MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  pi1coghm Structured version   Unicode version

Theorem pi1coghm 21985
Description: The mapping  G between fundamental groups is a group homomorphism. (Contributed by Mario Carneiro, 10-Aug-2015.) (Revised by Mario Carneiro, 23-Dec-2016.)
Hypotheses
Ref Expression
pi1co.p  |-  P  =  ( J  pi1  A )
pi1co.q  |-  Q  =  ( K  pi1  B )
pi1co.v  |-  V  =  ( Base `  P
)
pi1co.g  |-  G  =  ran  ( g  e. 
U. V  |->  <. [ g ] (  ~=ph  `  J
) ,  [ ( F  o.  g ) ] (  ~=ph  `  K
) >. )
pi1co.j  |-  ( ph  ->  J  e.  (TopOn `  X ) )
pi1co.f  |-  ( ph  ->  F  e.  ( J  Cn  K ) )
pi1co.a  |-  ( ph  ->  A  e.  X )
pi1co.b  |-  ( ph  ->  ( F `  A
)  =  B )
Assertion
Ref Expression
pi1coghm  |-  ( ph  ->  G  e.  ( P 
GrpHom  Q ) )
Distinct variable groups:    A, g    g, F    g, J    ph, g    g, K    P, g    Q, g   
g, V
Allowed substitution hints:    B( g)    G( g)    X( g)

Proof of Theorem pi1coghm
Dummy variables  h  f  z  y are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 pi1co.j . . . 4  |-  ( ph  ->  J  e.  (TopOn `  X ) )
2 pi1co.a . . . 4  |-  ( ph  ->  A  e.  X )
3 pi1co.p . . . . 5  |-  P  =  ( J  pi1  A )
43pi1grp 21974 . . . 4  |-  ( ( J  e.  (TopOn `  X )  /\  A  e.  X )  ->  P  e.  Grp )
51, 2, 4syl2anc 665 . . 3  |-  ( ph  ->  P  e.  Grp )
6 pi1co.f . . . . . 6  |-  ( ph  ->  F  e.  ( J  Cn  K ) )
7 cntop2 20188 . . . . . 6  |-  ( F  e.  ( J  Cn  K )  ->  K  e.  Top )
86, 7syl 17 . . . . 5  |-  ( ph  ->  K  e.  Top )
9 eqid 2429 . . . . . 6  |-  U. K  =  U. K
109toptopon 19879 . . . . 5  |-  ( K  e.  Top  <->  K  e.  (TopOn `  U. K ) )
118, 10sylib 199 . . . 4  |-  ( ph  ->  K  e.  (TopOn `  U. K ) )
12 pi1co.b . . . . 5  |-  ( ph  ->  ( F `  A
)  =  B )
13 cnf2 20196 . . . . . . 7  |-  ( ( J  e.  (TopOn `  X )  /\  K  e.  (TopOn `  U. K )  /\  F  e.  ( J  Cn  K ) )  ->  F : X
--> U. K )
141, 11, 6, 13syl3anc 1264 . . . . . 6  |-  ( ph  ->  F : X --> U. K
)
1514, 2ffvelrnd 6038 . . . . 5  |-  ( ph  ->  ( F `  A
)  e.  U. K
)
1612, 15eqeltrrd 2518 . . . 4  |-  ( ph  ->  B  e.  U. K
)
17 pi1co.q . . . . 5  |-  Q  =  ( K  pi1  B )
1817pi1grp 21974 . . . 4  |-  ( ( K  e.  (TopOn `  U. K )  /\  B  e.  U. K )  ->  Q  e.  Grp )
1911, 16, 18syl2anc 665 . . 3  |-  ( ph  ->  Q  e.  Grp )
205, 19jca 534 . 2  |-  ( ph  ->  ( P  e.  Grp  /\  Q  e.  Grp )
)
21 pi1co.v . . . 4  |-  V  =  ( Base `  P
)
22 pi1co.g . . . 4  |-  G  =  ran  ( g  e. 
U. V  |->  <. [ g ] (  ~=ph  `  J
) ,  [ ( F  o.  g ) ] (  ~=ph  `  K
) >. )
233, 17, 21, 22, 1, 6, 2, 12pi1cof 21983 . . 3  |-  ( ph  ->  G : V --> ( Base `  Q ) )
2421a1i 11 . . . . . . . 8  |-  ( ph  ->  V  =  ( Base `  P ) )
253, 1, 2, 24pi1bas2 21965 . . . . . . 7  |-  ( ph  ->  V  =  ( U. V /. (  ~=ph  `  J
) ) )
2625eleq2d 2499 . . . . . 6  |-  ( ph  ->  ( y  e.  V  <->  y  e.  ( U. V /. (  ~=ph  `  J
) ) ) )
2726biimpa 486 . . . . 5  |-  ( (
ph  /\  y  e.  V )  ->  y  e.  ( U. V /. (  ~=ph  `  J )
) )
28 eqid 2429 . . . . . 6  |-  ( U. V /. (  ~=ph  `  J
) )  =  ( U. V /. (  ~=ph  `  J ) )
29 oveq1 6312 . . . . . . . . 9  |-  ( [ f ] (  ~=ph  `  J )  =  y  ->  ( [ f ] (  ~=ph  `  J
) ( +g  `  P
) z )  =  ( y ( +g  `  P ) z ) )
3029fveq2d 5885 . . . . . . . 8  |-  ( [ f ] (  ~=ph  `  J )  =  y  ->  ( G `  ( [ f ] ( 
~=ph  `  J ) ( +g  `  P ) z ) )  =  ( G `  (
y ( +g  `  P
) z ) ) )
31 fveq2 5881 . . . . . . . . 9  |-  ( [ f ] (  ~=ph  `  J )  =  y  ->  ( G `  [ f ] ( 
~=ph  `  J ) )  =  ( G `  y ) )
3231oveq1d 6320 . . . . . . . 8  |-  ( [ f ] (  ~=ph  `  J )  =  y  ->  ( ( G `
 [ f ] (  ~=ph  `  J ) ) ( +g  `  Q
) ( G `  z ) )  =  ( ( G `  y ) ( +g  `  Q ) ( G `
 z ) ) )
3330, 32eqeq12d 2451 . . . . . . 7  |-  ( [ f ] (  ~=ph  `  J )  =  y  ->  ( ( G `
 ( [ f ] (  ~=ph  `  J
) ( +g  `  P
) z ) )  =  ( ( G `
 [ f ] (  ~=ph  `  J ) ) ( +g  `  Q
) ( G `  z ) )  <->  ( G `  ( y ( +g  `  P ) z ) )  =  ( ( G `  y ) ( +g  `  Q
) ( G `  z ) ) ) )
3433ralbidv 2871 . . . . . 6  |-  ( [ f ] (  ~=ph  `  J )  =  y  ->  ( A. z  e.  V  ( G `  ( [ f ] (  ~=ph  `  J ) ( +g  `  P
) z ) )  =  ( ( G `
 [ f ] (  ~=ph  `  J ) ) ( +g  `  Q
) ( G `  z ) )  <->  A. z  e.  V  ( G `  ( y ( +g  `  P ) z ) )  =  ( ( G `  y ) ( +g  `  Q
) ( G `  z ) ) ) )
35 oveq2 6313 . . . . . . . . . . 11  |-  ( [ h ] (  ~=ph  `  J )  =  z  ->  ( [ f ] (  ~=ph  `  J
) ( +g  `  P
) [ h ]
(  ~=ph  `  J )
)  =  ( [ f ] (  ~=ph  `  J ) ( +g  `  P ) z ) )
3635fveq2d 5885 . . . . . . . . . 10  |-  ( [ h ] (  ~=ph  `  J )  =  z  ->  ( G `  ( [ f ] ( 
~=ph  `  J ) ( +g  `  P ) [ h ] ( 
~=ph  `  J ) ) )  =  ( G `
 ( [ f ] (  ~=ph  `  J
) ( +g  `  P
) z ) ) )
37 fveq2 5881 . . . . . . . . . . 11  |-  ( [ h ] (  ~=ph  `  J )  =  z  ->  ( G `  [ h ] ( 
~=ph  `  J ) )  =  ( G `  z ) )
3837oveq2d 6321 . . . . . . . . . 10  |-  ( [ h ] (  ~=ph  `  J )  =  z  ->  ( ( G `
 [ f ] (  ~=ph  `  J ) ) ( +g  `  Q
) ( G `  [ h ] ( 
~=ph  `  J ) ) )  =  ( ( G `  [ f ] (  ~=ph  `  J
) ) ( +g  `  Q ) ( G `
 z ) ) )
3936, 38eqeq12d 2451 . . . . . . . . 9  |-  ( [ h ] (  ~=ph  `  J )  =  z  ->  ( ( G `
 ( [ f ] (  ~=ph  `  J
) ( +g  `  P
) [ h ]
(  ~=ph  `  J )
) )  =  ( ( G `  [
f ] (  ~=ph  `  J ) ) ( +g  `  Q ) ( G `  [
h ] (  ~=ph  `  J ) ) )  <-> 
( G `  ( [ f ] ( 
~=ph  `  J ) ( +g  `  P ) z ) )  =  ( ( G `  [ f ] ( 
~=ph  `  J ) ) ( +g  `  Q
) ( G `  z ) ) ) )
403, 1, 2, 24pi1eluni 21966 . . . . . . . . . . . . . . . 16  |-  ( ph  ->  ( f  e.  U. V 
<->  ( f  e.  ( II  Cn  J )  /\  ( f ` 
0 )  =  A  /\  ( f ` 
1 )  =  A ) ) )
4140biimpa 486 . . . . . . . . . . . . . . 15  |-  ( (
ph  /\  f  e.  U. V )  ->  (
f  e.  ( II 
Cn  J )  /\  ( f `  0
)  =  A  /\  ( f `  1
)  =  A ) )
4241simp1d 1017 . . . . . . . . . . . . . 14  |-  ( (
ph  /\  f  e.  U. V )  ->  f  e.  ( II  Cn  J
) )
4342adantr 466 . . . . . . . . . . . . 13  |-  ( ( ( ph  /\  f  e.  U. V )  /\  h  e.  U. V )  ->  f  e.  ( II  Cn  J ) )
441adantr 466 . . . . . . . . . . . . . . . 16  |-  ( (
ph  /\  f  e.  U. V )  ->  J  e.  (TopOn `  X )
)
452adantr 466 . . . . . . . . . . . . . . . 16  |-  ( (
ph  /\  f  e.  U. V )  ->  A  e.  X )
4621a1i 11 . . . . . . . . . . . . . . . 16  |-  ( (
ph  /\  f  e.  U. V )  ->  V  =  ( Base `  P
) )
473, 44, 45, 46pi1eluni 21966 . . . . . . . . . . . . . . 15  |-  ( (
ph  /\  f  e.  U. V )  ->  (
h  e.  U. V  <->  ( h  e.  ( II 
Cn  J )  /\  ( h `  0
)  =  A  /\  ( h `  1
)  =  A ) ) )
4847biimpa 486 . . . . . . . . . . . . . 14  |-  ( ( ( ph  /\  f  e.  U. V )  /\  h  e.  U. V )  ->  ( h  e.  ( II  Cn  J
)  /\  ( h `  0 )  =  A  /\  ( h `
 1 )  =  A ) )
4948simp1d 1017 . . . . . . . . . . . . 13  |-  ( ( ( ph  /\  f  e.  U. V )  /\  h  e.  U. V )  ->  h  e.  ( II  Cn  J ) )
5041simp3d 1019 . . . . . . . . . . . . . . 15  |-  ( (
ph  /\  f  e.  U. V )  ->  (
f `  1 )  =  A )
5150adantr 466 . . . . . . . . . . . . . 14  |-  ( ( ( ph  /\  f  e.  U. V )  /\  h  e.  U. V )  ->  ( f ` 
1 )  =  A )
5248simp2d 1018 . . . . . . . . . . . . . 14  |-  ( ( ( ph  /\  f  e.  U. V )  /\  h  e.  U. V )  ->  ( h ` 
0 )  =  A )
5351, 52eqtr4d 2473 . . . . . . . . . . . . 13  |-  ( ( ( ph  /\  f  e.  U. V )  /\  h  e.  U. V )  ->  ( f ` 
1 )  =  ( h `  0 ) )
546ad2antrr 730 . . . . . . . . . . . . 13  |-  ( ( ( ph  /\  f  e.  U. V )  /\  h  e.  U. V )  ->  F  e.  ( J  Cn  K ) )
5543, 49, 53, 54copco 21942 . . . . . . . . . . . 12  |-  ( ( ( ph  /\  f  e.  U. V )  /\  h  e.  U. V )  ->  ( F  o.  ( f ( *p
`  J ) h ) )  =  ( ( F  o.  f
) ( *p `  K ) ( F  o.  h ) ) )
5655eceq1d 7408 . . . . . . . . . . 11  |-  ( ( ( ph  /\  f  e.  U. V )  /\  h  e.  U. V )  ->  [ ( F  o.  ( f ( *p `  J ) h ) ) ] (  ~=ph  `  K )  =  [ ( ( F  o.  f ) ( *p `  K
) ( F  o.  h ) ) ] (  ~=ph  `  K ) )
5743, 49, 53pcocn 21941 . . . . . . . . . . . . 13  |-  ( ( ( ph  /\  f  e.  U. V )  /\  h  e.  U. V )  ->  ( f ( *p `  J ) h )  e.  ( II  Cn  J ) )
5843, 49pco0 21938 . . . . . . . . . . . . . 14  |-  ( ( ( ph  /\  f  e.  U. V )  /\  h  e.  U. V )  ->  ( ( f ( *p `  J
) h ) ` 
0 )  =  ( f `  0 ) )
5941simp2d 1018 . . . . . . . . . . . . . . 15  |-  ( (
ph  /\  f  e.  U. V )  ->  (
f `  0 )  =  A )
6059adantr 466 . . . . . . . . . . . . . 14  |-  ( ( ( ph  /\  f  e.  U. V )  /\  h  e.  U. V )  ->  ( f ` 
0 )  =  A )
6158, 60eqtrd 2470 . . . . . . . . . . . . 13  |-  ( ( ( ph  /\  f  e.  U. V )  /\  h  e.  U. V )  ->  ( ( f ( *p `  J
) h ) ` 
0 )  =  A )
6243, 49pco1 21939 . . . . . . . . . . . . . 14  |-  ( ( ( ph  /\  f  e.  U. V )  /\  h  e.  U. V )  ->  ( ( f ( *p `  J
) h ) ` 
1 )  =  ( h `  1 ) )
6348simp3d 1019 . . . . . . . . . . . . . 14  |-  ( ( ( ph  /\  f  e.  U. V )  /\  h  e.  U. V )  ->  ( h ` 
1 )  =  A )
6462, 63eqtrd 2470 . . . . . . . . . . . . 13  |-  ( ( ( ph  /\  f  e.  U. V )  /\  h  e.  U. V )  ->  ( ( f ( *p `  J
) h ) ` 
1 )  =  A )
651ad2antrr 730 . . . . . . . . . . . . . 14  |-  ( ( ( ph  /\  f  e.  U. V )  /\  h  e.  U. V )  ->  J  e.  (TopOn `  X ) )
662ad2antrr 730 . . . . . . . . . . . . . 14  |-  ( ( ( ph  /\  f  e.  U. V )  /\  h  e.  U. V )  ->  A  e.  X
)
6721a1i 11 . . . . . . . . . . . . . 14  |-  ( ( ( ph  /\  f  e.  U. V )  /\  h  e.  U. V )  ->  V  =  (
Base `  P )
)
683, 65, 66, 67pi1eluni 21966 . . . . . . . . . . . . 13  |-  ( ( ( ph  /\  f  e.  U. V )  /\  h  e.  U. V )  ->  ( ( f ( *p `  J
) h )  e. 
U. V  <->  ( (
f ( *p `  J ) h )  e.  ( II  Cn  J )  /\  (
( f ( *p
`  J ) h ) `  0 )  =  A  /\  (
( f ( *p
`  J ) h ) `  1 )  =  A ) ) )
6957, 61, 64, 68mpbir3and 1188 . . . . . . . . . . . 12  |-  ( ( ( ph  /\  f  e.  U. V )  /\  h  e.  U. V )  ->  ( f ( *p `  J ) h )  e.  U. V )
703, 17, 21, 22, 1, 6, 2, 12pi1coval 21984 . . . . . . . . . . . . 13  |-  ( (
ph  /\  ( f
( *p `  J
) h )  e. 
U. V )  -> 
( G `  [
( f ( *p
`  J ) h ) ] (  ~=ph  `  J ) )  =  [ ( F  o.  ( f ( *p
`  J ) h ) ) ] ( 
~=ph  `  K ) )
7170adantlr 719 . . . . . . . . . . . 12  |-  ( ( ( ph  /\  f  e.  U. V )  /\  ( f ( *p
`  J ) h )  e.  U. V
)  ->  ( G `  [ ( f ( *p `  J ) h ) ] ( 
~=ph  `  J ) )  =  [ ( F  o.  ( f ( *p `  J ) h ) ) ] (  ~=ph  `  K ) )
7269, 71syldan 472 . . . . . . . . . . 11  |-  ( ( ( ph  /\  f  e.  U. V )  /\  h  e.  U. V )  ->  ( G `  [ ( f ( *p `  J ) h ) ] ( 
~=ph  `  J ) )  =  [ ( F  o.  ( f ( *p `  J ) h ) ) ] (  ~=ph  `  K ) )
73 eqid 2429 . . . . . . . . . . . 12  |-  ( Base `  Q )  =  (
Base `  Q )
7411ad2antrr 730 . . . . . . . . . . . 12  |-  ( ( ( ph  /\  f  e.  U. V )  /\  h  e.  U. V )  ->  K  e.  (TopOn `  U. K ) )
7516ad2antrr 730 . . . . . . . . . . . 12  |-  ( ( ( ph  /\  f  e.  U. V )  /\  h  e.  U. V )  ->  B  e.  U. K )
76 eqid 2429 . . . . . . . . . . . 12  |-  ( +g  `  Q )  =  ( +g  `  Q )
776adantr 466 . . . . . . . . . . . . . . 15  |-  ( (
ph  /\  f  e.  U. V )  ->  F  e.  ( J  Cn  K
) )
78 cnco 20213 . . . . . . . . . . . . . . 15  |-  ( ( f  e.  ( II 
Cn  J )  /\  F  e.  ( J  Cn  K ) )  -> 
( F  o.  f
)  e.  ( II 
Cn  K ) )
7942, 77, 78syl2anc 665 . . . . . . . . . . . . . 14  |-  ( (
ph  /\  f  e.  U. V )  ->  ( F  o.  f )  e.  ( II  Cn  K
) )
80 iitopon 21807 . . . . . . . . . . . . . . . . . 18  |-  II  e.  (TopOn `  ( 0 [,] 1 ) )
8180a1i 11 . . . . . . . . . . . . . . . . 17  |-  ( (
ph  /\  f  e.  U. V )  ->  II  e.  (TopOn `  ( 0 [,] 1 ) ) )
82 cnf2 20196 . . . . . . . . . . . . . . . . 17  |-  ( ( II  e.  (TopOn `  ( 0 [,] 1
) )  /\  J  e.  (TopOn `  X )  /\  f  e.  (
II  Cn  J )
)  ->  f :
( 0 [,] 1
) --> X )
8381, 44, 42, 82syl3anc 1264 . . . . . . . . . . . . . . . 16  |-  ( (
ph  /\  f  e.  U. V )  ->  f : ( 0 [,] 1 ) --> X )
84 0elunit 11748 . . . . . . . . . . . . . . . 16  |-  0  e.  ( 0 [,] 1
)
85 fvco3 5958 . . . . . . . . . . . . . . . 16  |-  ( ( f : ( 0 [,] 1 ) --> X  /\  0  e.  ( 0 [,] 1 ) )  ->  ( ( F  o.  f ) `  0 )  =  ( F `  (
f `  0 )
) )
8683, 84, 85sylancl 666 . . . . . . . . . . . . . . 15  |-  ( (
ph  /\  f  e.  U. V )  ->  (
( F  o.  f
) `  0 )  =  ( F `  ( f `  0
) ) )
8759fveq2d 5885 . . . . . . . . . . . . . . 15  |-  ( (
ph  /\  f  e.  U. V )  ->  ( F `  ( f `  0 ) )  =  ( F `  A ) )
8812adantr 466 . . . . . . . . . . . . . . 15  |-  ( (
ph  /\  f  e.  U. V )  ->  ( F `  A )  =  B )
8986, 87, 883eqtrd 2474 . . . . . . . . . . . . . 14  |-  ( (
ph  /\  f  e.  U. V )  ->  (
( F  o.  f
) `  0 )  =  B )
90 1elunit 11749 . . . . . . . . . . . . . . . 16  |-  1  e.  ( 0 [,] 1
)
91 fvco3 5958 . . . . . . . . . . . . . . . 16  |-  ( ( f : ( 0 [,] 1 ) --> X  /\  1  e.  ( 0 [,] 1 ) )  ->  ( ( F  o.  f ) `  1 )  =  ( F `  (
f `  1 )
) )
9283, 90, 91sylancl 666 . . . . . . . . . . . . . . 15  |-  ( (
ph  /\  f  e.  U. V )  ->  (
( F  o.  f
) `  1 )  =  ( F `  ( f `  1
) ) )
9350fveq2d 5885 . . . . . . . . . . . . . . 15  |-  ( (
ph  /\  f  e.  U. V )  ->  ( F `  ( f `  1 ) )  =  ( F `  A ) )
9492, 93, 883eqtrd 2474 . . . . . . . . . . . . . 14  |-  ( (
ph  /\  f  e.  U. V )  ->  (
( F  o.  f
) `  1 )  =  B )
9511adantr 466 . . . . . . . . . . . . . . 15  |-  ( (
ph  /\  f  e.  U. V )  ->  K  e.  (TopOn `  U. K ) )
9616adantr 466 . . . . . . . . . . . . . . 15  |-  ( (
ph  /\  f  e.  U. V )  ->  B  e.  U. K )
97 eqidd 2430 . . . . . . . . . . . . . . 15  |-  ( (
ph  /\  f  e.  U. V )  ->  ( Base `  Q )  =  ( Base `  Q
) )
9817, 95, 96, 97pi1eluni 21966 . . . . . . . . . . . . . 14  |-  ( (
ph  /\  f  e.  U. V )  ->  (
( F  o.  f
)  e.  U. ( Base `  Q )  <->  ( ( F  o.  f )  e.  ( II  Cn  K
)  /\  ( ( F  o.  f ) `  0 )  =  B  /\  ( ( F  o.  f ) `
 1 )  =  B ) ) )
9979, 89, 94, 98mpbir3and 1188 . . . . . . . . . . . . 13  |-  ( (
ph  /\  f  e.  U. V )  ->  ( F  o.  f )  e.  U. ( Base `  Q
) )
10099adantr 466 . . . . . . . . . . . 12  |-  ( ( ( ph  /\  f  e.  U. V )  /\  h  e.  U. V )  ->  ( F  o.  f )  e.  U. ( Base `  Q )
)
101 cnco 20213 . . . . . . . . . . . . . 14  |-  ( ( h  e.  ( II 
Cn  J )  /\  F  e.  ( J  Cn  K ) )  -> 
( F  o.  h
)  e.  ( II 
Cn  K ) )
10249, 54, 101syl2anc 665 . . . . . . . . . . . . 13  |-  ( ( ( ph  /\  f  e.  U. V )  /\  h  e.  U. V )  ->  ( F  o.  h )  e.  ( II  Cn  K ) )
10380a1i 11 . . . . . . . . . . . . . . . 16  |-  ( ( ( ph  /\  f  e.  U. V )  /\  h  e.  U. V )  ->  II  e.  (TopOn `  ( 0 [,] 1
) ) )
104 cnf2 20196 . . . . . . . . . . . . . . . 16  |-  ( ( II  e.  (TopOn `  ( 0 [,] 1
) )  /\  J  e.  (TopOn `  X )  /\  h  e.  (
II  Cn  J )
)  ->  h :
( 0 [,] 1
) --> X )
105103, 65, 49, 104syl3anc 1264 . . . . . . . . . . . . . . 15  |-  ( ( ( ph  /\  f  e.  U. V )  /\  h  e.  U. V )  ->  h : ( 0 [,] 1 ) --> X )
106 fvco3 5958 . . . . . . . . . . . . . . 15  |-  ( ( h : ( 0 [,] 1 ) --> X  /\  0  e.  ( 0 [,] 1 ) )  ->  ( ( F  o.  h ) `  0 )  =  ( F `  (
h `  0 )
) )
107105, 84, 106sylancl 666 . . . . . . . . . . . . . 14  |-  ( ( ( ph  /\  f  e.  U. V )  /\  h  e.  U. V )  ->  ( ( F  o.  h ) ` 
0 )  =  ( F `  ( h `
 0 ) ) )
10852fveq2d 5885 . . . . . . . . . . . . . 14  |-  ( ( ( ph  /\  f  e.  U. V )  /\  h  e.  U. V )  ->  ( F `  ( h `  0
) )  =  ( F `  A ) )
10912ad2antrr 730 . . . . . . . . . . . . . 14  |-  ( ( ( ph  /\  f  e.  U. V )  /\  h  e.  U. V )  ->  ( F `  A )  =  B )
110107, 108, 1093eqtrd 2474 . . . . . . . . . . . . 13  |-  ( ( ( ph  /\  f  e.  U. V )  /\  h  e.  U. V )  ->  ( ( F  o.  h ) ` 
0 )  =  B )
111 fvco3 5958 . . . . . . . . . . . . . . 15  |-  ( ( h : ( 0 [,] 1 ) --> X  /\  1  e.  ( 0 [,] 1 ) )  ->  ( ( F  o.  h ) `  1 )  =  ( F `  (
h `  1 )
) )
112105, 90, 111sylancl 666 . . . . . . . . . . . . . 14  |-  ( ( ( ph  /\  f  e.  U. V )  /\  h  e.  U. V )  ->  ( ( F  o.  h ) ` 
1 )  =  ( F `  ( h `
 1 ) ) )
11363fveq2d 5885 . . . . . . . . . . . . . 14  |-  ( ( ( ph  /\  f  e.  U. V )  /\  h  e.  U. V )  ->  ( F `  ( h `  1
) )  =  ( F `  A ) )
114112, 113, 1093eqtrd 2474 . . . . . . . . . . . . 13  |-  ( ( ( ph  /\  f  e.  U. V )  /\  h  e.  U. V )  ->  ( ( F  o.  h ) ` 
1 )  =  B )
115 eqidd 2430 . . . . . . . . . . . . . . 15  |-  ( ph  ->  ( Base `  Q
)  =  ( Base `  Q ) )
11617, 11, 16, 115pi1eluni 21966 . . . . . . . . . . . . . 14  |-  ( ph  ->  ( ( F  o.  h )  e.  U. ( Base `  Q )  <->  ( ( F  o.  h
)  e.  ( II 
Cn  K )  /\  ( ( F  o.  h ) `  0
)  =  B  /\  ( ( F  o.  h ) `  1
)  =  B ) ) )
117116ad2antrr 730 . . . . . . . . . . . . 13  |-  ( ( ( ph  /\  f  e.  U. V )  /\  h  e.  U. V )  ->  ( ( F  o.  h )  e. 
U. ( Base `  Q
)  <->  ( ( F  o.  h )  e.  ( II  Cn  K
)  /\  ( ( F  o.  h ) `  0 )  =  B  /\  ( ( F  o.  h ) `
 1 )  =  B ) ) )
118102, 110, 114, 117mpbir3and 1188 . . . . . . . . . . . 12  |-  ( ( ( ph  /\  f  e.  U. V )  /\  h  e.  U. V )  ->  ( F  o.  h )  e.  U. ( Base `  Q )
)
11917, 73, 74, 75, 76, 100, 118pi1addval 21972 . . . . . . . . . . 11  |-  ( ( ( ph  /\  f  e.  U. V )  /\  h  e.  U. V )  ->  ( [ ( F  o.  f ) ] (  ~=ph  `  K
) ( +g  `  Q
) [ ( F  o.  h ) ] (  ~=ph  `  K ) )  =  [ ( ( F  o.  f
) ( *p `  K ) ( F  o.  h ) ) ] (  ~=ph  `  K
) )
12056, 72, 1193eqtr4d 2480 . . . . . . . . . 10  |-  ( ( ( ph  /\  f  e.  U. V )  /\  h  e.  U. V )  ->  ( G `  [ ( f ( *p `  J ) h ) ] ( 
~=ph  `  J ) )  =  ( [ ( F  o.  f ) ] (  ~=ph  `  K
) ( +g  `  Q
) [ ( F  o.  h ) ] (  ~=ph  `  K ) ) )
121 eqid 2429 . . . . . . . . . . . 12  |-  ( +g  `  P )  =  ( +g  `  P )
122 simplr 760 . . . . . . . . . . . 12  |-  ( ( ( ph  /\  f  e.  U. V )  /\  h  e.  U. V )  ->  f  e.  U. V )
123 simpr 462 . . . . . . . . . . . 12  |-  ( ( ( ph  /\  f  e.  U. V )  /\  h  e.  U. V )  ->  h  e.  U. V )
1243, 21, 65, 66, 121, 122, 123pi1addval 21972 . . . . . . . . . . 11  |-  ( ( ( ph  /\  f  e.  U. V )  /\  h  e.  U. V )  ->  ( [ f ] (  ~=ph  `  J
) ( +g  `  P
) [ h ]
(  ~=ph  `  J )
)  =  [ ( f ( *p `  J ) h ) ] (  ~=ph  `  J
) )
125124fveq2d 5885 . . . . . . . . . 10  |-  ( ( ( ph  /\  f  e.  U. V )  /\  h  e.  U. V )  ->  ( G `  ( [ f ] ( 
~=ph  `  J ) ( +g  `  P ) [ h ] ( 
~=ph  `  J ) ) )  =  ( G `
 [ ( f ( *p `  J
) h ) ] (  ~=ph  `  J ) ) )
1263, 17, 21, 22, 1, 6, 2, 12pi1coval 21984 . . . . . . . . . . . 12  |-  ( (
ph  /\  f  e.  U. V )  ->  ( G `  [ f ] (  ~=ph  `  J
) )  =  [
( F  o.  f
) ] (  ~=ph  `  K ) )
127126adantr 466 . . . . . . . . . . 11  |-  ( ( ( ph  /\  f  e.  U. V )  /\  h  e.  U. V )  ->  ( G `  [ f ] ( 
~=ph  `  J ) )  =  [ ( F  o.  f ) ] (  ~=ph  `  K ) )
1283, 17, 21, 22, 1, 6, 2, 12pi1coval 21984 . . . . . . . . . . . 12  |-  ( (
ph  /\  h  e.  U. V )  ->  ( G `  [ h ] (  ~=ph  `  J
) )  =  [
( F  o.  h
) ] (  ~=ph  `  K ) )
129128adantlr 719 . . . . . . . . . . 11  |-  ( ( ( ph  /\  f  e.  U. V )  /\  h  e.  U. V )  ->  ( G `  [ h ] ( 
~=ph  `  J ) )  =  [ ( F  o.  h ) ] (  ~=ph  `  K ) )
130127, 129oveq12d 6323 . . . . . . . . . 10  |-  ( ( ( ph  /\  f  e.  U. V )  /\  h  e.  U. V )  ->  ( ( G `
 [ f ] (  ~=ph  `  J ) ) ( +g  `  Q
) ( G `  [ h ] ( 
~=ph  `  J ) ) )  =  ( [ ( F  o.  f
) ] (  ~=ph  `  K ) ( +g  `  Q ) [ ( F  o.  h ) ] (  ~=ph  `  K
) ) )
131120, 125, 1303eqtr4d 2480 . . . . . . . . 9  |-  ( ( ( ph  /\  f  e.  U. V )  /\  h  e.  U. V )  ->  ( G `  ( [ f ] ( 
~=ph  `  J ) ( +g  `  P ) [ h ] ( 
~=ph  `  J ) ) )  =  ( ( G `  [ f ] (  ~=ph  `  J
) ) ( +g  `  Q ) ( G `
 [ h ]
(  ~=ph  `  J )
) ) )
13228, 39, 131ectocld 7438 . . . . . . . 8  |-  ( ( ( ph  /\  f  e.  U. V )  /\  z  e.  ( U. V /. (  ~=ph  `  J
) ) )  -> 
( G `  ( [ f ] ( 
~=ph  `  J ) ( +g  `  P ) z ) )  =  ( ( G `  [ f ] ( 
~=ph  `  J ) ) ( +g  `  Q
) ( G `  z ) ) )
133132ralrimiva 2846 . . . . . . 7  |-  ( (
ph  /\  f  e.  U. V )  ->  A. z  e.  ( U. V /. (  ~=ph  `  J )
) ( G `  ( [ f ] ( 
~=ph  `  J ) ( +g  `  P ) z ) )  =  ( ( G `  [ f ] ( 
~=ph  `  J ) ) ( +g  `  Q
) ( G `  z ) ) )
13425adantr 466 . . . . . . . 8  |-  ( (
ph  /\  f  e.  U. V )  ->  V  =  ( U. V /. (  ~=ph  `  J
) ) )
135134raleqdv 3038 . . . . . . 7  |-  ( (
ph  /\  f  e.  U. V )  ->  ( A. z  e.  V  ( G `  ( [ f ] (  ~=ph  `  J ) ( +g  `  P ) z ) )  =  ( ( G `  [ f ] (  ~=ph  `  J
) ) ( +g  `  Q ) ( G `
 z ) )  <->  A. z  e.  ( U. V /. (  ~=ph  `  J ) ) ( G `  ( [ f ] (  ~=ph  `  J ) ( +g  `  P ) z ) )  =  ( ( G `  [ f ] (  ~=ph  `  J
) ) ( +g  `  Q ) ( G `
 z ) ) ) )
136133, 135mpbird 235 . . . . . 6  |-  ( (
ph  /\  f  e.  U. V )  ->  A. z  e.  V  ( G `  ( [ f ] (  ~=ph  `  J ) ( +g  `  P
) z ) )  =  ( ( G `
 [ f ] (  ~=ph  `  J ) ) ( +g  `  Q
) ( G `  z ) ) )
13728, 34, 136ectocld 7438 . . . . 5  |-  ( (
ph  /\  y  e.  ( U. V /. (  ~=ph  `  J ) ) )  ->  A. z  e.  V  ( G `  ( y ( +g  `  P
) z ) )  =  ( ( G `
 y ) ( +g  `  Q ) ( G `  z
) ) )
13827, 137syldan 472 . . . 4  |-  ( (
ph  /\  y  e.  V )  ->  A. z  e.  V  ( G `  ( y ( +g  `  P ) z ) )  =  ( ( G `  y ) ( +g  `  Q
) ( G `  z ) ) )
139138ralrimiva 2846 . . 3  |-  ( ph  ->  A. y  e.  V  A. z  e.  V  ( G `  ( y ( +g  `  P
) z ) )  =  ( ( G `
 y ) ( +g  `  Q ) ( G `  z
) ) )
14023, 139jca 534 . 2  |-  ( ph  ->  ( G : V --> ( Base `  Q )  /\  A. y  e.  V  A. z  e.  V  ( G `  ( y ( +g  `  P
) z ) )  =  ( ( G `
 y ) ( +g  `  Q ) ( G `  z
) ) ) )
14121, 73, 121, 76isghm 16834 . 2  |-  ( G  e.  ( P  GrpHom  Q )  <->  ( ( P  e.  Grp  /\  Q  e.  Grp )  /\  ( G : V --> ( Base `  Q )  /\  A. y  e.  V  A. z  e.  V  ( G `  ( y
( +g  `  P ) z ) )  =  ( ( G `  y ) ( +g  `  Q ) ( G `
 z ) ) ) ) )
14220, 140, 141sylanbrc 668 1  |-  ( ph  ->  G  e.  ( P 
GrpHom  Q ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 187    /\ wa 370    /\ w3a 982    = wceq 1437    e. wcel 1870   A.wral 2782   <.cop 4008   U.cuni 4222    |-> cmpt 4484   ran crn 4855    o. ccom 4858   -->wf 5597   ` cfv 5601  (class class class)co 6305   [cec 7369   /.cqs 7370   0cc0 9538   1c1 9539   [,]cicc 11638   Basecbs 15084   +g cplusg 15152   Grpcgrp 16620    GrpHom cghm 16831   Topctop 19848  TopOnctopon 19849    Cn ccn 20171   IIcii 21803    ~=ph cphtpc 21893   *pcpco 21924    pi1 cpi1 21927
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1665  ax-4 1678  ax-5 1751  ax-6 1797  ax-7 1841  ax-8 1872  ax-9 1874  ax-10 1889  ax-11 1894  ax-12 1907  ax-13 2055  ax-ext 2407  ax-rep 4538  ax-sep 4548  ax-nul 4556  ax-pow 4603  ax-pr 4661  ax-un 6597  ax-inf2 8146  ax-cnex 9594  ax-resscn 9595  ax-1cn 9596  ax-icn 9597  ax-addcl 9598  ax-addrcl 9599  ax-mulcl 9600  ax-mulrcl 9601  ax-mulcom 9602  ax-addass 9603  ax-mulass 9604  ax-distr 9605  ax-i2m1 9606  ax-1ne0 9607  ax-1rid 9608  ax-rnegex 9609  ax-rrecex 9610  ax-cnre 9611  ax-pre-lttri 9612  ax-pre-lttrn 9613  ax-pre-ltadd 9614  ax-pre-mulgt0 9615  ax-pre-sup 9616  ax-addf 9617  ax-mulf 9618
This theorem depends on definitions:  df-bi 188  df-or 371  df-an 372  df-3or 983  df-3an 984  df-tru 1440  df-ex 1660  df-nf 1664  df-sb 1790  df-eu 2270  df-mo 2271  df-clab 2415  df-cleq 2421  df-clel 2424  df-nfc 2579  df-ne 2627  df-nel 2628  df-ral 2787  df-rex 2788  df-reu 2789  df-rmo 2790  df-rab 2791  df-v 3089  df-sbc 3306  df-csb 3402  df-dif 3445  df-un 3447  df-in 3449  df-ss 3456  df-pss 3458  df-nul 3768  df-if 3916  df-pw 3987  df-sn 4003  df-pr 4005  df-tp 4007  df-op 4009  df-uni 4223  df-int 4259  df-iun 4304  df-iin 4305  df-br 4427  df-opab 4485  df-mpt 4486  df-tr 4521  df-eprel 4765  df-id 4769  df-po 4775  df-so 4776  df-fr 4813  df-se 4814  df-we 4815  df-xp 4860  df-rel 4861  df-cnv 4862  df-co 4863  df-dm 4864  df-rn 4865  df-res 4866  df-ima 4867  df-pred 5399  df-ord 5445  df-on 5446  df-lim 5447  df-suc 5448  df-iota 5565  df-fun 5603  df-fn 5604  df-f 5605  df-f1 5606  df-fo 5607  df-f1o 5608  df-fv 5609  df-isom 5610  df-riota 6267  df-ov 6308  df-oprab 6309  df-mpt2 6310  df-of 6545  df-om 6707  df-1st 6807  df-2nd 6808  df-supp 6926  df-wrecs 7036  df-recs 7098  df-rdg 7136  df-1o 7190  df-2o 7191  df-oadd 7194  df-er 7371  df-ec 7373  df-qs 7377  df-map 7482  df-ixp 7531  df-en 7578  df-dom 7579  df-sdom 7580  df-fin 7581  df-fsupp 7890  df-fi 7931  df-sup 7962  df-oi 8025  df-card 8372  df-cda 8596  df-pnf 9676  df-mnf 9677  df-xr 9678  df-ltxr 9679  df-le 9680  df-sub 9861  df-neg 9862  df-div 10269  df-nn 10610  df-2 10668  df-3 10669  df-4 10670  df-5 10671  df-6 10672  df-7 10673  df-8 10674  df-9 10675  df-10 10676  df-n0 10870  df-z 10938  df-dec 11052  df-uz 11160  df-q 11265  df-rp 11303  df-xneg 11409  df-xadd 11410  df-xmul 11411  df-ioo 11639  df-icc 11642  df-fz 11783  df-fzo 11914  df-seq 12211  df-exp 12270  df-hash 12513  df-cj 13141  df-re 13142  df-im 13143  df-sqrt 13277  df-abs 13278  df-struct 15086  df-ndx 15087  df-slot 15088  df-base 15089  df-sets 15090  df-ress 15091  df-plusg 15165  df-mulr 15166  df-starv 15167  df-sca 15168  df-vsca 15169  df-ip 15170  df-tset 15171  df-ple 15172  df-ds 15174  df-unif 15175  df-hom 15176  df-cco 15177  df-rest 15280  df-topn 15281  df-0g 15299  df-gsum 15300  df-topgen 15301  df-pt 15302  df-prds 15305  df-xrs 15359  df-qtop 15364  df-imas 15365  df-qus 15366  df-xps 15367  df-mre 15443  df-mrc 15444  df-acs 15446  df-mgm 16439  df-sgrp 16478  df-mnd 16488  df-submnd 16534  df-grp 16624  df-mulg 16627  df-ghm 16832  df-cntz 16922  df-cmn 17367  df-psmet 18897  df-xmet 18898  df-met 18899  df-bl 18900  df-mopn 18901  df-cnfld 18906  df-top 19852  df-bases 19853  df-topon 19854  df-topsp 19855  df-cld 19965  df-cn 20174  df-cnp 20175  df-tx 20508  df-hmeo 20701  df-xms 21266  df-ms 21267  df-tms 21268  df-ii 21805  df-htpy 21894  df-phtpy 21895  df-phtpc 21916  df-pco 21929  df-om1 21930  df-pi1 21932
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator