ( ( I ( *p `  J
) ( g ( *p `  J ) F ) ) ( *p `  J ) I ) )
5756oveq2d 6297 . . . . . . . 8  |-  ( h  =  ( I ( *p `  J ) ( g ( *p
`  J ) F ) )  ->  ( F ( *p `  J ) ( h ( *p `  J
) I ) )  =  ( F ( *p `  J ) ( ( I ( *p `  J ) ( g ( *p
`  J ) F ) ) ( *p
`  J ) I ) ) )
5857eceq1d 7350 . . . . . . 7  |-  ( h  =  ( I ( *p `  J ) ( g ( *p
`  J ) F ) )  ->  [ ( F ( *p `  J ) ( h ( *p `  J
) I ) ) ] (  ~=ph  `  J
)  =  [ ( F ( *p `  J ) ( ( I ( *p `  J ) ( g ( *p `  J
) F ) ) ( *p `  J
) I ) ) ] (  ~=ph  `  J
) )
5955, 58opeq12d 4210 . . . . . 6  |-  ( h  =  ( I ( *p `  J ) ( g ( *p
`  J ) F ) )  ->  <. [ h ] (  ~=ph  `  J
) ,  [ ( F ( *p `  J ) ( h ( *p `  J
) I ) ) ] (  ~=ph  `  J
) >.  =  <. [ ( I ( *p `  J ) ( g ( *p `  J
) F ) ) ] (  ~=ph  `  J
) ,  [ ( F ( *p `  J ) ( ( I ( *p `  J ) ( g ( *p `  J
) F ) ) ( *p `  J
) I ) ) ] (  ~=ph  `  J
) >. )
6052, 53, 54, 59fmptco 6049 . . . . 5  |-  ( ph  ->  ( ( h  e. 
U. ( Base `  Q
)  |->  <. [ h ]
(  ~=ph  `  J ) ,  [ ( F ( *p `  J ) ( h ( *p
`  J ) I ) ) ] ( 
~=ph  `  J ) >.
)  o.  ( g  e.  U. B  |->  ( I ( *p `  J ) ( g ( *p `  J
) F ) ) ) )  =  ( g  e.  U. B  |-> 
<. [ ( I ( *p `  J ) ( g ( *p
`  J ) F ) ) ] ( 
~=ph  `  J ) ,  [ ( F ( *p `  J ) ( ( I ( *p `  J ) ( g ( *p
`  J ) F ) ) ( *p
`  J ) I ) ) ] ( 
~=ph  `  J ) >.
) )
61 phtpcer 21368 . . . . . . . . 9  |-  (  ~=ph  `  J )  Er  (
II  Cn  J )
6261a1i 11 . . . . . . . 8  |-  ( (
ph  /\  g  e.  U. B )  ->  (  ~=ph  `  J )  Er  (
II  Cn  J )
)
6313, 27pco0 21387 . . . . . . . . . . 11  |-  ( (
ph  /\  g  e.  U. B )  ->  (
( I ( *p
`  J ) g ) `  0 )  =  ( I ` 
0 ) )
6463, 40eqtr2d 2485 . . . . . . . . . 10  |-  ( (
ph  /\  g  e.  U. B )  ->  ( F `  1 )  =  ( ( I ( *p `  J
) g ) ` 
0 ) )
6562, 28erref 7333 . . . . . . . . . 10  |-  ( (
ph  /\  g  e.  U. B )  ->  F
(  ~=ph  `  J ) F )
6662, 13erref 7333 . . . . . . . . . . . 12  |-  ( (
ph  /\  g  e.  U. B )  ->  I
(  ~=ph  `  J )
I )
67 eqid 2443 . . . . . . . . . . . . . . 15  |-  ( ( 0 [,] 1 )  X.  { ( F `
 0 ) } )  =  ( ( 0 [,] 1 )  X.  { ( F `
 0 ) } )
6867pcopt2 21396 . . . . . . . . . . . . . 14  |-  ( ( g  e.  ( II 
Cn  J )  /\  ( g `  1
)  =  ( F `
 0 ) )  ->  ( g ( *p `  J ) ( ( 0 [,] 1 )  X.  {
( F `  0
) } ) ) (  ~=ph  `  J ) g )
6927, 29, 68syl2anc 661 . . . . . . . . . . . . 13  |-  ( (
ph  /\  g  e.  U. B )  ->  (
g ( *p `  J ) ( ( 0 [,] 1 )  X.  { ( F `
 0 ) } ) ) (  ~=ph  `  J ) g )
7040eqcomd 2451 . . . . . . . . . . . . . . 15  |-  ( (
ph  /\  g  e.  U. B )  ->  ( F `  1 )  =  ( I ` 
0 ) )
71 eqid 2443 . . . . . . . . . . . . . . 15  |-  ( x  e.  ( 0 [,] 1 )  |->  if ( x  <_  ( 1  /  2 ) ,  if ( x  <_ 
( 1  /  4
) ,  ( 2  x.  x ) ,  ( x  +  ( 1  /  4 ) ) ) ,  ( ( x  /  2
)  +  ( 1  /  2 ) ) ) )  =  ( x  e.  ( 0 [,] 1 )  |->  if ( x  <_  (
1  /  2 ) ,  if ( x  <_  ( 1  / 
4 ) ,  ( 2  x.  x ) ,  ( x  +  ( 1  /  4
) ) ) ,  ( ( x  / 
2 )  +  ( 1  /  2 ) ) ) )
7227, 28, 13, 29, 70, 71pcoass 21397 . . . . . . . . . . . . . 14  |-  ( (
ph  /\  g  e.  U. B )  ->  (
( g ( *p
`  J ) F ) ( *p `  J ) I ) (  ~=ph  `  J ) ( g ( *p
`  J ) ( F ( *p `  J ) I ) ) )
7328, 13pco0 21387 . . . . . . . . . . . . . . . 16  |-  ( (
ph  /\  g  e.  U. B )  ->  (
( F ( *p
`  J ) I ) `  0 )  =  ( F ` 
0 ) )
7429, 73eqtr4d 2487 . . . . . . . . . . . . . . 15  |-  ( (
ph  /\  g  e.  U. B )  ->  (
g `  1 )  =  ( ( F ( *p `  J
) I ) ` 
0 ) )
7562, 27erref 7333 . . . . . . . . . . . . . . 15  |-  ( (
ph  /\  g  e.  U. B )  ->  g
(  ~=ph  `  J )
g )
769, 67pcorev2 21401 . . . . . . . . . . . . . . . 16  |-  ( F  e.  ( II  Cn  J )  ->  ( F ( *p `  J ) I ) (  ~=ph  `  J ) ( ( 0 [,] 1 )  X.  {
( F `  0
) } ) )
7728, 76syl 16 . . . . . . . . . . . . . . 15  |-  ( (
ph  /\  g  e.  U. B )  ->  ( F ( *p `  J ) I ) (  ~=ph  `  J ) ( ( 0 [,] 1 )  X.  {
( F `  0
) } ) )
7874, 75, 77pcohtpy 21393 . . . . . . . . . . . . . 14  |-  ( (
ph  /\  g  e.  U. B )  ->  (
g ( *p `  J ) ( F ( *p `  J
) I ) ) (  ~=ph  `  J ) ( g ( *p
`  J ) ( ( 0 [,] 1
)  X.  { ( F `  0 ) } ) ) )
7962, 72, 78ertr2d 7330 . . . . . . . . . . . . 13  |-  ( (
ph  /\  g  e.  U. B )  ->  (
g ( *p `  J ) ( ( 0 [,] 1 )  X.  { ( F `
 0 ) } ) ) (  ~=ph  `  J ) ( ( g ( *p `  J ) F ) ( *p `  J
) I ) )
8062, 69, 79ertr3d 7331 . . . . . . . . . . . 12  |-  ( (
ph  /\  g  e.  U. B )  ->  g
(  ~=ph  `  J )
( ( g ( *p `  J ) F ) ( *p
`  J ) I ) )
8134, 66, 80pcohtpy 21393 . . . . . . . . . . 11  |-  ( (
ph  /\  g  e.  U. B )  ->  (
I ( *p `  J ) g ) (  ~=ph  `  J ) ( I ( *p
`  J ) ( ( g ( *p
`  J ) F ) ( *p `  J ) I ) ) )
8243, 40eqtr4d 2487 . . . . . . . . . . . 12  |-  ( (
ph  /\  g  e.  U. B )  ->  (
( g ( *p
`  J ) F ) `  1 )  =  ( I ` 
0 ) )
8313, 30, 13, 36, 82, 71pcoass 21397 . . . . . . . . . . 11  |-  ( (
ph  /\  g  e.  U. B )  ->  (
( I ( *p
`  J ) ( g ( *p `  J ) F ) ) ( *p `  J ) I ) (  ~=ph  `  J ) ( I ( *p
`  J ) ( ( g ( *p
`  J ) F ) ( *p `  J ) I ) ) )
8462, 81, 83ertr4d 7332 . . . . . . . . . 10  |-  ( (
ph  /\  g  e.  U. B )  ->  (
I ( *p `  J ) g ) (  ~=ph  `  J ) ( ( I ( *p `  J ) ( g ( *p
`  J ) F ) ) ( *p
`  J ) I ) )
8564, 65, 84pcohtpy 21393 . . . . . . . . 9  |-  ( (
ph  /\  g  e.  U. B )  ->  ( F ( *p `  J ) ( I ( *p `  J
) g ) ) (  ~=ph  `  J ) ( F ( *p
`  J ) ( ( I ( *p
`  J ) ( g ( *p `  J ) F ) ) ( *p `  J ) I ) ) )
8628, 13, 27, 70, 34, 71pcoass 21397 . . . . . . . . . 10  |-  ( (
ph  /\  g  e.  U. B )  ->  (
( F ( *p
`  J ) I ) ( *p `  J ) g ) (  ~=ph  `  J ) ( F ( *p
`  J ) ( I ( *p `  J ) g ) ) )
8728, 13pco1 21388 . . . . . . . . . . . . 13  |-  ( (
ph  /\  g  e.  U. B )  ->  (
( F ( *p
`  J ) I ) `  1 )  =  ( I ` 
1 ) )
8887, 34eqtrd 2484 . . . . . . . . . . . 12  |-  ( (
ph  /\  g  e.  U. B )  ->  (
( F ( *p
`  J ) I ) `  1 )  =  ( g ` 
0 ) )
8988, 77, 75pcohtpy 21393 . . . . . . . . . . 11  |-  ( (
ph  /\  g  e.  U. B )  ->  (
( F ( *p
`  J ) I ) ( *p `  J ) g ) (  ~=ph  `  J ) ( ( ( 0 [,] 1 )  X. 
{ ( F ` 
0 ) } ) ( *p `  J
) g ) )
9067pcopt 21395 . . . . . . . . . . . 12  |-  ( ( g  e.  ( II 
Cn  J )  /\  ( g `  0
)  =  ( F `
 0 ) )  ->  ( ( ( 0 [,] 1 )  X.  { ( F `
 0 ) } ) ( *p `  J ) g ) (  ~=ph  `  J ) g )
9127, 33, 90syl2anc 661 . . . . . . . . . . 11  |-  ( (
ph  /\  g  e.  U. B )  ->  (
( ( 0 [,] 1 )  X.  {
( F `  0
) } ) ( *p `  J ) g ) (  ~=ph  `  J ) g )
9262, 89, 91ertrd 7329 . . . . . . . . . 10  |-  ( (
ph  /\  g  e.  U. B )  ->  (
( F ( *p
`  J ) I ) ( *p `  J ) g ) (  ~=ph  `  J ) g )
9362, 86, 92ertr3d 7331 . . . . . . . . 9  |-  ( (
ph  /\  g  e.  U. B )  ->  ( F ( *p `  J ) ( I ( *p `  J
) g ) ) (  ~=ph  `  J ) g )
9462, 85, 93ertr3d 7331 . . . . . . . 8  |-  ( (
ph  /\  g  e.  U. B )  ->  ( F ( *p `  J ) ( ( I ( *p `  J ) ( g ( *p `  J
) F ) ) ( *p `  J
) I ) ) (  ~=ph  `  J ) g )
9562, 94erthi 7360 . . . . . . 7  |-  ( (
ph  /\  g  e.  U. B )  ->  [ ( F ( *p `  J ) ( ( I ( *p `  J ) ( g ( *p `  J
) F ) ) ( *p `  J
) I ) ) ] (  ~=ph  `  J
)  =  [ g ] (  ~=ph  `  J
) )
9695opeq2d 4209 . . . . . 6  |-  ( (
ph  /\  g  e.  U. B )  ->  <. [ ( I ( *p `  J ) ( g ( *p `  J
) F ) ) ] (  ~=ph  `  J
) ,  [ ( F ( *p `  J ) ( ( I ( *p `  J ) ( g ( *p `  J
) F ) ) ( *p `  J
) I ) ) ] (  ~=ph  `  J
) >.  =  <. [ ( I ( *p `  J ) ( g ( *p `  J
) F ) ) ] (  ~=ph  `  J
) ,  [ g ] (  ~=ph  `  J
) >. )
9796mpteq2dva 4523 . . . . 5  |-  ( ph  ->  ( g  e.  U. B  |->  <. [ ( I ( *p `  J
) ( g ( *p `  J ) F ) ) ] (  ~=ph  `  J ) ,  [ ( F ( *p `  J
) ( ( I ( *p `  J
) ( g ( *p `  J ) F ) ) ( *p `  J ) I ) ) ] (  ~=ph  `  J )
>. )  =  (
g  e.  U. B  |-> 
<. [ ( I ( *p `  J ) ( g ( *p
`  J ) F ) ) ] ( 
~=ph  `  J ) ,  [ g ] ( 
~=ph  `  J ) >.
) )
9860, 97eqtrd 2484 . . . 4  |-  ( ph  ->  ( ( h  e. 
U. ( Base `  Q
)  |->  <. [ h ]
(  ~=ph  `  J ) ,  [ ( F ( *p `  J ) ( h ( *p
`  J ) I ) ) ] ( 
~=ph  `  J ) >.
)  o.  ( g  e.  U. B  |->  ( I ( *p `  J ) ( g ( *p `  J
) F ) ) ) )  =  ( g  e.  U. B  |-> 
<. [ ( I ( *p `  J ) ( g ( *p
`  J ) F ) ) ] ( 
~=ph  `  J ) ,  [ g ] ( 
~=ph  `  J ) >.
) )
9998rneqd 5220 . . 3  |-  ( ph  ->  ran  ( ( h  e.  U. ( Base `  Q )  |->  <. [ h ] (  ~=ph  `  J
) ,  [ ( F ( *p `  J ) ( h ( *p `  J
) I ) ) ] (  ~=ph  `  J
) >. )  o.  (
g  e.  U. B  |->  ( I ( *p
`  J ) ( g ( *p `  J ) F ) ) ) )  =  ran  ( g  e. 
U. B  |->  <. [ ( I ( *p `  J ) ( g ( *p `  J
) F ) ) ] (  ~=ph  `  J
) ,  [ g ] (  ~=ph  `  J
) >. ) )
1007, 99eqtr4d 2487 . 2  |-  ( ph  ->  `' G  =  ran  ( ( h  e. 
U. ( Base `  Q
)  |->  <. [ h ]
(  ~=ph  `  J ) ,  [ ( F ( *p `  J ) ( h ( *p
`  J ) I ) ) ] ( 
~=ph  `  J ) >.
)  o.  ( g  e.  U. B  |->  ( I ( *p `  J ) ( g ( *p `  J
) F ) ) ) ) )
101 rncoss 5253 . . 3  |-  ran  (
( h  e.  U. ( Base `  Q )  |-> 
<. [ h ] ( 
~=ph  `  J ) ,  [ ( F ( *p `  J ) ( h ( *p
`  J ) I ) ) ] ( 
~=ph  `  J ) >.
)  o.  ( g  e.  U. B  |->  ( I ( *p `  J ) ( g ( *p `  J
) F ) ) ) )  C_  ran  ( h  e.  U. ( Base `  Q )  |->  <. [ h ] ( 
~=ph  `  J ) ,  [ ( F ( *p `  J ) ( h ( *p
`  J ) I ) ) ] ( 
~=ph  `  J ) >.
)
102 pi1xfrcnv.h . . 3  |-  H  =  ran  ( h  e. 
U. ( Base `  Q
)  |->  <. [ h ]
(  ~=ph  `  J ) ,  [ ( F ( *p `  J ) ( h ( *p
`  J ) I ) ) ] ( 
~=ph  `  J ) >.
)
103101, 102sseqtr4i 3522 . 2  |-  ran  (
( h  e.  U. ( Base `  Q )  |-> 
<. [ h ] ( 
~=ph  `  J ) ,  [ ( F ( *p `  J ) ( h ( *p
`  J ) I ) ) ] ( 
~=ph  `  J ) >.
)  o.  ( g  e.  U. B  |->  ( I ( *p `  J ) ( g ( *p `  J
) F ) ) ) )  C_  H
104100, 103syl6eqss 3539 1  |-  ( ph  ->  `' G  C_  H )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 184    /\ wa 369    /\ w3a 974    = wceq 1383    e. wcel 1804   _Vcvv 3095    C_ wss 3461   ifcif 3926   {csn 4014   <.cop 4020   U.cuni 4234   class class class wbr 4437    |-> cmpt 4495    X. cxp 4987   `'ccnv 4988   ran crn 4990    o. ccom 4993   -->wf 5574   ` cfv 5578  (class class class)co 6281    Er wer 7310   [cec 7311   0cc0 9495   1c1 9496    + caddc 9498    x. cmul 9500    <_ cle 9632    - cmin 9810    / cdiv 10212   2c2 10591   4c4 10593   [,]cicc 11541   Basecbs 14509  TopOnctopon 19268    Cn ccn 19598   IIcii 21252    ~=ph cphtpc 21342   *pcpco 21373    pi1 cpi1 21376
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1605  ax-4 1618  ax-5 1691  ax-6 1734  ax-7 1776  ax-8 1806  ax-9 1808  ax-10 1823  ax-11 1828  ax-12 1840  ax-13 1985  ax-ext 2421  ax-rep 4548  ax-sep 4558  ax-nul 4566  ax-pow 4615  ax-pr 4676  ax-un 6577  ax-inf2 8061  ax-cnex 9551  ax-resscn 9552  ax-1cn 9553  ax-icn 9554  ax-addcl 9555  ax-addrcl 9556  ax-mulcl 9557  ax-mulrcl 9558  ax-mulcom 9559  ax-addass 9560  ax-mulass 9561  ax-distr 9562  ax-i2m1 9563  ax-1ne0 9564  ax-1rid 9565  ax-rnegex 9566  ax-rrecex 9567  ax-cnre 9568  ax-pre-lttri 9569  ax-pre-lttrn 9570  ax-pre-ltadd 9571  ax-pre-mulgt0 9572  ax-pre-sup 9573  ax-addf 9574  ax-mulf 9575
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3or 975  df-3an 976  df-tru 1386  df-ex 1600  df-nf 1604  df-sb 1727  df-eu 2272  df-mo 2273  df-clab 2429  df-cleq 2435  df-clel 2438  df-nfc 2593  df-ne 2640  df-nel 2641  df-ral 2798  df-rex 2799  df-reu 2800  df-rmo 2801  df-rab 2802  df-v 3097  df-sbc 3314  df-csb 3421  df-dif 3464  df-un 3466  df-in 3468  df-ss 3475  df-pss 3477  df-nul 3771  df-if 3927  df-pw 3999  df-sn 4015  df-pr 4017  df-tp 4019  df-op 4021  df-uni 4235  df-int 4272  df-iun 4317  df-iin 4318  df-br 4438  df-opab 4496  df-mpt 4497  df-tr 4531  df-eprel 4781  df-id 4785  df-po 4790  df-so 4791  df-fr 4828  df-se 4829  df-we 4830  df-ord 4871  df-on 4872  df-lim 4873  df-suc 4874  df-xp 4995  df-rel 4996  df-cnv 4997  df-co 4998  df-dm 4999  df-rn 5000  df-res 5001  df-ima 5002  df-iota 5541  df-fun 5580  df-fn 5581  df-f 5582  df-f1 5583  df-fo 5584  df-f1o 5585  df-fv 5586  df-isom 5587  df-riota 6242  df-ov 6284  df-oprab 6285  df-mpt2 6286  df-of 6525  df-om 6686  df-1st 6785  df-2nd 6786  df-supp 6904  df-recs 7044  df-rdg 7078  df-1o 7132  df-2o 7133  df-oadd 7136  df-er 7313  df-ec 7315  df-qs 7319  df-map 7424  df-ixp 7472  df-en 7519  df-dom 7520  df-sdom 7521  df-fin 7522  df-fsupp 7832  df-fi 7873  df-sup 7903  df-oi 7938  df-card 8323  df-cda 8551  df-pnf 9633  df-mnf 9634  df-xr 9635  df-ltxr 9636  df-le 9637  df-sub 9812  df-neg 9813  df-div 10213  df-nn 10543  df-2 10600  df-3 10601  df-4 10602  df-5 10603  df-6 10604  df-7 10605  df-8 10606  df-9 10607  df-10 10608  df-n0 10802  df-z 10871  df-dec 10985  df-uz 11091  df-q 11192  df-rp 11230  df-xneg 11327  df-xadd 11328  df-xmul 11329  df-ioo 11542  df-icc 11545  df-fz 11682  df-fzo 11804  df-seq 12087  df-exp 12146  df-hash 12385  df-cj 12911  df-re 12912  df-im 12913  df-sqrt 13047  df-abs 13048  df-struct 14511  df-ndx 14512  df-slot 14513  df-base 14514  df-sets 14515  df-ress 14516  df-plusg 14587  df-mulr 14588  df-starv 14589  df-sca 14590  df-vsca 14591  df-ip 14592  df-tset 14593  df-ple 14594  df-ds 14596  df-unif 14597  df-hom 14598  df-cco 14599  df-rest 14697  df-topn 14698  df-0g 14716  df-gsum 14717  df-topgen 14718  df-pt 14719  df-prds 14722  df-xrs 14776  df-qtop 14781  df-imas 14782  df-qus 14783  df-xps 14784  df-mre 14860  df-mrc 14861  df-acs 14863  df-mgm 15746  df-sgrp 15785  df-mnd 15795  df-submnd 15841  df-mulg 15934  df-cntz 16229  df-cmn 16674  df-psmet 18285  df-xmet 18286  df-met 18287  df-bl 18288  df-mopn 18289  df-cnfld 18295  df-top 19272  df-bases 19274  df-topon 19275  df-topsp 19276  df-cld 19393  df-cn 19601  df-cnp 19602  df-tx 19936  df-hmeo 20129  df-xms 20696  df-ms 20697  df-tms 20698  df-ii 21254  df-htpy 21343  df-phtpy 21344  df-phtpc 21365  df-pco 21378  df-om1 21379  df-pi1 21381
This theorem is referenced by:  pi1xfrcnv  21430
  Copyright terms: Public domain W3C validator