MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  pi1coghm Structured version   Unicode version

Theorem pi1coghm 20608
Description: The mapping  G between fundamental groups is a group homomorphism. (Contributed by Mario Carneiro, 10-Aug-2015.) (Revised by Mario Carneiro, 23-Dec-2016.)
Hypotheses
Ref Expression
pi1co.p  |-  P  =  ( J  pi1  A )
pi1co.q  |-  Q  =  ( K  pi1  B )
pi1co.v  |-  V  =  ( Base `  P
)
pi1co.g  |-  G  =  ran  ( g  e. 
U. V  |->  <. [ g ] (  ~=ph  `  J
) ,  [ ( F  o.  g ) ] (  ~=ph  `  K
) >. )
pi1co.j  |-  ( ph  ->  J  e.  (TopOn `  X ) )
pi1co.f  |-  ( ph  ->  F  e.  ( J  Cn  K ) )
pi1co.a  |-  ( ph  ->  A  e.  X )
pi1co.b  |-  ( ph  ->  ( F `  A
)  =  B )
Assertion
Ref Expression
pi1coghm  |-  ( ph  ->  G  e.  ( P 
GrpHom  Q ) )
Distinct variable groups:    A, g    g, F    g, J    ph, g    g, K    P, g    Q, g   
g, V
Allowed substitution hints:    B( g)    G( g)    X( g)

Proof of Theorem pi1coghm
Dummy variables  h  f  z  y are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 pi1co.j . . . 4  |-  ( ph  ->  J  e.  (TopOn `  X ) )
2 pi1co.a . . . 4  |-  ( ph  ->  A  e.  X )
3 pi1co.p . . . . 5  |-  P  =  ( J  pi1  A )
43pi1grp 20597 . . . 4  |-  ( ( J  e.  (TopOn `  X )  /\  A  e.  X )  ->  P  e.  Grp )
51, 2, 4syl2anc 661 . . 3  |-  ( ph  ->  P  e.  Grp )
6 pi1co.f . . . . . 6  |-  ( ph  ->  F  e.  ( J  Cn  K ) )
7 cntop2 18820 . . . . . 6  |-  ( F  e.  ( J  Cn  K )  ->  K  e.  Top )
86, 7syl 16 . . . . 5  |-  ( ph  ->  K  e.  Top )
9 eqid 2438 . . . . . 6  |-  U. K  =  U. K
109toptopon 18513 . . . . 5  |-  ( K  e.  Top  <->  K  e.  (TopOn `  U. K ) )
118, 10sylib 196 . . . 4  |-  ( ph  ->  K  e.  (TopOn `  U. K ) )
12 pi1co.b . . . . 5  |-  ( ph  ->  ( F `  A
)  =  B )
13 cnf2 18828 . . . . . . 7  |-  ( ( J  e.  (TopOn `  X )  /\  K  e.  (TopOn `  U. K )  /\  F  e.  ( J  Cn  K ) )  ->  F : X
--> U. K )
141, 11, 6, 13syl3anc 1218 . . . . . 6  |-  ( ph  ->  F : X --> U. K
)
1514, 2ffvelrnd 5839 . . . . 5  |-  ( ph  ->  ( F `  A
)  e.  U. K
)
1612, 15eqeltrrd 2513 . . . 4  |-  ( ph  ->  B  e.  U. K
)
17 pi1co.q . . . . 5  |-  Q  =  ( K  pi1  B )
1817pi1grp 20597 . . . 4  |-  ( ( K  e.  (TopOn `  U. K )  /\  B  e.  U. K )  ->  Q  e.  Grp )
1911, 16, 18syl2anc 661 . . 3  |-  ( ph  ->  Q  e.  Grp )
205, 19jca 532 . 2  |-  ( ph  ->  ( P  e.  Grp  /\  Q  e.  Grp )
)
21 pi1co.v . . . 4  |-  V  =  ( Base `  P
)
22 pi1co.g . . . 4  |-  G  =  ran  ( g  e. 
U. V  |->  <. [ g ] (  ~=ph  `  J
) ,  [ ( F  o.  g ) ] (  ~=ph  `  K
) >. )
233, 17, 21, 22, 1, 6, 2, 12pi1cof 20606 . . 3  |-  ( ph  ->  G : V --> ( Base `  Q ) )
2421a1i 11 . . . . . . . 8  |-  ( ph  ->  V  =  ( Base `  P ) )
253, 1, 2, 24pi1bas2 20588 . . . . . . 7  |-  ( ph  ->  V  =  ( U. V /. (  ~=ph  `  J
) ) )
2625eleq2d 2505 . . . . . 6  |-  ( ph  ->  ( y  e.  V  <->  y  e.  ( U. V /. (  ~=ph  `  J
) ) ) )
2726biimpa 484 . . . . 5  |-  ( (
ph  /\  y  e.  V )  ->  y  e.  ( U. V /. (  ~=ph  `  J )
) )
28 eqid 2438 . . . . . 6  |-  ( U. V /. (  ~=ph  `  J
) )  =  ( U. V /. (  ~=ph  `  J ) )
29 oveq1 6093 . . . . . . . . 9  |-  ( [ f ] (  ~=ph  `  J )  =  y  ->  ( [ f ] (  ~=ph  `  J
) ( +g  `  P
) z )  =  ( y ( +g  `  P ) z ) )
3029fveq2d 5690 . . . . . . . 8  |-  ( [ f ] (  ~=ph  `  J )  =  y  ->  ( G `  ( [ f ] ( 
~=ph  `  J ) ( +g  `  P ) z ) )  =  ( G `  (
y ( +g  `  P
) z ) ) )
31 fveq2 5686 . . . . . . . . 9  |-  ( [ f ] (  ~=ph  `  J )  =  y  ->  ( G `  [ f ] ( 
~=ph  `  J ) )  =  ( G `  y ) )
3231oveq1d 6101 . . . . . . . 8  |-  ( [ f ] (  ~=ph  `  J )  =  y  ->  ( ( G `
 [ f ] (  ~=ph  `  J ) ) ( +g  `  Q
) ( G `  z ) )  =  ( ( G `  y ) ( +g  `  Q ) ( G `
 z ) ) )
3330, 32eqeq12d 2452 . . . . . . 7  |-  ( [ f ] (  ~=ph  `  J )  =  y  ->  ( ( G `
 ( [ f ] (  ~=ph  `  J
) ( +g  `  P
) z ) )  =  ( ( G `
 [ f ] (  ~=ph  `  J ) ) ( +g  `  Q
) ( G `  z ) )  <->  ( G `  ( y ( +g  `  P ) z ) )  =  ( ( G `  y ) ( +g  `  Q
) ( G `  z ) ) ) )
3433ralbidv 2730 . . . . . 6  |-  ( [ f ] (  ~=ph  `  J )  =  y  ->  ( A. z  e.  V  ( G `  ( [ f ] (  ~=ph  `  J ) ( +g  `  P
) z ) )  =  ( ( G `
 [ f ] (  ~=ph  `  J ) ) ( +g  `  Q
) ( G `  z ) )  <->  A. z  e.  V  ( G `  ( y ( +g  `  P ) z ) )  =  ( ( G `  y ) ( +g  `  Q
) ( G `  z ) ) ) )
35 oveq2 6094 . . . . . . . . . . 11  |-  ( [ h ] (  ~=ph  `  J )  =  z  ->  ( [ f ] (  ~=ph  `  J
) ( +g  `  P
) [ h ]
(  ~=ph  `  J )
)  =  ( [ f ] (  ~=ph  `  J ) ( +g  `  P ) z ) )
3635fveq2d 5690 . . . . . . . . . 10  |-  ( [ h ] (  ~=ph  `  J )  =  z  ->  ( G `  ( [ f ] ( 
~=ph  `  J ) ( +g  `  P ) [ h ] ( 
~=ph  `  J ) ) )  =  ( G `
 ( [ f ] (  ~=ph  `  J
) ( +g  `  P
) z ) ) )
37 fveq2 5686 . . . . . . . . . . 11  |-  ( [ h ] (  ~=ph  `  J )  =  z  ->  ( G `  [ h ] ( 
~=ph  `  J ) )  =  ( G `  z ) )
3837oveq2d 6102 . . . . . . . . . 10  |-  ( [ h ] (  ~=ph  `  J )  =  z  ->  ( ( G `
 [ f ] (  ~=ph  `  J ) ) ( +g  `  Q
) ( G `  [ h ] ( 
~=ph  `  J ) ) )  =  ( ( G `  [ f ] (  ~=ph  `  J
) ) ( +g  `  Q ) ( G `
 z ) ) )
3936, 38eqeq12d 2452 . . . . . . . . 9  |-  ( [ h ] (  ~=ph  `  J )  =  z  ->  ( ( G `
 ( [ f ] (  ~=ph  `  J
) ( +g  `  P
) [ h ]
(  ~=ph  `  J )
) )  =  ( ( G `  [
f ] (  ~=ph  `  J ) ) ( +g  `  Q ) ( G `  [
h ] (  ~=ph  `  J ) ) )  <-> 
( G `  ( [ f ] ( 
~=ph  `  J ) ( +g  `  P ) z ) )  =  ( ( G `  [ f ] ( 
~=ph  `  J ) ) ( +g  `  Q
) ( G `  z ) ) ) )
403, 1, 2, 24pi1eluni 20589 . . . . . . . . . . . . . . . 16  |-  ( ph  ->  ( f  e.  U. V 
<->  ( f  e.  ( II  Cn  J )  /\  ( f ` 
0 )  =  A  /\  ( f ` 
1 )  =  A ) ) )
4140biimpa 484 . . . . . . . . . . . . . . 15  |-  ( (
ph  /\  f  e.  U. V )  ->  (
f  e.  ( II 
Cn  J )  /\  ( f `  0
)  =  A  /\  ( f `  1
)  =  A ) )
4241simp1d 1000 . . . . . . . . . . . . . 14  |-  ( (
ph  /\  f  e.  U. V )  ->  f  e.  ( II  Cn  J
) )
4342adantr 465 . . . . . . . . . . . . 13  |-  ( ( ( ph  /\  f  e.  U. V )  /\  h  e.  U. V )  ->  f  e.  ( II  Cn  J ) )
441adantr 465 . . . . . . . . . . . . . . . 16  |-  ( (
ph  /\  f  e.  U. V )  ->  J  e.  (TopOn `  X )
)
452adantr 465 . . . . . . . . . . . . . . . 16  |-  ( (
ph  /\  f  e.  U. V )  ->  A  e.  X )
4621a1i 11 . . . . . . . . . . . . . . . 16  |-  ( (
ph  /\  f  e.  U. V )  ->  V  =  ( Base `  P
) )
473, 44, 45, 46pi1eluni 20589 . . . . . . . . . . . . . . 15  |-  ( (
ph  /\  f  e.  U. V )  ->  (
h  e.  U. V  <->  ( h  e.  ( II 
Cn  J )  /\  ( h `  0
)  =  A  /\  ( h `  1
)  =  A ) ) )
4847biimpa 484 . . . . . . . . . . . . . 14  |-  ( ( ( ph  /\  f  e.  U. V )  /\  h  e.  U. V )  ->  ( h  e.  ( II  Cn  J
)  /\  ( h `  0 )  =  A  /\  ( h `
 1 )  =  A ) )
4948simp1d 1000 . . . . . . . . . . . . 13  |-  ( ( ( ph  /\  f  e.  U. V )  /\  h  e.  U. V )  ->  h  e.  ( II  Cn  J ) )
5041simp3d 1002 . . . . . . . . . . . . . . 15  |-  ( (
ph  /\  f  e.  U. V )  ->  (
f `  1 )  =  A )
5150adantr 465 . . . . . . . . . . . . . 14  |-  ( ( ( ph  /\  f  e.  U. V )  /\  h  e.  U. V )  ->  ( f ` 
1 )  =  A )
5248simp2d 1001 . . . . . . . . . . . . . 14  |-  ( ( ( ph  /\  f  e.  U. V )  /\  h  e.  U. V )  ->  ( h ` 
0 )  =  A )
5351, 52eqtr4d 2473 . . . . . . . . . . . . 13  |-  ( ( ( ph  /\  f  e.  U. V )  /\  h  e.  U. V )  ->  ( f ` 
1 )  =  ( h `  0 ) )
546ad2antrr 725 . . . . . . . . . . . . 13  |-  ( ( ( ph  /\  f  e.  U. V )  /\  h  e.  U. V )  ->  F  e.  ( J  Cn  K ) )
5543, 49, 53, 54copco 20565 . . . . . . . . . . . 12  |-  ( ( ( ph  /\  f  e.  U. V )  /\  h  e.  U. V )  ->  ( F  o.  ( f ( *p
`  J ) h ) )  =  ( ( F  o.  f
) ( *p `  K ) ( F  o.  h ) ) )
56 eceq1 7129 . . . . . . . . . . . 12  |-  ( ( F  o.  ( f ( *p `  J
) h ) )  =  ( ( F  o.  f ) ( *p `  K ) ( F  o.  h
) )  ->  [ ( F  o.  ( f ( *p `  J
) h ) ) ] (  ~=ph  `  K
)  =  [ ( ( F  o.  f
) ( *p `  K ) ( F  o.  h ) ) ] (  ~=ph  `  K
) )
5755, 56syl 16 . . . . . . . . . . 11  |-  ( ( ( ph  /\  f  e.  U. V )  /\  h  e.  U. V )  ->  [ ( F  o.  ( f ( *p `  J ) h ) ) ] (  ~=ph  `  K )  =  [ ( ( F  o.  f ) ( *p `  K
) ( F  o.  h ) ) ] (  ~=ph  `  K ) )
5843, 49, 53pcocn 20564 . . . . . . . . . . . . 13  |-  ( ( ( ph  /\  f  e.  U. V )  /\  h  e.  U. V )  ->  ( f ( *p `  J ) h )  e.  ( II  Cn  J ) )
5943, 49pco0 20561 . . . . . . . . . . . . . 14  |-  ( ( ( ph  /\  f  e.  U. V )  /\  h  e.  U. V )  ->  ( ( f ( *p `  J
) h ) ` 
0 )  =  ( f `  0 ) )
6041simp2d 1001 . . . . . . . . . . . . . . 15  |-  ( (
ph  /\  f  e.  U. V )  ->  (
f `  0 )  =  A )
6160adantr 465 . . . . . . . . . . . . . 14  |-  ( ( ( ph  /\  f  e.  U. V )  /\  h  e.  U. V )  ->  ( f ` 
0 )  =  A )
6259, 61eqtrd 2470 . . . . . . . . . . . . 13  |-  ( ( ( ph  /\  f  e.  U. V )  /\  h  e.  U. V )  ->  ( ( f ( *p `  J
) h ) ` 
0 )  =  A )
6343, 49pco1 20562 . . . . . . . . . . . . . 14  |-  ( ( ( ph  /\  f  e.  U. V )  /\  h  e.  U. V )  ->  ( ( f ( *p `  J
) h ) ` 
1 )  =  ( h `  1 ) )
6448simp3d 1002 . . . . . . . . . . . . . 14  |-  ( ( ( ph  /\  f  e.  U. V )  /\  h  e.  U. V )  ->  ( h ` 
1 )  =  A )
6563, 64eqtrd 2470 . . . . . . . . . . . . 13  |-  ( ( ( ph  /\  f  e.  U. V )  /\  h  e.  U. V )  ->  ( ( f ( *p `  J
) h ) ` 
1 )  =  A )
661ad2antrr 725 . . . . . . . . . . . . . 14  |-  ( ( ( ph  /\  f  e.  U. V )  /\  h  e.  U. V )  ->  J  e.  (TopOn `  X ) )
672ad2antrr 725 . . . . . . . . . . . . . 14  |-  ( ( ( ph  /\  f  e.  U. V )  /\  h  e.  U. V )  ->  A  e.  X
)
6821a1i 11 . . . . . . . . . . . . . 14  |-  ( ( ( ph  /\  f  e.  U. V )  /\  h  e.  U. V )  ->  V  =  (
Base `  P )
)
693, 66, 67, 68pi1eluni 20589 . . . . . . . . . . . . 13  |-  ( ( ( ph  /\  f  e.  U. V )  /\  h  e.  U. V )  ->  ( ( f ( *p `  J
) h )  e. 
U. V  <->  ( (
f ( *p `  J ) h )  e.  ( II  Cn  J )  /\  (
( f ( *p
`  J ) h ) `  0 )  =  A  /\  (
( f ( *p
`  J ) h ) `  1 )  =  A ) ) )
7058, 62, 65, 69mpbir3and 1171 . . . . . . . . . . . 12  |-  ( ( ( ph  /\  f  e.  U. V )  /\  h  e.  U. V )  ->  ( f ( *p `  J ) h )  e.  U. V )
713, 17, 21, 22, 1, 6, 2, 12pi1coval 20607 . . . . . . . . . . . . 13  |-  ( (
ph  /\  ( f
( *p `  J
) h )  e. 
U. V )  -> 
( G `  [
( f ( *p
`  J ) h ) ] (  ~=ph  `  J ) )  =  [ ( F  o.  ( f ( *p
`  J ) h ) ) ] ( 
~=ph  `  K ) )
7271adantlr 714 . . . . . . . . . . . 12  |-  ( ( ( ph  /\  f  e.  U. V )  /\  ( f ( *p
`  J ) h )  e.  U. V
)  ->  ( G `  [ ( f ( *p `  J ) h ) ] ( 
~=ph  `  J ) )  =  [ ( F  o.  ( f ( *p `  J ) h ) ) ] (  ~=ph  `  K ) )
7370, 72syldan 470 . . . . . . . . . . 11  |-  ( ( ( ph  /\  f  e.  U. V )  /\  h  e.  U. V )  ->  ( G `  [ ( f ( *p `  J ) h ) ] ( 
~=ph  `  J ) )  =  [ ( F  o.  ( f ( *p `  J ) h ) ) ] (  ~=ph  `  K ) )
74 eqid 2438 . . . . . . . . . . . 12  |-  ( Base `  Q )  =  (
Base `  Q )
7511ad2antrr 725 . . . . . . . . . . . 12  |-  ( ( ( ph  /\  f  e.  U. V )  /\  h  e.  U. V )  ->  K  e.  (TopOn `  U. K ) )
7616ad2antrr 725 . . . . . . . . . . . 12  |-  ( ( ( ph  /\  f  e.  U. V )  /\  h  e.  U. V )  ->  B  e.  U. K )
77 eqid 2438 . . . . . . . . . . . 12  |-  ( +g  `  Q )  =  ( +g  `  Q )
786adantr 465 . . . . . . . . . . . . . . 15  |-  ( (
ph  /\  f  e.  U. V )  ->  F  e.  ( J  Cn  K
) )
79 cnco 18845 . . . . . . . . . . . . . . 15  |-  ( ( f  e.  ( II 
Cn  J )  /\  F  e.  ( J  Cn  K ) )  -> 
( F  o.  f
)  e.  ( II 
Cn  K ) )
8042, 78, 79syl2anc 661 . . . . . . . . . . . . . 14  |-  ( (
ph  /\  f  e.  U. V )  ->  ( F  o.  f )  e.  ( II  Cn  K
) )
81 iitopon 20430 . . . . . . . . . . . . . . . . . 18  |-  II  e.  (TopOn `  ( 0 [,] 1 ) )
8281a1i 11 . . . . . . . . . . . . . . . . 17  |-  ( (
ph  /\  f  e.  U. V )  ->  II  e.  (TopOn `  ( 0 [,] 1 ) ) )
83 cnf2 18828 . . . . . . . . . . . . . . . . 17  |-  ( ( II  e.  (TopOn `  ( 0 [,] 1
) )  /\  J  e.  (TopOn `  X )  /\  f  e.  (
II  Cn  J )
)  ->  f :
( 0 [,] 1
) --> X )
8482, 44, 42, 83syl3anc 1218 . . . . . . . . . . . . . . . 16  |-  ( (
ph  /\  f  e.  U. V )  ->  f : ( 0 [,] 1 ) --> X )
85 0elunit 11395 . . . . . . . . . . . . . . . 16  |-  0  e.  ( 0 [,] 1
)
86 fvco3 5763 . . . . . . . . . . . . . . . 16  |-  ( ( f : ( 0 [,] 1 ) --> X  /\  0  e.  ( 0 [,] 1 ) )  ->  ( ( F  o.  f ) `  0 )  =  ( F `  (
f `  0 )
) )
8784, 85, 86sylancl 662 . . . . . . . . . . . . . . 15  |-  ( (
ph  /\  f  e.  U. V )  ->  (
( F  o.  f
) `  0 )  =  ( F `  ( f `  0
) ) )
8860fveq2d 5690 . . . . . . . . . . . . . . 15  |-  ( (
ph  /\  f  e.  U. V )  ->  ( F `  ( f `  0 ) )  =  ( F `  A ) )
8912adantr 465 . . . . . . . . . . . . . . 15  |-  ( (
ph  /\  f  e.  U. V )  ->  ( F `  A )  =  B )
9087, 88, 893eqtrd 2474 . . . . . . . . . . . . . 14  |-  ( (
ph  /\  f  e.  U. V )  ->  (
( F  o.  f
) `  0 )  =  B )
91 1elunit 11396 . . . . . . . . . . . . . . . 16  |-  1  e.  ( 0 [,] 1
)
92 fvco3 5763 . . . . . . . . . . . . . . . 16  |-  ( ( f : ( 0 [,] 1 ) --> X  /\  1  e.  ( 0 [,] 1 ) )  ->  ( ( F  o.  f ) `  1 )  =  ( F `  (
f `  1 )
) )
9384, 91, 92sylancl 662 . . . . . . . . . . . . . . 15  |-  ( (
ph  /\  f  e.  U. V )  ->  (
( F  o.  f
) `  1 )  =  ( F `  ( f `  1
) ) )
9450fveq2d 5690 . . . . . . . . . . . . . . 15  |-  ( (
ph  /\  f  e.  U. V )  ->  ( F `  ( f `  1 ) )  =  ( F `  A ) )
9593, 94, 893eqtrd 2474 . . . . . . . . . . . . . 14  |-  ( (
ph  /\  f  e.  U. V )  ->  (
( F  o.  f
) `  1 )  =  B )
9611adantr 465 . . . . . . . . . . . . . . 15  |-  ( (
ph  /\  f  e.  U. V )  ->  K  e.  (TopOn `  U. K ) )
9716adantr 465 . . . . . . . . . . . . . . 15  |-  ( (
ph  /\  f  e.  U. V )  ->  B  e.  U. K )
98 eqidd 2439 . . . . . . . . . . . . . . 15  |-  ( (
ph  /\  f  e.  U. V )  ->  ( Base `  Q )  =  ( Base `  Q
) )
9917, 96, 97, 98pi1eluni 20589 . . . . . . . . . . . . . 14  |-  ( (
ph  /\  f  e.  U. V )  ->  (
( F  o.  f
)  e.  U. ( Base `  Q )  <->  ( ( F  o.  f )  e.  ( II  Cn  K
)  /\  ( ( F  o.  f ) `  0 )  =  B  /\  ( ( F  o.  f ) `
 1 )  =  B ) ) )
10080, 90, 95, 99mpbir3and 1171 . . . . . . . . . . . . 13  |-  ( (
ph  /\  f  e.  U. V )  ->  ( F  o.  f )  e.  U. ( Base `  Q
) )
101100adantr 465 . . . . . . . . . . . 12  |-  ( ( ( ph  /\  f  e.  U. V )  /\  h  e.  U. V )  ->  ( F  o.  f )  e.  U. ( Base `  Q )
)
102 cnco 18845 . . . . . . . . . . . . . 14  |-  ( ( h  e.  ( II 
Cn  J )  /\  F  e.  ( J  Cn  K ) )  -> 
( F  o.  h
)  e.  ( II 
Cn  K ) )
10349, 54, 102syl2anc 661 . . . . . . . . . . . . 13  |-  ( ( ( ph  /\  f  e.  U. V )  /\  h  e.  U. V )  ->  ( F  o.  h )  e.  ( II  Cn  K ) )
10481a1i 11 . . . . . . . . . . . . . . . 16  |-  ( ( ( ph  /\  f  e.  U. V )  /\  h  e.  U. V )  ->  II  e.  (TopOn `  ( 0 [,] 1
) ) )
105 cnf2 18828 . . . . . . . . . . . . . . . 16  |-  ( ( II  e.  (TopOn `  ( 0 [,] 1
) )  /\  J  e.  (TopOn `  X )  /\  h  e.  (
II  Cn  J )
)  ->  h :
( 0 [,] 1
) --> X )
106104, 66, 49, 105syl3anc 1218 . . . . . . . . . . . . . . 15  |-  ( ( ( ph  /\  f  e.  U. V )  /\  h  e.  U. V )  ->  h : ( 0 [,] 1 ) --> X )
107 fvco3 5763 . . . . . . . . . . . . . . 15  |-  ( ( h : ( 0 [,] 1 ) --> X  /\  0  e.  ( 0 [,] 1 ) )  ->  ( ( F  o.  h ) `  0 )  =  ( F `  (
h `  0 )
) )
108106, 85, 107sylancl 662 . . . . . . . . . . . . . 14  |-  ( ( ( ph  /\  f  e.  U. V )  /\  h  e.  U. V )  ->  ( ( F  o.  h ) ` 
0 )  =  ( F `  ( h `
 0 ) ) )
10952fveq2d 5690 . . . . . . . . . . . . . 14  |-  ( ( ( ph  /\  f  e.  U. V )  /\  h  e.  U. V )  ->  ( F `  ( h `  0
) )  =  ( F `  A ) )
11012ad2antrr 725 . . . . . . . . . . . . . 14  |-  ( ( ( ph  /\  f  e.  U. V )  /\  h  e.  U. V )  ->  ( F `  A )  =  B )
111108, 109, 1103eqtrd 2474 . . . . . . . . . . . . 13  |-  ( ( ( ph  /\  f  e.  U. V )  /\  h  e.  U. V )  ->  ( ( F  o.  h ) ` 
0 )  =  B )
112 fvco3 5763 . . . . . . . . . . . . . . 15  |-  ( ( h : ( 0 [,] 1 ) --> X  /\  1  e.  ( 0 [,] 1 ) )  ->  ( ( F  o.  h ) `  1 )  =  ( F `  (
h `  1 )
) )
113106, 91, 112sylancl 662 . . . . . . . . . . . . . 14  |-  ( ( ( ph  /\  f  e.  U. V )  /\  h  e.  U. V )  ->  ( ( F  o.  h ) ` 
1 )  =  ( F `  ( h `
 1 ) ) )
11464fveq2d 5690 . . . . . . . . . . . . . 14  |-  ( ( ( ph  /\  f  e.  U. V )  /\  h  e.  U. V )  ->  ( F `  ( h `  1
) )  =  ( F `  A ) )
115113, 114, 1103eqtrd 2474 . . . . . . . . . . . . 13  |-  ( ( ( ph  /\  f  e.  U. V )  /\  h  e.  U. V )  ->  ( ( F  o.  h ) ` 
1 )  =  B )
116 eqidd 2439 . . . . . . . . . . . . . . 15  |-  ( ph  ->  ( Base `  Q
)  =  ( Base `  Q ) )
11717, 11, 16, 116pi1eluni 20589 . . . . . . . . . . . . . 14  |-  ( ph  ->  ( ( F  o.  h )  e.  U. ( Base `  Q )  <->  ( ( F  o.  h
)  e.  ( II 
Cn  K )  /\  ( ( F  o.  h ) `  0
)  =  B  /\  ( ( F  o.  h ) `  1
)  =  B ) ) )
118117ad2antrr 725 . . . . . . . . . . . . 13  |-  ( ( ( ph  /\  f  e.  U. V )  /\  h  e.  U. V )  ->  ( ( F  o.  h )  e. 
U. ( Base `  Q
)  <->  ( ( F  o.  h )  e.  ( II  Cn  K
)  /\  ( ( F  o.  h ) `  0 )  =  B  /\  ( ( F  o.  h ) `
 1 )  =  B ) ) )
119103, 111, 115, 118mpbir3and 1171 . . . . . . . . . . . 12  |-  ( ( ( ph  /\  f  e.  U. V )  /\  h  e.  U. V )  ->  ( F  o.  h )  e.  U. ( Base `  Q )
)
12017, 74, 75, 76, 77, 101, 119pi1addval 20595 . . . . . . . . . . 11  |-  ( ( ( ph  /\  f  e.  U. V )  /\  h  e.  U. V )  ->  ( [ ( F  o.  f ) ] (  ~=ph  `  K
) ( +g  `  Q
) [ ( F  o.  h ) ] (  ~=ph  `  K ) )  =  [ ( ( F  o.  f
) ( *p `  K ) ( F  o.  h ) ) ] (  ~=ph  `  K
) )
12157, 73, 1203eqtr4d 2480 . . . . . . . . . 10  |-  ( ( ( ph  /\  f  e.  U. V )  /\  h  e.  U. V )  ->  ( G `  [ ( f ( *p `  J ) h ) ] ( 
~=ph  `  J ) )  =  ( [ ( F  o.  f ) ] (  ~=ph  `  K
) ( +g  `  Q
) [ ( F  o.  h ) ] (  ~=ph  `  K ) ) )
122 eqid 2438 . . . . . . . . . . . 12  |-  ( +g  `  P )  =  ( +g  `  P )
123 simplr 754 . . . . . . . . . . . 12  |-  ( ( ( ph  /\  f  e.  U. V )  /\  h  e.  U. V )  ->  f  e.  U. V )
124 simpr 461 . . . . . . . . . . . 12  |-  ( ( ( ph  /\  f  e.  U. V )  /\  h  e.  U. V )  ->  h  e.  U. V )
1253, 21, 66, 67, 122, 123, 124pi1addval 20595 . . . . . . . . . . 11  |-  ( ( ( ph  /\  f  e.  U. V )  /\  h  e.  U. V )  ->  ( [ f ] (  ~=ph  `  J
) ( +g  `  P
) [ h ]
(  ~=ph  `  J )
)  =  [ ( f ( *p `  J ) h ) ] (  ~=ph  `  J
) )
126125fveq2d 5690 . . . . . . . . . 10  |-  ( ( ( ph  /\  f  e.  U. V )  /\  h  e.  U. V )  ->  ( G `  ( [ f ] ( 
~=ph  `  J ) ( +g  `  P ) [ h ] ( 
~=ph  `  J ) ) )  =  ( G `
 [ ( f ( *p `  J
) h ) ] (  ~=ph  `  J ) ) )
1273, 17, 21, 22, 1, 6, 2, 12pi1coval 20607 . . . . . . . . . . . 12  |-  ( (
ph  /\  f  e.  U. V )  ->  ( G `  [ f ] (  ~=ph  `  J
) )  =  [
( F  o.  f
) ] (  ~=ph  `  K ) )
128127adantr 465 . . . . . . . . . . 11  |-  ( ( ( ph  /\  f  e.  U. V )  /\  h  e.  U. V )  ->  ( G `  [ f ] ( 
~=ph  `  J ) )  =  [ ( F  o.  f ) ] (  ~=ph  `  K ) )
1293, 17, 21, 22, 1, 6, 2, 12pi1coval 20607 . . . . . . . . . . . 12  |-  ( (
ph  /\  h  e.  U. V )  ->  ( G `  [ h ] (  ~=ph  `  J
) )  =  [
( F  o.  h
) ] (  ~=ph  `  K ) )
130129adantlr 714 . . . . . . . . . . 11  |-  ( ( ( ph  /\  f  e.  U. V )  /\  h  e.  U. V )  ->  ( G `  [ h ] ( 
~=ph  `  J ) )  =  [ ( F  o.  h ) ] (  ~=ph  `  K ) )
131128, 130oveq12d 6104 . . . . . . . . . 10  |-  ( ( ( ph  /\  f  e.  U. V )  /\  h  e.  U. V )  ->  ( ( G `
 [ f ] (  ~=ph  `  J ) ) ( +g  `  Q
) ( G `  [ h ] ( 
~=ph  `  J ) ) )  =  ( [ ( F  o.  f
) ] (  ~=ph  `  K ) ( +g  `  Q ) [ ( F  o.  h ) ] (  ~=ph  `  K
) ) )
132121, 126, 1313eqtr4d 2480 . . . . . . . . 9  |-  ( ( ( ph  /\  f  e.  U. V )  /\  h  e.  U. V )  ->  ( G `  ( [ f ] ( 
~=ph  `  J ) ( +g  `  P ) [ h ] ( 
~=ph  `  J ) ) )  =  ( ( G `  [ f ] (  ~=ph  `  J
) ) ( +g  `  Q ) ( G `
 [ h ]
(  ~=ph  `  J )
) ) )
13328, 39, 132ectocld 7159 . . . . . . . 8  |-  ( ( ( ph  /\  f  e.  U. V )  /\  z  e.  ( U. V /. (  ~=ph  `  J
) ) )  -> 
( G `  ( [ f ] ( 
~=ph  `  J ) ( +g  `  P ) z ) )  =  ( ( G `  [ f ] ( 
~=ph  `  J ) ) ( +g  `  Q
) ( G `  z ) ) )
134133ralrimiva 2794 . . . . . . 7  |-  ( (
ph  /\  f  e.  U. V )  ->  A. z  e.  ( U. V /. (  ~=ph  `  J )
) ( G `  ( [ f ] ( 
~=ph  `  J ) ( +g  `  P ) z ) )  =  ( ( G `  [ f ] ( 
~=ph  `  J ) ) ( +g  `  Q
) ( G `  z ) ) )
13525adantr 465 . . . . . . . 8  |-  ( (
ph  /\  f  e.  U. V )  ->  V  =  ( U. V /. (  ~=ph  `  J
) ) )
136135raleqdv 2918 . . . . . . 7  |-  ( (
ph  /\  f  e.  U. V )  ->  ( A. z  e.  V  ( G `  ( [ f ] (  ~=ph  `  J ) ( +g  `  P ) z ) )  =  ( ( G `  [ f ] (  ~=ph  `  J
) ) ( +g  `  Q ) ( G `
 z ) )  <->  A. z  e.  ( U. V /. (  ~=ph  `  J ) ) ( G `  ( [ f ] (  ~=ph  `  J ) ( +g  `  P ) z ) )  =  ( ( G `  [ f ] (  ~=ph  `  J
) ) ( +g  `  Q ) ( G `
 z ) ) ) )
137134, 136mpbird 232 . . . . . 6  |-  ( (
ph  /\  f  e.  U. V )  ->  A. z  e.  V  ( G `  ( [ f ] (  ~=ph  `  J ) ( +g  `  P
) z ) )  =  ( ( G `
 [ f ] (  ~=ph  `  J ) ) ( +g  `  Q
) ( G `  z ) ) )
13828, 34, 137ectocld 7159 . . . . 5  |-  ( (
ph  /\  y  e.  ( U. V /. (  ~=ph  `  J ) ) )  ->  A. z  e.  V  ( G `  ( y ( +g  `  P
) z ) )  =  ( ( G `
 y ) ( +g  `  Q ) ( G `  z
) ) )
13927, 138syldan 470 . . . 4  |-  ( (
ph  /\  y  e.  V )  ->  A. z  e.  V  ( G `  ( y ( +g  `  P ) z ) )  =  ( ( G `  y ) ( +g  `  Q
) ( G `  z ) ) )
140139ralrimiva 2794 . . 3  |-  ( ph  ->  A. y  e.  V  A. z  e.  V  ( G `  ( y ( +g  `  P
) z ) )  =  ( ( G `
 y ) ( +g  `  Q ) ( G `  z
) ) )
14123, 140jca 532 . 2  |-  ( ph  ->  ( G : V --> ( Base `  Q )  /\  A. y  e.  V  A. z  e.  V  ( G `  ( y ( +g  `  P
) z ) )  =  ( ( G `
 y ) ( +g  `  Q ) ( G `  z
) ) ) )
14221, 74, 122, 77isghm 15738 . 2  |-  ( G  e.  ( P  GrpHom  Q )  <->  ( ( P  e.  Grp  /\  Q  e.  Grp )  /\  ( G : V --> ( Base `  Q )  /\  A. y  e.  V  A. z  e.  V  ( G `  ( y
( +g  `  P ) z ) )  =  ( ( G `  y ) ( +g  `  Q ) ( G `
 z ) ) ) ) )
14320, 141, 142sylanbrc 664 1  |-  ( ph  ->  G  e.  ( P 
GrpHom  Q ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 184    /\ wa 369    /\ w3a 965    = wceq 1369    e. wcel 1756   A.wral 2710   <.cop 3878   U.cuni 4086    e. cmpt 4345   ran crn 4836    o. ccom 4839   -->wf 5409   ` cfv 5413  (class class class)co 6086   [cec 7091   /.cqs 7092   0cc0 9274   1c1 9275   [,]cicc 11295   Basecbs 14166   +g cplusg 14230   Grpcgrp 15402    GrpHom cghm 15735   Topctop 18473  TopOnctopon 18474    Cn ccn 18803   IIcii 20426    ~=ph cphtpc 20516   *pcpco 20547    pi1 cpi1 20550
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1591  ax-4 1602  ax-5 1670  ax-6 1708  ax-7 1728  ax-8 1758  ax-9 1760  ax-10 1775  ax-11 1780  ax-12 1792  ax-13 1943  ax-ext 2419  ax-rep 4398  ax-sep 4408  ax-nul 4416  ax-pow 4465  ax-pr 4526  ax-un 6367  ax-inf2 7839  ax-cnex 9330  ax-resscn 9331  ax-1cn 9332  ax-icn 9333  ax-addcl 9334  ax-addrcl 9335  ax-mulcl 9336  ax-mulrcl 9337  ax-mulcom 9338  ax-addass 9339  ax-mulass 9340  ax-distr 9341  ax-i2m1 9342  ax-1ne0 9343  ax-1rid 9344  ax-rnegex 9345  ax-rrecex 9346  ax-cnre 9347  ax-pre-lttri 9348  ax-pre-lttrn 9349  ax-pre-ltadd 9350  ax-pre-mulgt0 9351  ax-pre-sup 9352  ax-addf 9353  ax-mulf 9354
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3or 966  df-3an 967  df-tru 1372  df-ex 1587  df-nf 1590  df-sb 1701  df-eu 2256  df-mo 2257  df-clab 2425  df-cleq 2431  df-clel 2434  df-nfc 2563  df-ne 2603  df-nel 2604  df-ral 2715  df-rex 2716  df-reu 2717  df-rmo 2718  df-rab 2719  df-v 2969  df-sbc 3182  df-csb 3284  df-dif 3326  df-un 3328  df-in 3330  df-ss 3337  df-pss 3339  df-nul 3633  df-if 3787  df-pw 3857  df-sn 3873  df-pr 3875  df-tp 3877  df-op 3879  df-uni 4087  df-int 4124  df-iun 4168  df-iin 4169  df-br 4288  df-opab 4346  df-mpt 4347  df-tr 4381  df-eprel 4627  df-id 4631  df-po 4636  df-so 4637  df-fr 4674  df-se 4675  df-we 4676  df-ord 4717  df-on 4718  df-lim 4719  df-suc 4720  df-xp 4841  df-rel 4842  df-cnv 4843  df-co 4844  df-dm 4845  df-rn 4846  df-res 4847  df-ima 4848  df-iota 5376  df-fun 5415  df-fn 5416  df-f 5417  df-f1 5418  df-fo 5419  df-f1o 5420  df-fv 5421  df-isom 5422  df-riota 6047  df-ov 6089  df-oprab 6090  df-mpt2 6091  df-of 6315  df-om 6472  df-1st 6572  df-2nd 6573  df-supp 6686  df-recs 6824  df-rdg 6858  df-1o 6912  df-2o 6913  df-oadd 6916  df-er 7093  df-ec 7095  df-qs 7099  df-map 7208  df-ixp 7256  df-en 7303  df-dom 7304  df-sdom 7305  df-fin 7306  df-fsupp 7613  df-fi 7653  df-sup 7683  df-oi 7716  df-card 8101  df-cda 8329  df-pnf 9412  df-mnf 9413  df-xr 9414  df-ltxr 9415  df-le 9416  df-sub 9589  df-neg 9590  df-div 9986  df-nn 10315  df-2 10372  df-3 10373  df-4 10374  df-5 10375  df-6 10376  df-7 10377  df-8 10378  df-9 10379  df-10 10380  df-n0 10572  df-z 10639  df-dec 10748  df-uz 10854  df-q 10946  df-rp 10984  df-xneg 11081  df-xadd 11082  df-xmul 11083  df-ioo 11296  df-icc 11299  df-fz 11430  df-fzo 11541  df-seq 11799  df-exp 11858  df-hash 12096  df-cj 12580  df-re 12581  df-im 12582  df-sqr 12716  df-abs 12717  df-struct 14168  df-ndx 14169  df-slot 14170  df-base 14171  df-sets 14172  df-ress 14173  df-plusg 14243  df-mulr 14244  df-starv 14245  df-sca 14246  df-vsca 14247  df-ip 14248  df-tset 14249  df-ple 14250  df-ds 14252  df-unif 14253  df-hom 14254  df-cco 14255  df-rest 14353  df-topn 14354  df-0g 14372  df-gsum 14373  df-topgen 14374  df-pt 14375  df-prds 14378  df-xrs 14432  df-qtop 14437  df-imas 14438  df-divs 14439  df-xps 14440  df-mre 14516  df-mrc 14517  df-acs 14519  df-mnd 15407  df-submnd 15457  df-grp 15536  df-mulg 15539  df-ghm 15736  df-cntz 15826  df-cmn 16270  df-psmet 17784  df-xmet 17785  df-met 17786  df-bl 17787  df-mopn 17788  df-cnfld 17794  df-top 18478  df-bases 18480  df-topon 18481  df-topsp 18482  df-cld 18598  df-cn 18806  df-cnp 18807  df-tx 19110  df-hmeo 19303  df-xms 19870  df-ms 19871  df-tms 19872  df-ii 20428  df-htpy 20517  df-phtpy 20518  df-phtpc 20539  df-pco 20552  df-om1 20553  df-pi1 20555
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator