MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  pi1cof Structured version   Unicode version

Theorem pi1cof 21429
Description: Functionality of the loop transfer function on the equivalence class of a path. (Contributed by Mario Carneiro, 23-Dec-2016.)
Hypotheses
Ref Expression
pi1co.p  |-  P  =  ( J  pi1  A )
pi1co.q  |-  Q  =  ( K  pi1  B )
pi1co.v  |-  V  =  ( Base `  P
)
pi1co.g  |-  G  =  ran  ( g  e. 
U. V  |->  <. [ g ] (  ~=ph  `  J
) ,  [ ( F  o.  g ) ] (  ~=ph  `  K
) >. )
pi1co.j  |-  ( ph  ->  J  e.  (TopOn `  X ) )
pi1co.f  |-  ( ph  ->  F  e.  ( J  Cn  K ) )
pi1co.a  |-  ( ph  ->  A  e.  X )
pi1co.b  |-  ( ph  ->  ( F `  A
)  =  B )
Assertion
Ref Expression
pi1cof  |-  ( ph  ->  G : V --> ( Base `  Q ) )
Distinct variable groups:    A, g    g, F    g, J    ph, g    g, K    P, g    Q, g   
g, V
Allowed substitution hints:    B( g)    G( g)    X( g)

Proof of Theorem pi1cof
Dummy variables  s  h are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 pi1co.g . . . 4  |-  G  =  ran  ( g  e. 
U. V  |->  <. [ g ] (  ~=ph  `  J
) ,  [ ( F  o.  g ) ] (  ~=ph  `  K
) >. )
2 fvex 5863 . . . . 5  |-  (  ~=ph  `  J )  e.  _V
3 ecexg 7314 . . . . 5  |-  ( ( 
~=ph  `  J )  e. 
_V  ->  [ g ] (  ~=ph  `  J )  e.  _V )
42, 3mp1i 12 . . . 4  |-  ( (
ph  /\  g  e.  U. V )  ->  [ g ] (  ~=ph  `  J
)  e.  _V )
5 pi1co.q . . . . 5  |-  Q  =  ( K  pi1  B )
6 eqid 2441 . . . . 5  |-  ( Base `  Q )  =  (
Base `  Q )
7 pi1co.f . . . . . . . 8  |-  ( ph  ->  F  e.  ( J  Cn  K ) )
8 cntop2 19612 . . . . . . . 8  |-  ( F  e.  ( J  Cn  K )  ->  K  e.  Top )
97, 8syl 16 . . . . . . 7  |-  ( ph  ->  K  e.  Top )
10 eqid 2441 . . . . . . . 8  |-  U. K  =  U. K
1110toptopon 19304 . . . . . . 7  |-  ( K  e.  Top  <->  K  e.  (TopOn `  U. K ) )
129, 11sylib 196 . . . . . 6  |-  ( ph  ->  K  e.  (TopOn `  U. K ) )
1312adantr 465 . . . . 5  |-  ( (
ph  /\  g  e.  U. V )  ->  K  e.  (TopOn `  U. K ) )
14 pi1co.b . . . . . . 7  |-  ( ph  ->  ( F `  A
)  =  B )
15 pi1co.j . . . . . . . . 9  |-  ( ph  ->  J  e.  (TopOn `  X ) )
16 cnf2 19620 . . . . . . . . 9  |-  ( ( J  e.  (TopOn `  X )  /\  K  e.  (TopOn `  U. K )  /\  F  e.  ( J  Cn  K ) )  ->  F : X
--> U. K )
1715, 12, 7, 16syl3anc 1227 . . . . . . . 8  |-  ( ph  ->  F : X --> U. K
)
18 pi1co.a . . . . . . . 8  |-  ( ph  ->  A  e.  X )
1917, 18ffvelrnd 6014 . . . . . . 7  |-  ( ph  ->  ( F `  A
)  e.  U. K
)
2014, 19eqeltrrd 2530 . . . . . 6  |-  ( ph  ->  B  e.  U. K
)
2120adantr 465 . . . . 5  |-  ( (
ph  /\  g  e.  U. V )  ->  B  e.  U. K )
22 pi1co.p . . . . . . . . 9  |-  P  =  ( J  pi1  A )
23 pi1co.v . . . . . . . . . 10  |-  V  =  ( Base `  P
)
2423a1i 11 . . . . . . . . 9  |-  ( ph  ->  V  =  ( Base `  P ) )
2522, 15, 18, 24pi1eluni 21412 . . . . . . . 8  |-  ( ph  ->  ( g  e.  U. V 
<->  ( g  e.  ( II  Cn  J )  /\  ( g ` 
0 )  =  A  /\  ( g ` 
1 )  =  A ) ) )
2625biimpa 484 . . . . . . 7  |-  ( (
ph  /\  g  e.  U. V )  ->  (
g  e.  ( II 
Cn  J )  /\  ( g `  0
)  =  A  /\  ( g `  1
)  =  A ) )
2726simp1d 1007 . . . . . 6  |-  ( (
ph  /\  g  e.  U. V )  ->  g  e.  ( II  Cn  J
) )
287adantr 465 . . . . . 6  |-  ( (
ph  /\  g  e.  U. V )  ->  F  e.  ( J  Cn  K
) )
29 cnco 19637 . . . . . 6  |-  ( ( g  e.  ( II 
Cn  J )  /\  F  e.  ( J  Cn  K ) )  -> 
( F  o.  g
)  e.  ( II 
Cn  K ) )
3027, 28, 29syl2anc 661 . . . . 5  |-  ( (
ph  /\  g  e.  U. V )  ->  ( F  o.  g )  e.  ( II  Cn  K
) )
31 iitopon 21253 . . . . . . . . 9  |-  II  e.  (TopOn `  ( 0 [,] 1 ) )
3231a1i 11 . . . . . . . 8  |-  ( (
ph  /\  g  e.  U. V )  ->  II  e.  (TopOn `  ( 0 [,] 1 ) ) )
3315adantr 465 . . . . . . . 8  |-  ( (
ph  /\  g  e.  U. V )  ->  J  e.  (TopOn `  X )
)
34 cnf2 19620 . . . . . . . 8  |-  ( ( II  e.  (TopOn `  ( 0 [,] 1
) )  /\  J  e.  (TopOn `  X )  /\  g  e.  (
II  Cn  J )
)  ->  g :
( 0 [,] 1
) --> X )
3532, 33, 27, 34syl3anc 1227 . . . . . . 7  |-  ( (
ph  /\  g  e.  U. V )  ->  g : ( 0 [,] 1 ) --> X )
36 0elunit 11644 . . . . . . 7  |-  0  e.  ( 0 [,] 1
)
37 fvco3 5932 . . . . . . 7  |-  ( ( g : ( 0 [,] 1 ) --> X  /\  0  e.  ( 0 [,] 1 ) )  ->  ( ( F  o.  g ) `  0 )  =  ( F `  (
g `  0 )
) )
3835, 36, 37sylancl 662 . . . . . 6  |-  ( (
ph  /\  g  e.  U. V )  ->  (
( F  o.  g
) `  0 )  =  ( F `  ( g `  0
) ) )
3926simp2d 1008 . . . . . . 7  |-  ( (
ph  /\  g  e.  U. V )  ->  (
g `  0 )  =  A )
4039fveq2d 5857 . . . . . 6  |-  ( (
ph  /\  g  e.  U. V )  ->  ( F `  ( g `  0 ) )  =  ( F `  A ) )
4114adantr 465 . . . . . 6  |-  ( (
ph  /\  g  e.  U. V )  ->  ( F `  A )  =  B )
4238, 40, 413eqtrd 2486 . . . . 5  |-  ( (
ph  /\  g  e.  U. V )  ->  (
( F  o.  g
) `  0 )  =  B )
43 1elunit 11645 . . . . . . 7  |-  1  e.  ( 0 [,] 1
)
44 fvco3 5932 . . . . . . 7  |-  ( ( g : ( 0 [,] 1 ) --> X  /\  1  e.  ( 0 [,] 1 ) )  ->  ( ( F  o.  g ) `  1 )  =  ( F `  (
g `  1 )
) )
4535, 43, 44sylancl 662 . . . . . 6  |-  ( (
ph  /\  g  e.  U. V )  ->  (
( F  o.  g
) `  1 )  =  ( F `  ( g `  1
) ) )
4626simp3d 1009 . . . . . . 7  |-  ( (
ph  /\  g  e.  U. V )  ->  (
g `  1 )  =  A )
4746fveq2d 5857 . . . . . 6  |-  ( (
ph  /\  g  e.  U. V )  ->  ( F `  ( g `  1 ) )  =  ( F `  A ) )
4845, 47, 413eqtrd 2486 . . . . 5  |-  ( (
ph  /\  g  e.  U. V )  ->  (
( F  o.  g
) `  1 )  =  B )
495, 6, 13, 21, 30, 42, 48elpi1i 21416 . . . 4  |-  ( (
ph  /\  g  e.  U. V )  ->  [ ( F  o.  g ) ] (  ~=ph  `  K
)  e.  ( Base `  Q ) )
50 eceq1 7346 . . . 4  |-  ( g  =  h  ->  [ g ] (  ~=ph  `  J
)  =  [ h ] (  ~=ph  `  J
) )
51 coeq2 5148 . . . . 5  |-  ( g  =  h  ->  ( F  o.  g )  =  ( F  o.  h ) )
5251eceq1d 7347 . . . 4  |-  ( g  =  h  ->  [ ( F  o.  g ) ] (  ~=ph  `  K
)  =  [ ( F  o.  h ) ] (  ~=ph  `  K
) )
53 phtpcer 21365 . . . . . 6  |-  (  ~=ph  `  K )  Er  (
II  Cn  K )
5453a1i 11 . . . . 5  |-  ( (
ph  /\  ( g  e.  U. V  /\  h  e.  U. V  /\  [
g ] (  ~=ph  `  J )  =  [
h ] (  ~=ph  `  J ) ) )  ->  (  ~=ph  `  K
)  Er  ( II 
Cn  K ) )
55 simpr3 1003 . . . . . . 7  |-  ( (
ph  /\  ( g  e.  U. V  /\  h  e.  U. V  /\  [
g ] (  ~=ph  `  J )  =  [
h ] (  ~=ph  `  J ) ) )  ->  [ g ] (  ~=ph  `  J )  =  [ h ]
(  ~=ph  `  J )
)
56 phtpcer 21365 . . . . . . . . 9  |-  (  ~=ph  `  J )  Er  (
II  Cn  J )
5756a1i 11 . . . . . . . 8  |-  ( (
ph  /\  ( g  e.  U. V  /\  h  e.  U. V  /\  [
g ] (  ~=ph  `  J )  =  [
h ] (  ~=ph  `  J ) ) )  ->  (  ~=ph  `  J
)  Er  ( II 
Cn  J ) )
58 simpr1 1001 . . . . . . . . . 10  |-  ( (
ph  /\  ( g  e.  U. V  /\  h  e.  U. V  /\  [
g ] (  ~=ph  `  J )  =  [
h ] (  ~=ph  `  J ) ) )  ->  g  e.  U. V )
5925adantr 465 . . . . . . . . . 10  |-  ( (
ph  /\  ( g  e.  U. V  /\  h  e.  U. V  /\  [
g ] (  ~=ph  `  J )  =  [
h ] (  ~=ph  `  J ) ) )  ->  ( g  e. 
U. V  <->  ( g  e.  ( II  Cn  J
)  /\  ( g `  0 )  =  A  /\  ( g `
 1 )  =  A ) ) )
6058, 59mpbid 210 . . . . . . . . 9  |-  ( (
ph  /\  ( g  e.  U. V  /\  h  e.  U. V  /\  [
g ] (  ~=ph  `  J )  =  [
h ] (  ~=ph  `  J ) ) )  ->  ( g  e.  ( II  Cn  J
)  /\  ( g `  0 )  =  A  /\  ( g `
 1 )  =  A ) )
6160simp1d 1007 . . . . . . . 8  |-  ( (
ph  /\  ( g  e.  U. V  /\  h  e.  U. V  /\  [
g ] (  ~=ph  `  J )  =  [
h ] (  ~=ph  `  J ) ) )  ->  g  e.  ( II  Cn  J ) )
6257, 61erth 7355 . . . . . . 7  |-  ( (
ph  /\  ( g  e.  U. V  /\  h  e.  U. V  /\  [
g ] (  ~=ph  `  J )  =  [
h ] (  ~=ph  `  J ) ) )  ->  ( g ( 
~=ph  `  J ) h  <->  [ g ] ( 
~=ph  `  J )  =  [ h ] ( 
~=ph  `  J ) ) )
6355, 62mpbird 232 . . . . . 6  |-  ( (
ph  /\  ( g  e.  U. V  /\  h  e.  U. V  /\  [
g ] (  ~=ph  `  J )  =  [
h ] (  ~=ph  `  J ) ) )  ->  g (  ~=ph  `  J ) h )
647adantr 465 . . . . . 6  |-  ( (
ph  /\  ( g  e.  U. V  /\  h  e.  U. V  /\  [
g ] (  ~=ph  `  J )  =  [
h ] (  ~=ph  `  J ) ) )  ->  F  e.  ( J  Cn  K ) )
6563, 64phtpcco2 21369 . . . . 5  |-  ( (
ph  /\  ( g  e.  U. V  /\  h  e.  U. V  /\  [
g ] (  ~=ph  `  J )  =  [
h ] (  ~=ph  `  J ) ) )  ->  ( F  o.  g ) (  ~=ph  `  K ) ( F  o.  h ) )
6654, 65erthi 7357 . . . 4  |-  ( (
ph  /\  ( g  e.  U. V  /\  h  e.  U. V  /\  [
g ] (  ~=ph  `  J )  =  [
h ] (  ~=ph  `  J ) ) )  ->  [ ( F  o.  g ) ] (  ~=ph  `  K )  =  [ ( F  o.  h ) ] (  ~=ph  `  K ) )
671, 4, 49, 50, 52, 66fliftfund 6193 . . 3  |-  ( ph  ->  Fun  G )
681, 4, 49fliftf 6195 . . 3  |-  ( ph  ->  ( Fun  G  <->  G : ran  ( g  e.  U. V  |->  [ g ] (  ~=ph  `  J ) ) --> ( Base `  Q
) ) )
6967, 68mpbid 210 . 2  |-  ( ph  ->  G : ran  (
g  e.  U. V  |->  [ g ] ( 
~=ph  `  J ) ) --> ( Base `  Q
) )
7022, 15, 18, 24pi1bas2 21411 . . . 4  |-  ( ph  ->  V  =  ( U. V /. (  ~=ph  `  J
) ) )
71 df-qs 7316 . . . . 5  |-  ( U. V /. (  ~=ph  `  J
) )  =  {
s  |  E. g  e.  U. V s  =  [ g ] ( 
~=ph  `  J ) }
72 eqid 2441 . . . . . 6  |-  ( g  e.  U. V  |->  [ g ] (  ~=ph  `  J ) )  =  ( g  e.  U. V  |->  [ g ] (  ~=ph  `  J ) )
7372rnmpt 5235 . . . . 5  |-  ran  (
g  e.  U. V  |->  [ g ] ( 
~=ph  `  J ) )  =  { s  |  E. g  e.  U. V s  =  [
g ] (  ~=ph  `  J ) }
7471, 73eqtr4i 2473 . . . 4  |-  ( U. V /. (  ~=ph  `  J
) )  =  ran  ( g  e.  U. V  |->  [ g ] (  ~=ph  `  J ) )
7570, 74syl6eq 2498 . . 3  |-  ( ph  ->  V  =  ran  (
g  e.  U. V  |->  [ g ] ( 
~=ph  `  J ) ) )
7675feq2d 5705 . 2  |-  ( ph  ->  ( G : V --> ( Base `  Q )  <->  G : ran  ( g  e.  U. V  |->  [ g ] (  ~=ph  `  J ) ) --> (
Base `  Q )
) )
7769, 76mpbird 232 1  |-  ( ph  ->  G : V --> ( Base `  Q ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 184    /\ wa 369    /\ w3a 972    = wceq 1381    e. wcel 1802   {cab 2426   E.wrex 2792   _Vcvv 3093   <.cop 4017   U.cuni 4231   class class class wbr 4434    |-> cmpt 4492   ran crn 4987    o. ccom 4990   Fun wfun 5569   -->wf 5571   ` cfv 5575  (class class class)co 6278    Er wer 7307   [cec 7308   /.cqs 7309   0cc0 9492   1c1 9493   [,]cicc 11538   Basecbs 14506   Topctop 19264  TopOnctopon 19265    Cn ccn 19595   IIcii 21249    ~=ph cphtpc 21339    pi1 cpi1 21373
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1603  ax-4 1616  ax-5 1689  ax-6 1732  ax-7 1774  ax-8 1804  ax-9 1806  ax-10 1821  ax-11 1826  ax-12 1838  ax-13 1983  ax-ext 2419  ax-rep 4545  ax-sep 4555  ax-nul 4563  ax-pow 4612  ax-pr 4673  ax-un 6574  ax-inf2 8058  ax-cnex 9548  ax-resscn 9549  ax-1cn 9550  ax-icn 9551  ax-addcl 9552  ax-addrcl 9553  ax-mulcl 9554  ax-mulrcl 9555  ax-mulcom 9556  ax-addass 9557  ax-mulass 9558  ax-distr 9559  ax-i2m1 9560  ax-1ne0 9561  ax-1rid 9562  ax-rnegex 9563  ax-rrecex 9564  ax-cnre 9565  ax-pre-lttri 9566  ax-pre-lttrn 9567  ax-pre-ltadd 9568  ax-pre-mulgt0 9569  ax-pre-sup 9570  ax-mulf 9572
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3or 973  df-3an 974  df-tru 1384  df-ex 1598  df-nf 1602  df-sb 1725  df-eu 2270  df-mo 2271  df-clab 2427  df-cleq 2433  df-clel 2436  df-nfc 2591  df-ne 2638  df-nel 2639  df-ral 2796  df-rex 2797  df-reu 2798  df-rmo 2799  df-rab 2800  df-v 3095  df-sbc 3312  df-csb 3419  df-dif 3462  df-un 3464  df-in 3466  df-ss 3473  df-pss 3475  df-nul 3769  df-if 3924  df-pw 3996  df-sn 4012  df-pr 4014  df-tp 4016  df-op 4018  df-uni 4232  df-int 4269  df-iun 4314  df-iin 4315  df-br 4435  df-opab 4493  df-mpt 4494  df-tr 4528  df-eprel 4778  df-id 4782  df-po 4787  df-so 4788  df-fr 4825  df-se 4826  df-we 4827  df-ord 4868  df-on 4869  df-lim 4870  df-suc 4871  df-xp 4992  df-rel 4993  df-cnv 4994  df-co 4995  df-dm 4996  df-rn 4997  df-res 4998  df-ima 4999  df-iota 5538  df-fun 5577  df-fn 5578  df-f 5579  df-f1 5580  df-fo 5581  df-f1o 5582  df-fv 5583  df-isom 5584  df-riota 6239  df-ov 6281  df-oprab 6282  df-mpt2 6283  df-of 6522  df-om 6683  df-1st 6782  df-2nd 6783  df-supp 6901  df-recs 7041  df-rdg 7075  df-1o 7129  df-2o 7130  df-oadd 7133  df-er 7310  df-ec 7312  df-qs 7316  df-map 7421  df-ixp 7469  df-en 7516  df-dom 7517  df-sdom 7518  df-fin 7519  df-fsupp 7829  df-fi 7870  df-sup 7900  df-oi 7935  df-card 8320  df-cda 8548  df-pnf 9630  df-mnf 9631  df-xr 9632  df-ltxr 9633  df-le 9634  df-sub 9809  df-neg 9810  df-div 10210  df-nn 10540  df-2 10597  df-3 10598  df-4 10599  df-5 10600  df-6 10601  df-7 10602  df-8 10603  df-9 10604  df-10 10605  df-n0 10799  df-z 10868  df-dec 10982  df-uz 11088  df-q 11189  df-rp 11227  df-xneg 11324  df-xadd 11325  df-xmul 11326  df-ioo 11539  df-icc 11542  df-fz 11679  df-fzo 11801  df-seq 12084  df-exp 12143  df-hash 12382  df-cj 12908  df-re 12909  df-im 12910  df-sqrt 13044  df-abs 13045  df-struct 14508  df-ndx 14509  df-slot 14510  df-base 14511  df-sets 14512  df-ress 14513  df-plusg 14584  df-mulr 14585  df-starv 14586  df-sca 14587  df-vsca 14588  df-ip 14589  df-tset 14590  df-ple 14591  df-ds 14593  df-unif 14594  df-hom 14595  df-cco 14596  df-rest 14694  df-topn 14695  df-0g 14713  df-gsum 14714  df-topgen 14715  df-pt 14716  df-prds 14719  df-xrs 14773  df-qtop 14778  df-imas 14779  df-qus 14780  df-xps 14781  df-mre 14857  df-mrc 14858  df-acs 14860  df-mgm 15743  df-sgrp 15782  df-mnd 15792  df-submnd 15838  df-mulg 15931  df-cntz 16226  df-cmn 16671  df-psmet 18282  df-xmet 18283  df-met 18284  df-bl 18285  df-mopn 18286  df-cnfld 18292  df-top 19269  df-bases 19271  df-topon 19272  df-topsp 19273  df-cld 19390  df-cn 19598  df-cnp 19599  df-tx 19933  df-hmeo 20126  df-xms 20693  df-ms 20694  df-tms 20695  df-ii 21251  df-htpy 21340  df-phtpy 21341  df-phtpc 21362  df-om1 21376  df-pi1 21378
This theorem is referenced by:  pi1coval  21430  pi1coghm  21431
  Copyright terms: Public domain W3C validator