MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  pi1xfr Structured version   Unicode version

Theorem pi1xfr 21287
Description: Given a path  F and its inverse  I between two basepoints, there is an induced group homomorphism on the fundamental groups. (Contributed by Mario Carneiro, 12-Feb-2015.)
Hypotheses
Ref Expression
pi1xfr.p  |-  P  =  ( J  pi1 
( F `  0
) )
pi1xfr.q  |-  Q  =  ( J  pi1 
( F `  1
) )
pi1xfr.b  |-  B  =  ( Base `  P
)
pi1xfr.g  |-  G  =  ran  ( g  e. 
U. B  |->  <. [ g ] (  ~=ph  `  J
) ,  [ ( I ( *p `  J ) ( g ( *p `  J
) F ) ) ] (  ~=ph  `  J
) >. )
pi1xfr.j  |-  ( ph  ->  J  e.  (TopOn `  X ) )
pi1xfr.f  |-  ( ph  ->  F  e.  ( II 
Cn  J ) )
pi1xfr.i  |-  I  =  ( x  e.  ( 0 [,] 1 ) 
|->  ( F `  (
1  -  x ) ) )
Assertion
Ref Expression
pi1xfr  |-  ( ph  ->  G  e.  ( P 
GrpHom  Q ) )
Distinct variable groups:    x, g, B    g, F, x    g, I, x    ph, g, x   
g, J, x    P, g, x    Q, g, x
Allowed substitution hints:    G( x, g)    X( x, g)

Proof of Theorem pi1xfr
Dummy variables  f  h  u  y  z are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 pi1xfr.j . . . 4  |-  ( ph  ->  J  e.  (TopOn `  X ) )
2 iitopon 21115 . . . . . . 7  |-  II  e.  (TopOn `  ( 0 [,] 1 ) )
32a1i 11 . . . . . 6  |-  ( ph  ->  II  e.  (TopOn `  ( 0 [,] 1
) ) )
4 pi1xfr.f . . . . . 6  |-  ( ph  ->  F  e.  ( II 
Cn  J ) )
5 cnf2 19513 . . . . . 6  |-  ( ( II  e.  (TopOn `  ( 0 [,] 1
) )  /\  J  e.  (TopOn `  X )  /\  F  e.  (
II  Cn  J )
)  ->  F :
( 0 [,] 1
) --> X )
63, 1, 4, 5syl3anc 1228 . . . . 5  |-  ( ph  ->  F : ( 0 [,] 1 ) --> X )
7 0elunit 11634 . . . . 5  |-  0  e.  ( 0 [,] 1
)
8 ffvelrn 6017 . . . . 5  |-  ( ( F : ( 0 [,] 1 ) --> X  /\  0  e.  ( 0 [,] 1 ) )  ->  ( F `  0 )  e.  X )
96, 7, 8sylancl 662 . . . 4  |-  ( ph  ->  ( F `  0
)  e.  X )
10 pi1xfr.p . . . . 5  |-  P  =  ( J  pi1 
( F `  0
) )
1110pi1grp 21282 . . . 4  |-  ( ( J  e.  (TopOn `  X )  /\  ( F `  0 )  e.  X )  ->  P  e.  Grp )
121, 9, 11syl2anc 661 . . 3  |-  ( ph  ->  P  e.  Grp )
13 1elunit 11635 . . . . 5  |-  1  e.  ( 0 [,] 1
)
14 ffvelrn 6017 . . . . 5  |-  ( ( F : ( 0 [,] 1 ) --> X  /\  1  e.  ( 0 [,] 1 ) )  ->  ( F `  1 )  e.  X )
156, 13, 14sylancl 662 . . . 4  |-  ( ph  ->  ( F `  1
)  e.  X )
16 pi1xfr.q . . . . 5  |-  Q  =  ( J  pi1 
( F `  1
) )
1716pi1grp 21282 . . . 4  |-  ( ( J  e.  (TopOn `  X )  /\  ( F `  1 )  e.  X )  ->  Q  e.  Grp )
181, 15, 17syl2anc 661 . . 3  |-  ( ph  ->  Q  e.  Grp )
1912, 18jca 532 . 2  |-  ( ph  ->  ( P  e.  Grp  /\  Q  e.  Grp )
)
20 pi1xfr.b . . . 4  |-  B  =  ( Base `  P
)
21 pi1xfr.g . . . 4  |-  G  =  ran  ( g  e. 
U. B  |->  <. [ g ] (  ~=ph  `  J
) ,  [ ( I ( *p `  J ) ( g ( *p `  J
) F ) ) ] (  ~=ph  `  J
) >. )
22 pi1xfr.i . . . . . . 7  |-  I  =  ( x  e.  ( 0 [,] 1 ) 
|->  ( F `  (
1  -  x ) ) )
2322pcorevcl 21257 . . . . . 6  |-  ( F  e.  ( II  Cn  J )  ->  (
I  e.  ( II 
Cn  J )  /\  ( I `  0
)  =  ( F `
 1 )  /\  ( I `  1
)  =  ( F `
 0 ) ) )
244, 23syl 16 . . . . 5  |-  ( ph  ->  ( I  e.  ( II  Cn  J )  /\  ( I ` 
0 )  =  ( F `  1 )  /\  ( I ` 
1 )  =  ( F `  0 ) ) )
2524simp1d 1008 . . . 4  |-  ( ph  ->  I  e.  ( II 
Cn  J ) )
2624simp2d 1009 . . . . 5  |-  ( ph  ->  ( I `  0
)  =  ( F `
 1 ) )
2726eqcomd 2475 . . . 4  |-  ( ph  ->  ( F `  1
)  =  ( I `
 0 ) )
2824simp3d 1010 . . . 4  |-  ( ph  ->  ( I `  1
)  =  ( F `
 0 ) )
2910, 16, 20, 21, 1, 4, 25, 27, 28pi1xfrf 21285 . . 3  |-  ( ph  ->  G : B --> ( Base `  Q ) )
3020a1i 11 . . . . . . . 8  |-  ( ph  ->  B  =  ( Base `  P ) )
3110, 1, 9, 30pi1bas2 21273 . . . . . . 7  |-  ( ph  ->  B  =  ( U. B /. (  ~=ph  `  J
) ) )
3231eleq2d 2537 . . . . . 6  |-  ( ph  ->  ( y  e.  B  <->  y  e.  ( U. B /. (  ~=ph  `  J
) ) ) )
3332biimpa 484 . . . . 5  |-  ( (
ph  /\  y  e.  B )  ->  y  e.  ( U. B /. (  ~=ph  `  J )
) )
34 eqid 2467 . . . . . 6  |-  ( U. B /. (  ~=ph  `  J
) )  =  ( U. B /. (  ~=ph  `  J ) )
35 oveq1 6289 . . . . . . . . 9  |-  ( [ f ] (  ~=ph  `  J )  =  y  ->  ( [ f ] (  ~=ph  `  J
) ( +g  `  P
) z )  =  ( y ( +g  `  P ) z ) )
3635fveq2d 5868 . . . . . . . 8  |-  ( [ f ] (  ~=ph  `  J )  =  y  ->  ( G `  ( [ f ] ( 
~=ph  `  J ) ( +g  `  P ) z ) )  =  ( G `  (
y ( +g  `  P
) z ) ) )
37 fveq2 5864 . . . . . . . . 9  |-  ( [ f ] (  ~=ph  `  J )  =  y  ->  ( G `  [ f ] ( 
~=ph  `  J ) )  =  ( G `  y ) )
3837oveq1d 6297 . . . . . . . 8  |-  ( [ f ] (  ~=ph  `  J )  =  y  ->  ( ( G `
 [ f ] (  ~=ph  `  J ) ) ( +g  `  Q
) ( G `  z ) )  =  ( ( G `  y ) ( +g  `  Q ) ( G `
 z ) ) )
3936, 38eqeq12d 2489 . . . . . . 7  |-  ( [ f ] (  ~=ph  `  J )  =  y  ->  ( ( G `
 ( [ f ] (  ~=ph  `  J
) ( +g  `  P
) z ) )  =  ( ( G `
 [ f ] (  ~=ph  `  J ) ) ( +g  `  Q
) ( G `  z ) )  <->  ( G `  ( y ( +g  `  P ) z ) )  =  ( ( G `  y ) ( +g  `  Q
) ( G `  z ) ) ) )
4039ralbidv 2903 . . . . . 6  |-  ( [ f ] (  ~=ph  `  J )  =  y  ->  ( A. z  e.  B  ( G `  ( [ f ] (  ~=ph  `  J ) ( +g  `  P
) z ) )  =  ( ( G `
 [ f ] (  ~=ph  `  J ) ) ( +g  `  Q
) ( G `  z ) )  <->  A. z  e.  B  ( G `  ( y ( +g  `  P ) z ) )  =  ( ( G `  y ) ( +g  `  Q
) ( G `  z ) ) ) )
4131eleq2d 2537 . . . . . . . . . 10  |-  ( ph  ->  ( z  e.  B  <->  z  e.  ( U. B /. (  ~=ph  `  J
) ) ) )
4241biimpa 484 . . . . . . . . 9  |-  ( (
ph  /\  z  e.  B )  ->  z  e.  ( U. B /. (  ~=ph  `  J )
) )
4342adantlr 714 . . . . . . . 8  |-  ( ( ( ph  /\  f  e.  U. B )  /\  z  e.  B )  ->  z  e.  ( U. B /. (  ~=ph  `  J
) ) )
44 oveq2 6290 . . . . . . . . . . 11  |-  ( [ h ] (  ~=ph  `  J )  =  z  ->  ( [ f ] (  ~=ph  `  J
) ( +g  `  P
) [ h ]
(  ~=ph  `  J )
)  =  ( [ f ] (  ~=ph  `  J ) ( +g  `  P ) z ) )
4544fveq2d 5868 . . . . . . . . . 10  |-  ( [ h ] (  ~=ph  `  J )  =  z  ->  ( G `  ( [ f ] ( 
~=ph  `  J ) ( +g  `  P ) [ h ] ( 
~=ph  `  J ) ) )  =  ( G `
 ( [ f ] (  ~=ph  `  J
) ( +g  `  P
) z ) ) )
46 fveq2 5864 . . . . . . . . . . 11  |-  ( [ h ] (  ~=ph  `  J )  =  z  ->  ( G `  [ h ] ( 
~=ph  `  J ) )  =  ( G `  z ) )
4746oveq2d 6298 . . . . . . . . . 10  |-  ( [ h ] (  ~=ph  `  J )  =  z  ->  ( ( G `
 [ f ] (  ~=ph  `  J ) ) ( +g  `  Q
) ( G `  [ h ] ( 
~=ph  `  J ) ) )  =  ( ( G `  [ f ] (  ~=ph  `  J
) ) ( +g  `  Q ) ( G `
 z ) ) )
4845, 47eqeq12d 2489 . . . . . . . . 9  |-  ( [ h ] (  ~=ph  `  J )  =  z  ->  ( ( G `
 ( [ f ] (  ~=ph  `  J
) ( +g  `  P
) [ h ]
(  ~=ph  `  J )
) )  =  ( ( G `  [
f ] (  ~=ph  `  J ) ) ( +g  `  Q ) ( G `  [
h ] (  ~=ph  `  J ) ) )  <-> 
( G `  ( [ f ] ( 
~=ph  `  J ) ( +g  `  P ) z ) )  =  ( ( G `  [ f ] ( 
~=ph  `  J ) ) ( +g  `  Q
) ( G `  z ) ) ) )
49 phtpcer 21227 . . . . . . . . . . . . . 14  |-  (  ~=ph  `  J )  Er  (
II  Cn  J )
5049a1i 11 . . . . . . . . . . . . 13  |-  ( (
ph  /\  f  e.  U. B  /\  h  e. 
U. B )  -> 
(  ~=ph  `  J )  Er  ( II  Cn  J
) )
5110, 1, 9, 30pi1eluni 21274 . . . . . . . . . . . . . . . . . . . . 21  |-  ( ph  ->  ( f  e.  U. B 
<->  ( f  e.  ( II  Cn  J )  /\  ( f ` 
0 )  =  ( F `  0 )  /\  ( f ` 
1 )  =  ( F `  0 ) ) ) )
5251biimpa 484 . . . . . . . . . . . . . . . . . . . 20  |-  ( (
ph  /\  f  e.  U. B )  ->  (
f  e.  ( II 
Cn  J )  /\  ( f `  0
)  =  ( F `
 0 )  /\  ( f `  1
)  =  ( F `
 0 ) ) )
5352simp1d 1008 . . . . . . . . . . . . . . . . . . 19  |-  ( (
ph  /\  f  e.  U. B )  ->  f  e.  ( II  Cn  J
) )
54533adant3 1016 . . . . . . . . . . . . . . . . . 18  |-  ( (
ph  /\  f  e.  U. B  /\  h  e. 
U. B )  -> 
f  e.  ( II 
Cn  J ) )
5510, 1, 9, 30pi1eluni 21274 . . . . . . . . . . . . . . . . . . . . 21  |-  ( ph  ->  ( h  e.  U. B 
<->  ( h  e.  ( II  Cn  J )  /\  ( h ` 
0 )  =  ( F `  0 )  /\  ( h ` 
1 )  =  ( F `  0 ) ) ) )
5655adantr 465 . . . . . . . . . . . . . . . . . . . 20  |-  ( (
ph  /\  f  e.  U. B )  ->  (
h  e.  U. B  <->  ( h  e.  ( II 
Cn  J )  /\  ( h `  0
)  =  ( F `
 0 )  /\  ( h `  1
)  =  ( F `
 0 ) ) ) )
5756biimp3a 1328 . . . . . . . . . . . . . . . . . . 19  |-  ( (
ph  /\  f  e.  U. B  /\  h  e. 
U. B )  -> 
( h  e.  ( II  Cn  J )  /\  ( h ` 
0 )  =  ( F `  0 )  /\  ( h ` 
1 )  =  ( F `  0 ) ) )
5857simp1d 1008 . . . . . . . . . . . . . . . . . 18  |-  ( (
ph  /\  f  e.  U. B  /\  h  e. 
U. B )  ->  h  e.  ( II  Cn  J ) )
5954, 58pco0 21246 . . . . . . . . . . . . . . . . 17  |-  ( (
ph  /\  f  e.  U. B  /\  h  e. 
U. B )  -> 
( ( f ( *p `  J ) h ) `  0
)  =  ( f `
 0 ) )
6052simp2d 1009 . . . . . . . . . . . . . . . . . 18  |-  ( (
ph  /\  f  e.  U. B )  ->  (
f `  0 )  =  ( F ` 
0 ) )
61603adant3 1016 . . . . . . . . . . . . . . . . 17  |-  ( (
ph  /\  f  e.  U. B  /\  h  e. 
U. B )  -> 
( f `  0
)  =  ( F `
 0 ) )
6259, 61eqtrd 2508 . . . . . . . . . . . . . . . 16  |-  ( (
ph  /\  f  e.  U. B  /\  h  e. 
U. B )  -> 
( ( f ( *p `  J ) h ) `  0
)  =  ( F `
 0 ) )
6352simp3d 1010 . . . . . . . . . . . . . . . . . . . 20  |-  ( (
ph  /\  f  e.  U. B )  ->  (
f `  1 )  =  ( F ` 
0 ) )
64633adant3 1016 . . . . . . . . . . . . . . . . . . 19  |-  ( (
ph  /\  f  e.  U. B  /\  h  e. 
U. B )  -> 
( f `  1
)  =  ( F `
 0 ) )
6557simp2d 1009 . . . . . . . . . . . . . . . . . . 19  |-  ( (
ph  /\  f  e.  U. B  /\  h  e. 
U. B )  -> 
( h `  0
)  =  ( F `
 0 ) )
6664, 65eqtr4d 2511 . . . . . . . . . . . . . . . . . 18  |-  ( (
ph  /\  f  e.  U. B  /\  h  e. 
U. B )  -> 
( f `  1
)  =  ( h `
 0 ) )
6754, 58, 66pcocn 21249 . . . . . . . . . . . . . . . . 17  |-  ( (
ph  /\  f  e.  U. B  /\  h  e. 
U. B )  -> 
( f ( *p
`  J ) h )  e.  ( II 
Cn  J ) )
6843ad2ant1 1017 . . . . . . . . . . . . . . . . 17  |-  ( (
ph  /\  f  e.  U. B  /\  h  e. 
U. B )  ->  F  e.  ( II  Cn  J ) )
6967, 68pco0 21246 . . . . . . . . . . . . . . . 16  |-  ( (
ph  /\  f  e.  U. B  /\  h  e. 
U. B )  -> 
( ( ( f ( *p `  J
) h ) ( *p `  J ) F ) `  0
)  =  ( ( f ( *p `  J ) h ) `
 0 ) )
70283ad2ant1 1017 . . . . . . . . . . . . . . . 16  |-  ( (
ph  /\  f  e.  U. B  /\  h  e. 
U. B )  -> 
( I `  1
)  =  ( F `
 0 ) )
7162, 69, 703eqtr4rd 2519 . . . . . . . . . . . . . . 15  |-  ( (
ph  /\  f  e.  U. B  /\  h  e. 
U. B )  -> 
( I `  1
)  =  ( ( ( f ( *p
`  J ) h ) ( *p `  J ) F ) `
 0 ) )
72253ad2ant1 1017 . . . . . . . . . . . . . . . 16  |-  ( (
ph  /\  f  e.  U. B  /\  h  e. 
U. B )  ->  I  e.  ( II  Cn  J ) )
7350, 72erref 7328 . . . . . . . . . . . . . . 15  |-  ( (
ph  /\  f  e.  U. B  /\  h  e. 
U. B )  ->  I (  ~=ph  `  J
) I )
7457simp3d 1010 . . . . . . . . . . . . . . . . 17  |-  ( (
ph  /\  f  e.  U. B  /\  h  e. 
U. B )  -> 
( h `  1
)  =  ( F `
 0 ) )
75 eqid 2467 . . . . . . . . . . . . . . . . 17  |-  ( u  e.  ( 0 [,] 1 )  |->  if ( u  <_  ( 1  /  2 ) ,  if ( u  <_ 
( 1  /  4
) ,  ( 2  x.  u ) ,  ( u  +  ( 1  /  4 ) ) ) ,  ( ( u  /  2
)  +  ( 1  /  2 ) ) ) )  =  ( u  e.  ( 0 [,] 1 )  |->  if ( u  <_  (
1  /  2 ) ,  if ( u  <_  ( 1  / 
4 ) ,  ( 2  x.  u ) ,  ( u  +  ( 1  /  4
) ) ) ,  ( ( u  / 
2 )  +  ( 1  /  2 ) ) ) )
7654, 58, 68, 66, 74, 75pcoass 21256 . . . . . . . . . . . . . . . 16  |-  ( (
ph  /\  f  e.  U. B  /\  h  e. 
U. B )  -> 
( ( f ( *p `  J ) h ) ( *p
`  J ) F ) (  ~=ph  `  J
) ( f ( *p `  J ) ( h ( *p
`  J ) F ) ) )
7758, 68pco0 21246 . . . . . . . . . . . . . . . . . . 19  |-  ( (
ph  /\  f  e.  U. B  /\  h  e. 
U. B )  -> 
( ( h ( *p `  J ) F ) `  0
)  =  ( h `
 0 ) )
7866, 77eqtr4d 2511 . . . . . . . . . . . . . . . . . 18  |-  ( (
ph  /\  f  e.  U. B  /\  h  e. 
U. B )  -> 
( f `  1
)  =  ( ( h ( *p `  J ) F ) `
 0 ) )
7950, 54erref 7328 . . . . . . . . . . . . . . . . . 18  |-  ( (
ph  /\  f  e.  U. B  /\  h  e. 
U. B )  -> 
f (  ~=ph  `  J
) f )
8068, 72pco1 21247 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( (
ph  /\  f  e.  U. B  /\  h  e. 
U. B )  -> 
( ( F ( *p `  J ) I ) `  1
)  =  ( I `
 1 ) )
8165, 77, 703eqtr4rd 2519 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( (
ph  /\  f  e.  U. B  /\  h  e. 
U. B )  -> 
( I `  1
)  =  ( ( h ( *p `  J ) F ) `
 0 ) )
8280, 81eqtrd 2508 . . . . . . . . . . . . . . . . . . . . 21  |-  ( (
ph  /\  f  e.  U. B  /\  h  e. 
U. B )  -> 
( ( F ( *p `  J ) I ) `  1
)  =  ( ( h ( *p `  J ) F ) `
 0 ) )
83 eqid 2467 . . . . . . . . . . . . . . . . . . . . . . 23  |-  ( ( 0 [,] 1 )  X.  { ( F `
 0 ) } )  =  ( ( 0 [,] 1 )  X.  { ( F `
 0 ) } )
8422, 83pcorev2 21260 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( F  e.  ( II  Cn  J )  ->  ( F ( *p `  J ) I ) (  ~=ph  `  J ) ( ( 0 [,] 1 )  X.  {
( F `  0
) } ) )
8568, 84syl 16 . . . . . . . . . . . . . . . . . . . . 21  |-  ( (
ph  /\  f  e.  U. B  /\  h  e. 
U. B )  -> 
( F ( *p
`  J ) I ) (  ~=ph  `  J
) ( ( 0 [,] 1 )  X. 
{ ( F ` 
0 ) } ) )
8658, 68, 74pcocn 21249 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( (
ph  /\  f  e.  U. B  /\  h  e. 
U. B )  -> 
( h ( *p
`  J ) F )  e.  ( II 
Cn  J ) )
8750, 86erref 7328 . . . . . . . . . . . . . . . . . . . . 21  |-  ( (
ph  /\  f  e.  U. B  /\  h  e. 
U. B )  -> 
( h ( *p
`  J ) F ) (  ~=ph  `  J
) ( h ( *p `  J ) F ) )
8882, 85, 87pcohtpy 21252 . . . . . . . . . . . . . . . . . . . 20  |-  ( (
ph  /\  f  e.  U. B  /\  h  e. 
U. B )  -> 
( ( F ( *p `  J ) I ) ( *p
`  J ) ( h ( *p `  J ) F ) ) (  ~=ph  `  J
) ( ( ( 0 [,] 1 )  X.  { ( F `
 0 ) } ) ( *p `  J ) ( h ( *p `  J
) F ) ) )
8977, 65eqtrd 2508 . . . . . . . . . . . . . . . . . . . . 21  |-  ( (
ph  /\  f  e.  U. B  /\  h  e. 
U. B )  -> 
( ( h ( *p `  J ) F ) `  0
)  =  ( F `
 0 ) )
9083pcopt 21254 . . . . . . . . . . . . . . . . . . . . 21  |-  ( ( ( h ( *p
`  J ) F )  e.  ( II 
Cn  J )  /\  ( ( h ( *p `  J ) F ) `  0
)  =  ( F `
 0 ) )  ->  ( ( ( 0 [,] 1 )  X.  { ( F `
 0 ) } ) ( *p `  J ) ( h ( *p `  J
) F ) ) (  ~=ph  `  J ) ( h ( *p
`  J ) F ) )
9186, 89, 90syl2anc 661 . . . . . . . . . . . . . . . . . . . 20  |-  ( (
ph  /\  f  e.  U. B  /\  h  e. 
U. B )  -> 
( ( ( 0 [,] 1 )  X. 
{ ( F ` 
0 ) } ) ( *p `  J
) ( h ( *p `  J ) F ) ) ( 
~=ph  `  J ) ( h ( *p `  J ) F ) )
9250, 88, 91ertrd 7324 . . . . . . . . . . . . . . . . . . 19  |-  ( (
ph  /\  f  e.  U. B  /\  h  e. 
U. B )  -> 
( ( F ( *p `  J ) I ) ( *p
`  J ) ( h ( *p `  J ) F ) ) (  ~=ph  `  J
) ( h ( *p `  J ) F ) )
93263ad2ant1 1017 . . . . . . . . . . . . . . . . . . . . 21  |-  ( (
ph  /\  f  e.  U. B  /\  h  e. 
U. B )  -> 
( I `  0
)  =  ( F `
 1 ) )
9493eqcomd 2475 . . . . . . . . . . . . . . . . . . . 20  |-  ( (
ph  /\  f  e.  U. B  /\  h  e. 
U. B )  -> 
( F `  1
)  =  ( I `
 0 ) )
9568, 72, 86, 94, 81, 75pcoass 21256 . . . . . . . . . . . . . . . . . . 19  |-  ( (
ph  /\  f  e.  U. B  /\  h  e. 
U. B )  -> 
( ( F ( *p `  J ) I ) ( *p
`  J ) ( h ( *p `  J ) F ) ) (  ~=ph  `  J
) ( F ( *p `  J ) ( I ( *p
`  J ) ( h ( *p `  J ) F ) ) ) )
9650, 92, 95ertr3d 7326 . . . . . . . . . . . . . . . . . 18  |-  ( (
ph  /\  f  e.  U. B  /\  h  e. 
U. B )  -> 
( h ( *p
`  J ) F ) (  ~=ph  `  J
) ( F ( *p `  J ) ( I ( *p
`  J ) ( h ( *p `  J ) F ) ) ) )
9778, 79, 96pcohtpy 21252 . . . . . . . . . . . . . . . . 17  |-  ( (
ph  /\  f  e.  U. B  /\  h  e. 
U. B )  -> 
( f ( *p
`  J ) ( h ( *p `  J ) F ) ) (  ~=ph  `  J
) ( f ( *p `  J ) ( F ( *p
`  J ) ( I ( *p `  J ) ( h ( *p `  J
) F ) ) ) ) )
9872, 86, 81pcocn 21249 . . . . . . . . . . . . . . . . . 18  |-  ( (
ph  /\  f  e.  U. B  /\  h  e. 
U. B )  -> 
( I ( *p
`  J ) ( h ( *p `  J ) F ) )  e.  ( II 
Cn  J ) )
9972, 86pco0 21246 . . . . . . . . . . . . . . . . . . . 20  |-  ( (
ph  /\  f  e.  U. B  /\  h  e. 
U. B )  -> 
( ( I ( *p `  J ) ( h ( *p
`  J ) F ) ) `  0
)  =  ( I `
 0 ) )
10099, 93eqtrd 2508 . . . . . . . . . . . . . . . . . . 19  |-  ( (
ph  /\  f  e.  U. B  /\  h  e. 
U. B )  -> 
( ( I ( *p `  J ) ( h ( *p
`  J ) F ) ) `  0
)  =  ( F `
 1 ) )
101100eqcomd 2475 . . . . . . . . . . . . . . . . . 18  |-  ( (
ph  /\  f  e.  U. B  /\  h  e. 
U. B )  -> 
( F `  1
)  =  ( ( I ( *p `  J ) ( h ( *p `  J
) F ) ) `
 0 ) )
10254, 68, 98, 64, 101, 75pcoass 21256 . . . . . . . . . . . . . . . . 17  |-  ( (
ph  /\  f  e.  U. B  /\  h  e. 
U. B )  -> 
( ( f ( *p `  J ) F ) ( *p
`  J ) ( I ( *p `  J ) ( h ( *p `  J
) F ) ) ) (  ~=ph  `  J
) ( f ( *p `  J ) ( F ( *p
`  J ) ( I ( *p `  J ) ( h ( *p `  J
) F ) ) ) ) )
10350, 97, 102ertr4d 7327 . . . . . . . . . . . . . . . 16  |-  ( (
ph  /\  f  e.  U. B  /\  h  e. 
U. B )  -> 
( f ( *p
`  J ) ( h ( *p `  J ) F ) ) (  ~=ph  `  J
) ( ( f ( *p `  J
) F ) ( *p `  J ) ( I ( *p
`  J ) ( h ( *p `  J ) F ) ) ) )
10450, 76, 103ertrd 7324 . . . . . . . . . . . . . . 15  |-  ( (
ph  /\  f  e.  U. B  /\  h  e. 
U. B )  -> 
( ( f ( *p `  J ) h ) ( *p
`  J ) F ) (  ~=ph  `  J
) ( ( f ( *p `  J
) F ) ( *p `  J ) ( I ( *p
`  J ) ( h ( *p `  J ) F ) ) ) )
10571, 73, 104pcohtpy 21252 . . . . . . . . . . . . . 14  |-  ( (
ph  /\  f  e.  U. B  /\  h  e. 
U. B )  -> 
( I ( *p
`  J ) ( ( f ( *p
`  J ) h ) ( *p `  J ) F ) ) (  ~=ph  `  J
) ( I ( *p `  J ) ( ( f ( *p `  J ) F ) ( *p
`  J ) ( I ( *p `  J ) ( h ( *p `  J
) F ) ) ) ) )
1064adantr 465 . . . . . . . . . . . . . . . . 17  |-  ( (
ph  /\  f  e.  U. B )  ->  F  e.  ( II  Cn  J
) )
10753, 106, 63pcocn 21249 . . . . . . . . . . . . . . . 16  |-  ( (
ph  /\  f  e.  U. B )  ->  (
f ( *p `  J ) F )  e.  ( II  Cn  J ) )
1081073adant3 1016 . . . . . . . . . . . . . . 15  |-  ( (
ph  /\  f  e.  U. B  /\  h  e. 
U. B )  -> 
( f ( *p
`  J ) F )  e.  ( II 
Cn  J ) )
10953, 106pco0 21246 . . . . . . . . . . . . . . . . 17  |-  ( (
ph  /\  f  e.  U. B )  ->  (
( f ( *p
`  J ) F ) `  0 )  =  ( f ` 
0 ) )
11028adantr 465 . . . . . . . . . . . . . . . . 17  |-  ( (
ph  /\  f  e.  U. B )  ->  (
I `  1 )  =  ( F ` 
0 ) )
11160, 109, 1103eqtr4rd 2519 . . . . . . . . . . . . . . . 16  |-  ( (
ph  /\  f  e.  U. B )  ->  (
I `  1 )  =  ( ( f ( *p `  J
) F ) ` 
0 ) )
1121113adant3 1016 . . . . . . . . . . . . . . 15  |-  ( (
ph  /\  f  e.  U. B  /\  h  e. 
U. B )  -> 
( I `  1
)  =  ( ( f ( *p `  J ) F ) `
 0 ) )
11354, 68pco1 21247 . . . . . . . . . . . . . . . 16  |-  ( (
ph  /\  f  e.  U. B  /\  h  e. 
U. B )  -> 
( ( f ( *p `  J ) F ) `  1
)  =  ( F `
 1 ) )
114113, 100eqtr4d 2511 . . . . . . . . . . . . . . 15  |-  ( (
ph  /\  f  e.  U. B  /\  h  e. 
U. B )  -> 
( ( f ( *p `  J ) F ) `  1
)  =  ( ( I ( *p `  J ) ( h ( *p `  J
) F ) ) `
 0 ) )
11572, 108, 98, 112, 114, 75pcoass 21256 . . . . . . . . . . . . . 14  |-  ( (
ph  /\  f  e.  U. B  /\  h  e. 
U. B )  -> 
( ( I ( *p `  J ) ( f ( *p
`  J ) F ) ) ( *p
`  J ) ( I ( *p `  J ) ( h ( *p `  J
) F ) ) ) (  ~=ph  `  J
) ( I ( *p `  J ) ( ( f ( *p `  J ) F ) ( *p
`  J ) ( I ( *p `  J ) ( h ( *p `  J
) F ) ) ) ) )
11650, 105, 115ertr4d 7327 . . . . . . . . . . . . 13  |-  ( (
ph  /\  f  e.  U. B  /\  h  e. 
U. B )  -> 
( I ( *p
`  J ) ( ( f ( *p
`  J ) h ) ( *p `  J ) F ) ) (  ~=ph  `  J
) ( ( I ( *p `  J
) ( f ( *p `  J ) F ) ) ( *p `  J ) ( I ( *p
`  J ) ( h ( *p `  J ) F ) ) ) )
11750, 116erthi 7355 . . . . . . . . . . . 12  |-  ( (
ph  /\  f  e.  U. B  /\  h  e. 
U. B )  ->  [ ( I ( *p `  J ) ( ( f ( *p `  J ) h ) ( *p
`  J ) F ) ) ] ( 
~=ph  `  J )  =  [ ( ( I ( *p `  J
) ( f ( *p `  J ) F ) ) ( *p `  J ) ( I ( *p
`  J ) ( h ( *p `  J ) F ) ) ) ] ( 
~=ph  `  J ) )
11813ad2ant1 1017 . . . . . . . . . . . . 13  |-  ( (
ph  /\  f  e.  U. B  /\  h  e. 
U. B )  ->  J  e.  (TopOn `  X
) )
11954, 58pco1 21247 . . . . . . . . . . . . . . 15  |-  ( (
ph  /\  f  e.  U. B  /\  h  e. 
U. B )  -> 
( ( f ( *p `  J ) h ) `  1
)  =  ( h `
 1 ) )
120119, 74eqtrd 2508 . . . . . . . . . . . . . 14  |-  ( (
ph  /\  f  e.  U. B  /\  h  e. 
U. B )  -> 
( ( f ( *p `  J ) h ) `  1
)  =  ( F `
 0 ) )
12110, 1, 9, 30pi1eluni 21274 . . . . . . . . . . . . . . 15  |-  ( ph  ->  ( ( f ( *p `  J ) h )  e.  U. B 
<->  ( ( f ( *p `  J ) h )  e.  ( II  Cn  J )  /\  ( ( f ( *p `  J
) h ) ` 
0 )  =  ( F `  0 )  /\  ( ( f ( *p `  J
) h ) ` 
1 )  =  ( F `  0 ) ) ) )
1221213ad2ant1 1017 . . . . . . . . . . . . . 14  |-  ( (
ph  /\  f  e.  U. B  /\  h  e. 
U. B )  -> 
( ( f ( *p `  J ) h )  e.  U. B 
<->  ( ( f ( *p `  J ) h )  e.  ( II  Cn  J )  /\  ( ( f ( *p `  J
) h ) ` 
0 )  =  ( F `  0 )  /\  ( ( f ( *p `  J
) h ) ` 
1 )  =  ( F `  0 ) ) ) )
12367, 62, 120, 122mpbir3and 1179 . . . . . . . . . . . . 13  |-  ( (
ph  /\  f  e.  U. B  /\  h  e. 
U. B )  -> 
( f ( *p
`  J ) h )  e.  U. B
)
12410, 16, 20, 21, 118, 68, 72, 94, 70, 123pi1xfrval 21286 . . . . . . . . . . . 12  |-  ( (
ph  /\  f  e.  U. B  /\  h  e. 
U. B )  -> 
( G `  [
( f ( *p
`  J ) h ) ] (  ~=ph  `  J ) )  =  [ ( I ( *p `  J ) ( ( f ( *p `  J ) h ) ( *p
`  J ) F ) ) ] ( 
~=ph  `  J ) )
125 eqid 2467 . . . . . . . . . . . . 13  |-  ( Base `  Q )  =  (
Base `  Q )
126153ad2ant1 1017 . . . . . . . . . . . . 13  |-  ( (
ph  /\  f  e.  U. B  /\  h  e. 
U. B )  -> 
( F `  1
)  e.  X )
127 eqid 2467 . . . . . . . . . . . . 13  |-  ( +g  `  Q )  =  ( +g  `  Q )
12825adantr 465 . . . . . . . . . . . . . . . 16  |-  ( (
ph  /\  f  e.  U. B )  ->  I  e.  ( II  Cn  J
) )
129128, 107, 111pcocn 21249 . . . . . . . . . . . . . . 15  |-  ( (
ph  /\  f  e.  U. B )  ->  (
I ( *p `  J ) ( f ( *p `  J
) F ) )  e.  ( II  Cn  J ) )
1301293adant3 1016 . . . . . . . . . . . . . 14  |-  ( (
ph  /\  f  e.  U. B  /\  h  e. 
U. B )  -> 
( I ( *p
`  J ) ( f ( *p `  J ) F ) )  e.  ( II 
Cn  J ) )
131128, 107pco0 21246 . . . . . . . . . . . . . . . 16  |-  ( (
ph  /\  f  e.  U. B )  ->  (
( I ( *p
`  J ) ( f ( *p `  J ) F ) ) `  0 )  =  ( I ` 
0 ) )
13226adantr 465 . . . . . . . . . . . . . . . 16  |-  ( (
ph  /\  f  e.  U. B )  ->  (
I `  0 )  =  ( F ` 
1 ) )
133131, 132eqtrd 2508 . . . . . . . . . . . . . . 15  |-  ( (
ph  /\  f  e.  U. B )  ->  (
( I ( *p
`  J ) ( f ( *p `  J ) F ) ) `  0 )  =  ( F ` 
1 ) )
1341333adant3 1016 . . . . . . . . . . . . . 14  |-  ( (
ph  /\  f  e.  U. B  /\  h  e. 
U. B )  -> 
( ( I ( *p `  J ) ( f ( *p
`  J ) F ) ) `  0
)  =  ( F `
 1 ) )
135128, 107pco1 21247 . . . . . . . . . . . . . . . 16  |-  ( (
ph  /\  f  e.  U. B )  ->  (
( I ( *p
`  J ) ( f ( *p `  J ) F ) ) `  1 )  =  ( ( f ( *p `  J
) F ) ` 
1 ) )
13653, 106pco1 21247 . . . . . . . . . . . . . . . 16  |-  ( (
ph  /\  f  e.  U. B )  ->  (
( f ( *p
`  J ) F ) `  1 )  =  ( F ` 
1 ) )
137135, 136eqtrd 2508 . . . . . . . . . . . . . . 15  |-  ( (
ph  /\  f  e.  U. B )  ->  (
( I ( *p
`  J ) ( f ( *p `  J ) F ) ) `  1 )  =  ( F ` 
1 ) )
1381373adant3 1016 . . . . . . . . . . . . . 14  |-  ( (
ph  /\  f  e.  U. B  /\  h  e. 
U. B )  -> 
( ( I ( *p `  J ) ( f ( *p
`  J ) F ) ) `  1
)  =  ( F `
 1 ) )
139 eqidd 2468 . . . . . . . . . . . . . . 15  |-  ( (
ph  /\  f  e.  U. B  /\  h  e. 
U. B )  -> 
( Base `  Q )  =  ( Base `  Q
) )
14016, 118, 126, 139pi1eluni 21274 . . . . . . . . . . . . . 14  |-  ( (
ph  /\  f  e.  U. B  /\  h  e. 
U. B )  -> 
( ( I ( *p `  J ) ( f ( *p
`  J ) F ) )  e.  U. ( Base `  Q )  <->  ( ( I ( *p
`  J ) ( f ( *p `  J ) F ) )  e.  ( II 
Cn  J )  /\  ( ( I ( *p `  J ) ( f ( *p
`  J ) F ) ) `  0
)  =  ( F `
 1 )  /\  ( ( I ( *p `  J ) ( f ( *p
`  J ) F ) ) `  1
)  =  ( F `
 1 ) ) ) )
141130, 134, 138, 140mpbir3and 1179 . . . . . . . . . . . . 13  |-  ( (
ph  /\  f  e.  U. B  /\  h  e. 
U. B )  -> 
( I ( *p
`  J ) ( f ( *p `  J ) F ) )  e.  U. ( Base `  Q ) )
14272, 86pco1 21247 . . . . . . . . . . . . . . 15  |-  ( (
ph  /\  f  e.  U. B  /\  h  e. 
U. B )  -> 
( ( I ( *p `  J ) ( h ( *p
`  J ) F ) ) `  1
)  =  ( ( h ( *p `  J ) F ) `
 1 ) )
14358, 68pco1 21247 . . . . . . . . . . . . . . 15  |-  ( (
ph  /\  f  e.  U. B  /\  h  e. 
U. B )  -> 
( ( h ( *p `  J ) F ) `  1
)  =  ( F `
 1 ) )
144142, 143eqtrd 2508 . . . . . . . . . . . . . 14  |-  ( (
ph  /\  f  e.  U. B  /\  h  e. 
U. B )  -> 
( ( I ( *p `  J ) ( h ( *p
`  J ) F ) ) `  1
)  =  ( F `
 1 ) )
14516, 118, 126, 139pi1eluni 21274 . . . . . . . . . . . . . 14  |-  ( (
ph  /\  f  e.  U. B  /\  h  e. 
U. B )  -> 
( ( I ( *p `  J ) ( h ( *p
`  J ) F ) )  e.  U. ( Base `  Q )  <->  ( ( I ( *p
`  J ) ( h ( *p `  J ) F ) )  e.  ( II 
Cn  J )  /\  ( ( I ( *p `  J ) ( h ( *p
`  J ) F ) ) `  0
)  =  ( F `
 1 )  /\  ( ( I ( *p `  J ) ( h ( *p
`  J ) F ) ) `  1
)  =  ( F `
 1 ) ) ) )
14698, 100, 144, 145mpbir3and 1179 . . . . . . . . . . . . 13  |-  ( (
ph  /\  f  e.  U. B  /\  h  e. 
U. B )  -> 
( I ( *p
`  J ) ( h ( *p `  J ) F ) )  e.  U. ( Base `  Q ) )
14716, 125, 118, 126, 127, 141, 146pi1addval 21280 . . . . . . . . . . . 12  |-  ( (
ph  /\  f  e.  U. B  /\  h  e. 
U. B )  -> 
( [ ( I ( *p `  J
) ( f ( *p `  J ) F ) ) ] (  ~=ph  `  J ) ( +g  `  Q
) [ ( I ( *p `  J
) ( h ( *p `  J ) F ) ) ] (  ~=ph  `  J ) )  =  [ ( ( I ( *p
`  J ) ( f ( *p `  J ) F ) ) ( *p `  J ) ( I ( *p `  J
) ( h ( *p `  J ) F ) ) ) ] (  ~=ph  `  J
) )
148117, 124, 1473eqtr4d 2518 . . . . . . . . . . 11  |-  ( (
ph  /\  f  e.  U. B  /\  h  e. 
U. B )  -> 
( G `  [
( f ( *p
`  J ) h ) ] (  ~=ph  `  J ) )  =  ( [ ( I ( *p `  J
) ( f ( *p `  J ) F ) ) ] (  ~=ph  `  J ) ( +g  `  Q
) [ ( I ( *p `  J
) ( h ( *p `  J ) F ) ) ] (  ~=ph  `  J ) ) )
14993ad2ant1 1017 . . . . . . . . . . . . 13  |-  ( (
ph  /\  f  e.  U. B  /\  h  e. 
U. B )  -> 
( F `  0
)  e.  X )
150 eqid 2467 . . . . . . . . . . . . 13  |-  ( +g  `  P )  =  ( +g  `  P )
151 simp2 997 . . . . . . . . . . . . 13  |-  ( (
ph  /\  f  e.  U. B  /\  h  e. 
U. B )  -> 
f  e.  U. B
)
152 simp3 998 . . . . . . . . . . . . 13  |-  ( (
ph  /\  f  e.  U. B  /\  h  e. 
U. B )  ->  h  e.  U. B )
15310, 20, 118, 149, 150, 151, 152pi1addval 21280 . . . . . . . . . . . 12  |-  ( (
ph  /\  f  e.  U. B  /\  h  e. 
U. B )  -> 
( [ f ] (  ~=ph  `  J ) ( +g  `  P
) [ h ]
(  ~=ph  `  J )
)  =  [ ( f ( *p `  J ) h ) ] (  ~=ph  `  J
) )
154153fveq2d 5868 . . . . . . . . . . 11  |-  ( (
ph  /\  f  e.  U. B  /\  h  e. 
U. B )  -> 
( G `  ( [ f ] ( 
~=ph  `  J ) ( +g  `  P ) [ h ] ( 
~=ph  `  J ) ) )  =  ( G `
 [ ( f ( *p `  J
) h ) ] (  ~=ph  `  J ) ) )
1551adantr 465 . . . . . . . . . . . . . 14  |-  ( (
ph  /\  f  e.  U. B )  ->  J  e.  (TopOn `  X )
)
15627adantr 465 . . . . . . . . . . . . . 14  |-  ( (
ph  /\  f  e.  U. B )  ->  ( F `  1 )  =  ( I ` 
0 ) )
157 simpr 461 . . . . . . . . . . . . . 14  |-  ( (
ph  /\  f  e.  U. B )  ->  f  e.  U. B )
15810, 16, 20, 21, 155, 106, 128, 156, 110, 157pi1xfrval 21286 . . . . . . . . . . . . 13  |-  ( (
ph  /\  f  e.  U. B )  ->  ( G `  [ f ] (  ~=ph  `  J
) )  =  [
( I ( *p
`  J ) ( f ( *p `  J ) F ) ) ] (  ~=ph  `  J ) )
1591583adant3 1016 . . . . . . . . . . . 12  |-  ( (
ph  /\  f  e.  U. B  /\  h  e. 
U. B )  -> 
( G `  [
f ] (  ~=ph  `  J ) )  =  [ ( I ( *p `  J ) ( f ( *p
`  J ) F ) ) ] ( 
~=ph  `  J ) )
16010, 16, 20, 21, 118, 68, 72, 94, 70, 152pi1xfrval 21286 . . . . . . . . . . . 12  |-  ( (
ph  /\  f  e.  U. B  /\  h  e. 
U. B )  -> 
( G `  [
h ] (  ~=ph  `  J ) )  =  [ ( I ( *p `  J ) ( h ( *p
`  J ) F ) ) ] ( 
~=ph  `  J ) )
161159, 160oveq12d 6300 . . . . . . . . . . 11  |-  ( (
ph  /\  f  e.  U. B  /\  h  e. 
U. B )  -> 
( ( G `  [ f ] ( 
~=ph  `  J ) ) ( +g  `  Q
) ( G `  [ h ] ( 
~=ph  `  J ) ) )  =  ( [ ( I ( *p
`  J ) ( f ( *p `  J ) F ) ) ] (  ~=ph  `  J ) ( +g  `  Q ) [ ( I ( *p `  J ) ( h ( *p `  J
) F ) ) ] (  ~=ph  `  J
) ) )
162148, 154, 1613eqtr4d 2518 . . . . . . . . . 10  |-  ( (
ph  /\  f  e.  U. B  /\  h  e. 
U. B )  -> 
( G `  ( [ f ] ( 
~=ph  `  J ) ( +g  `  P ) [ h ] ( 
~=ph  `  J ) ) )  =  ( ( G `  [ f ] (  ~=ph  `  J
) ) ( +g  `  Q ) ( G `
 [ h ]
(  ~=ph  `  J )
) ) )
1631623expa 1196 . . . . . . . . 9  |-  ( ( ( ph  /\  f  e.  U. B )  /\  h  e.  U. B )  ->  ( G `  ( [ f ] ( 
~=ph  `  J ) ( +g  `  P ) [ h ] ( 
~=ph  `  J ) ) )  =  ( ( G `  [ f ] (  ~=ph  `  J
) ) ( +g  `  Q ) ( G `
 [ h ]
(  ~=ph  `  J )
) ) )
16434, 48, 163ectocld 7375 . . . . . . . 8  |-  ( ( ( ph  /\  f  e.  U. B )  /\  z  e.  ( U. B /. (  ~=ph  `  J
) ) )  -> 
( G `  ( [ f ] ( 
~=ph  `  J ) ( +g  `  P ) z ) )  =  ( ( G `  [ f ] ( 
~=ph  `  J ) ) ( +g  `  Q
) ( G `  z ) ) )
16543, 164syldan 470 . . . . . . 7  |-  ( ( ( ph  /\  f  e.  U. B )  /\  z  e.  B )  ->  ( G `  ( [ f ] ( 
~=ph  `  J ) ( +g  `  P ) z ) )  =  ( ( G `  [ f ] ( 
~=ph  `  J ) ) ( +g  `  Q
) ( G `  z ) ) )
166165ralrimiva 2878 . . . . . 6  |-  ( (
ph  /\  f  e.  U. B )  ->  A. z  e.  B  ( G `  ( [ f ] (  ~=ph  `  J ) ( +g  `  P
) z ) )  =  ( ( G `
 [ f ] (  ~=ph  `  J ) ) ( +g  `  Q
) ( G `  z ) ) )
16734, 40, 166ectocld 7375 . . . . 5  |-  ( (
ph  /\  y  e.  ( U. B /. (  ~=ph  `  J ) ) )  ->  A. z  e.  B  ( G `  ( y ( +g  `  P
) z ) )  =  ( ( G `
 y ) ( +g  `  Q ) ( G `  z
) ) )
16833, 167syldan 470 . . . 4  |-  ( (
ph  /\  y  e.  B )  ->  A. z  e.  B  ( G `  ( y ( +g  `  P ) z ) )  =  ( ( G `  y ) ( +g  `  Q
) ( G `  z ) ) )
169168ralrimiva 2878 . . 3  |-  ( ph  ->  A. y  e.  B  A. z  e.  B  ( G `  ( y ( +g  `  P
) z ) )  =  ( ( G `
 y ) ( +g  `  Q ) ( G `  z
) ) )
17029, 169jca 532 . 2  |-  ( ph  ->  ( G : B --> ( Base `  Q )  /\  A. y  e.  B  A. z  e.  B  ( G `  ( y ( +g  `  P
) z ) )  =  ( ( G `
 y ) ( +g  `  Q ) ( G `  z
) ) ) )
17120, 125, 150, 127isghm 16059 . 2  |-  ( G  e.  ( P  GrpHom  Q )  <->  ( ( P  e.  Grp  /\  Q  e.  Grp )  /\  ( G : B --> ( Base `  Q )  /\  A. y  e.  B  A. z  e.  B  ( G `  ( y
( +g  `  P ) z ) )  =  ( ( G `  y ) ( +g  `  Q ) ( G `
 z ) ) ) ) )
17219, 170, 171sylanbrc 664 1  |-  ( ph  ->  G  e.  ( P 
GrpHom  Q ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 184    /\ wa 369    /\ w3a 973    = wceq 1379    e. wcel 1767   A.wral 2814   ifcif 3939   {csn 4027   <.cop 4033   U.cuni 4245   class class class wbr 4447    |-> cmpt 4505    X. cxp 4997   ran crn 5000   -->wf 5582   ` cfv 5586  (class class class)co 6282    Er wer 7305   [cec 7306   /.cqs 7307   0cc0 9488   1c1 9489    + caddc 9491    x. cmul 9493    <_ cle 9625    - cmin 9801    / cdiv 10202   2c2 10581   4c4 10583   [,]cicc 11528   Basecbs 14483   +g cplusg 14548   Grpcgrp 15720    GrpHom cghm 16056  TopOnctopon 19159    Cn ccn 19488   IIcii 21111    ~=ph cphtpc 21201   *pcpco 21232    pi1 cpi1 21235
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1601  ax-4 1612  ax-5 1680  ax-6 1719  ax-7 1739  ax-8 1769  ax-9 1771  ax-10 1786  ax-11 1791  ax-12 1803  ax-13 1968  ax-ext 2445  ax-rep 4558  ax-sep 4568  ax-nul 4576  ax-pow 4625  ax-pr 4686  ax-un 6574  ax-inf2 8054  ax-cnex 9544  ax-resscn 9545  ax-1cn 9546  ax-icn 9547  ax-addcl 9548  ax-addrcl 9549  ax-mulcl 9550  ax-mulrcl 9551  ax-mulcom 9552  ax-addass 9553  ax-mulass 9554  ax-distr 9555  ax-i2m1 9556  ax-1ne0 9557  ax-1rid 9558  ax-rnegex 9559  ax-rrecex 9560  ax-cnre 9561  ax-pre-lttri 9562  ax-pre-lttrn 9563  ax-pre-ltadd 9564  ax-pre-mulgt0 9565  ax-pre-sup 9566  ax-addf 9567  ax-mulf 9568
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3or 974  df-3an 975  df-tru 1382  df-ex 1597  df-nf 1600  df-sb 1712  df-eu 2279  df-mo 2280  df-clab 2453  df-cleq 2459  df-clel 2462  df-nfc 2617  df-ne 2664  df-nel 2665  df-ral 2819  df-rex 2820  df-reu 2821  df-rmo 2822  df-rab 2823  df-v 3115  df-sbc 3332  df-csb 3436  df-dif 3479  df-un 3481  df-in 3483  df-ss 3490  df-pss 3492  df-nul 3786  df-if 3940  df-pw 4012  df-sn 4028  df-pr 4030  df-tp 4032  df-op 4034  df-uni 4246  df-int 4283  df-iun 4327  df-iin 4328  df-br 4448  df-opab 4506  df-mpt 4507  df-tr 4541  df-eprel 4791  df-id 4795  df-po 4800  df-so 4801  df-fr 4838  df-se 4839  df-we 4840  df-ord 4881  df-on 4882  df-lim 4883  df-suc 4884  df-xp 5005  df-rel 5006  df-cnv 5007  df-co 5008  df-dm 5009  df-rn 5010  df-res 5011  df-ima 5012  df-iota 5549  df-fun 5588  df-fn 5589  df-f 5590  df-f1 5591  df-fo 5592  df-f1o 5593  df-fv 5594  df-isom 5595  df-riota 6243  df-ov 6285  df-oprab 6286  df-mpt2 6287  df-of 6522  df-om 6679  df-1st 6781  df-2nd 6782  df-supp 6899  df-recs 7039  df-rdg 7073  df-1o 7127  df-2o 7128  df-oadd 7131  df-er 7308  df-ec 7310  df-qs 7314  df-map 7419  df-ixp 7467  df-en 7514  df-dom 7515  df-sdom 7516  df-fin 7517  df-fsupp 7826  df-fi 7867  df-sup 7897  df-oi 7931  df-card 8316  df-cda 8544  df-pnf 9626  df-mnf 9627  df-xr 9628  df-ltxr 9629  df-le 9630  df-sub 9803  df-neg 9804  df-div 10203  df-nn 10533  df-2 10590  df-3 10591  df-4 10592  df-5 10593  df-6 10594  df-7 10595  df-8 10596  df-9 10597  df-10 10598  df-n0 10792  df-z 10861  df-dec 10973  df-uz 11079  df-q 11179  df-rp 11217  df-xneg 11314  df-xadd 11315  df-xmul 11316  df-ioo 11529  df-icc 11532  df-fz 11669  df-fzo 11789  df-seq 12071  df-exp 12130  df-hash 12368  df-cj 12889  df-re 12890  df-im 12891  df-sqrt 13025  df-abs 13026  df-struct 14485  df-ndx 14486  df-slot 14487  df-base 14488  df-sets 14489  df-ress 14490  df-plusg 14561  df-mulr 14562  df-starv 14563  df-sca 14564  df-vsca 14565  df-ip 14566  df-tset 14567  df-ple 14568  df-ds 14570  df-unif 14571  df-hom 14572  df-cco 14573  df-rest 14671  df-topn 14672  df-0g 14690  df-gsum 14691  df-topgen 14692  df-pt 14693  df-prds 14696  df-xrs 14750  df-qtop 14755  df-imas 14756  df-divs 14757  df-xps 14758  df-mre 14834  df-mrc 14835  df-acs 14837  df-mnd 15725  df-submnd 15775  df-grp 15855  df-mulg 15858  df-ghm 16057  df-cntz 16147  df-cmn 16593  df-psmet 18179  df-xmet 18180  df-met 18181  df-bl 18182  df-mopn 18183  df-cnfld 18189  df-top 19163  df-bases 19165  df-topon 19166  df-topsp 19167  df-cld 19283  df-cn 19491  df-cnp 19492  df-tx 19795  df-hmeo 19988  df-xms 20555  df-ms 20556  df-tms 20557  df-ii 21113  df-htpy 21202  df-phtpy 21203  df-phtpc 21224  df-pco 21237  df-om1 21238  df-pi1 21240
This theorem is referenced by:  pi1xfrcnv  21289  pi1xfrgim  21290
  Copyright terms: Public domain W3C validator