MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  pi1cof Structured version   Unicode version

Theorem pi1cof 21294
Description: Functionality of the loop transfer function on the equivalence class of a path. (Contributed by Mario Carneiro, 23-Dec-2016.)
Hypotheses
Ref Expression
pi1co.p  |-  P  =  ( J  pi1  A )
pi1co.q  |-  Q  =  ( K  pi1  B )
pi1co.v  |-  V  =  ( Base `  P
)
pi1co.g  |-  G  =  ran  ( g  e. 
U. V  |->  <. [ g ] (  ~=ph  `  J
) ,  [ ( F  o.  g ) ] (  ~=ph  `  K
) >. )
pi1co.j  |-  ( ph  ->  J  e.  (TopOn `  X ) )
pi1co.f  |-  ( ph  ->  F  e.  ( J  Cn  K ) )
pi1co.a  |-  ( ph  ->  A  e.  X )
pi1co.b  |-  ( ph  ->  ( F `  A
)  =  B )
Assertion
Ref Expression
pi1cof  |-  ( ph  ->  G : V --> ( Base `  Q ) )
Distinct variable groups:    A, g    g, F    g, J    ph, g    g, K    P, g    Q, g   
g, V
Allowed substitution hints:    B( g)    G( g)    X( g)

Proof of Theorem pi1cof
Dummy variables  s  h are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 pi1co.g . . . 4  |-  G  =  ran  ( g  e. 
U. V  |->  <. [ g ] (  ~=ph  `  J
) ,  [ ( F  o.  g ) ] (  ~=ph  `  K
) >. )
2 fvex 5874 . . . . 5  |-  (  ~=ph  `  J )  e.  _V
3 ecexg 7312 . . . . 5  |-  ( ( 
~=ph  `  J )  e. 
_V  ->  [ g ] (  ~=ph  `  J )  e.  _V )
42, 3mp1i 12 . . . 4  |-  ( (
ph  /\  g  e.  U. V )  ->  [ g ] (  ~=ph  `  J
)  e.  _V )
5 pi1co.q . . . . 5  |-  Q  =  ( K  pi1  B )
6 eqid 2467 . . . . 5  |-  ( Base `  Q )  =  (
Base `  Q )
7 pi1co.f . . . . . . . 8  |-  ( ph  ->  F  e.  ( J  Cn  K ) )
8 cntop2 19508 . . . . . . . 8  |-  ( F  e.  ( J  Cn  K )  ->  K  e.  Top )
97, 8syl 16 . . . . . . 7  |-  ( ph  ->  K  e.  Top )
10 eqid 2467 . . . . . . . 8  |-  U. K  =  U. K
1110toptopon 19201 . . . . . . 7  |-  ( K  e.  Top  <->  K  e.  (TopOn `  U. K ) )
129, 11sylib 196 . . . . . 6  |-  ( ph  ->  K  e.  (TopOn `  U. K ) )
1312adantr 465 . . . . 5  |-  ( (
ph  /\  g  e.  U. V )  ->  K  e.  (TopOn `  U. K ) )
14 pi1co.b . . . . . . 7  |-  ( ph  ->  ( F `  A
)  =  B )
15 pi1co.j . . . . . . . . 9  |-  ( ph  ->  J  e.  (TopOn `  X ) )
16 cnf2 19516 . . . . . . . . 9  |-  ( ( J  e.  (TopOn `  X )  /\  K  e.  (TopOn `  U. K )  /\  F  e.  ( J  Cn  K ) )  ->  F : X
--> U. K )
1715, 12, 7, 16syl3anc 1228 . . . . . . . 8  |-  ( ph  ->  F : X --> U. K
)
18 pi1co.a . . . . . . . 8  |-  ( ph  ->  A  e.  X )
1917, 18ffvelrnd 6020 . . . . . . 7  |-  ( ph  ->  ( F `  A
)  e.  U. K
)
2014, 19eqeltrrd 2556 . . . . . 6  |-  ( ph  ->  B  e.  U. K
)
2120adantr 465 . . . . 5  |-  ( (
ph  /\  g  e.  U. V )  ->  B  e.  U. K )
22 pi1co.p . . . . . . . . 9  |-  P  =  ( J  pi1  A )
23 pi1co.v . . . . . . . . . 10  |-  V  =  ( Base `  P
)
2423a1i 11 . . . . . . . . 9  |-  ( ph  ->  V  =  ( Base `  P ) )
2522, 15, 18, 24pi1eluni 21277 . . . . . . . 8  |-  ( ph  ->  ( g  e.  U. V 
<->  ( g  e.  ( II  Cn  J )  /\  ( g ` 
0 )  =  A  /\  ( g ` 
1 )  =  A ) ) )
2625biimpa 484 . . . . . . 7  |-  ( (
ph  /\  g  e.  U. V )  ->  (
g  e.  ( II 
Cn  J )  /\  ( g `  0
)  =  A  /\  ( g `  1
)  =  A ) )
2726simp1d 1008 . . . . . 6  |-  ( (
ph  /\  g  e.  U. V )  ->  g  e.  ( II  Cn  J
) )
287adantr 465 . . . . . 6  |-  ( (
ph  /\  g  e.  U. V )  ->  F  e.  ( J  Cn  K
) )
29 cnco 19533 . . . . . 6  |-  ( ( g  e.  ( II 
Cn  J )  /\  F  e.  ( J  Cn  K ) )  -> 
( F  o.  g
)  e.  ( II 
Cn  K ) )
3027, 28, 29syl2anc 661 . . . . 5  |-  ( (
ph  /\  g  e.  U. V )  ->  ( F  o.  g )  e.  ( II  Cn  K
) )
31 iitopon 21118 . . . . . . . . 9  |-  II  e.  (TopOn `  ( 0 [,] 1 ) )
3231a1i 11 . . . . . . . 8  |-  ( (
ph  /\  g  e.  U. V )  ->  II  e.  (TopOn `  ( 0 [,] 1 ) ) )
3315adantr 465 . . . . . . . 8  |-  ( (
ph  /\  g  e.  U. V )  ->  J  e.  (TopOn `  X )
)
34 cnf2 19516 . . . . . . . 8  |-  ( ( II  e.  (TopOn `  ( 0 [,] 1
) )  /\  J  e.  (TopOn `  X )  /\  g  e.  (
II  Cn  J )
)  ->  g :
( 0 [,] 1
) --> X )
3532, 33, 27, 34syl3anc 1228 . . . . . . 7  |-  ( (
ph  /\  g  e.  U. V )  ->  g : ( 0 [,] 1 ) --> X )
36 0elunit 11634 . . . . . . 7  |-  0  e.  ( 0 [,] 1
)
37 fvco3 5942 . . . . . . 7  |-  ( ( g : ( 0 [,] 1 ) --> X  /\  0  e.  ( 0 [,] 1 ) )  ->  ( ( F  o.  g ) `  0 )  =  ( F `  (
g `  0 )
) )
3835, 36, 37sylancl 662 . . . . . 6  |-  ( (
ph  /\  g  e.  U. V )  ->  (
( F  o.  g
) `  0 )  =  ( F `  ( g `  0
) ) )
3926simp2d 1009 . . . . . . 7  |-  ( (
ph  /\  g  e.  U. V )  ->  (
g `  0 )  =  A )
4039fveq2d 5868 . . . . . 6  |-  ( (
ph  /\  g  e.  U. V )  ->  ( F `  ( g `  0 ) )  =  ( F `  A ) )
4114adantr 465 . . . . . 6  |-  ( (
ph  /\  g  e.  U. V )  ->  ( F `  A )  =  B )
4238, 40, 413eqtrd 2512 . . . . 5  |-  ( (
ph  /\  g  e.  U. V )  ->  (
( F  o.  g
) `  0 )  =  B )
43 1elunit 11635 . . . . . . 7  |-  1  e.  ( 0 [,] 1
)
44 fvco3 5942 . . . . . . 7  |-  ( ( g : ( 0 [,] 1 ) --> X  /\  1  e.  ( 0 [,] 1 ) )  ->  ( ( F  o.  g ) `  1 )  =  ( F `  (
g `  1 )
) )
4535, 43, 44sylancl 662 . . . . . 6  |-  ( (
ph  /\  g  e.  U. V )  ->  (
( F  o.  g
) `  1 )  =  ( F `  ( g `  1
) ) )
4626simp3d 1010 . . . . . . 7  |-  ( (
ph  /\  g  e.  U. V )  ->  (
g `  1 )  =  A )
4746fveq2d 5868 . . . . . 6  |-  ( (
ph  /\  g  e.  U. V )  ->  ( F `  ( g `  1 ) )  =  ( F `  A ) )
4845, 47, 413eqtrd 2512 . . . . 5  |-  ( (
ph  /\  g  e.  U. V )  ->  (
( F  o.  g
) `  1 )  =  B )
495, 6, 13, 21, 30, 42, 48elpi1i 21281 . . . 4  |-  ( (
ph  /\  g  e.  U. V )  ->  [ ( F  o.  g ) ] (  ~=ph  `  K
)  e.  ( Base `  Q ) )
50 eceq1 7344 . . . 4  |-  ( g  =  h  ->  [ g ] (  ~=ph  `  J
)  =  [ h ] (  ~=ph  `  J
) )
51 coeq2 5159 . . . . 5  |-  ( g  =  h  ->  ( F  o.  g )  =  ( F  o.  h ) )
5251eceq1d 7345 . . . 4  |-  ( g  =  h  ->  [ ( F  o.  g ) ] (  ~=ph  `  K
)  =  [ ( F  o.  h ) ] (  ~=ph  `  K
) )
53 phtpcer 21230 . . . . . 6  |-  (  ~=ph  `  K )  Er  (
II  Cn  K )
5453a1i 11 . . . . 5  |-  ( (
ph  /\  ( g  e.  U. V  /\  h  e.  U. V  /\  [
g ] (  ~=ph  `  J )  =  [
h ] (  ~=ph  `  J ) ) )  ->  (  ~=ph  `  K
)  Er  ( II 
Cn  K ) )
55 simpr3 1004 . . . . . . 7  |-  ( (
ph  /\  ( g  e.  U. V  /\  h  e.  U. V  /\  [
g ] (  ~=ph  `  J )  =  [
h ] (  ~=ph  `  J ) ) )  ->  [ g ] (  ~=ph  `  J )  =  [ h ]
(  ~=ph  `  J )
)
56 phtpcer 21230 . . . . . . . . 9  |-  (  ~=ph  `  J )  Er  (
II  Cn  J )
5756a1i 11 . . . . . . . 8  |-  ( (
ph  /\  ( g  e.  U. V  /\  h  e.  U. V  /\  [
g ] (  ~=ph  `  J )  =  [
h ] (  ~=ph  `  J ) ) )  ->  (  ~=ph  `  J
)  Er  ( II 
Cn  J ) )
58 simpr1 1002 . . . . . . . . . 10  |-  ( (
ph  /\  ( g  e.  U. V  /\  h  e.  U. V  /\  [
g ] (  ~=ph  `  J )  =  [
h ] (  ~=ph  `  J ) ) )  ->  g  e.  U. V )
5925adantr 465 . . . . . . . . . 10  |-  ( (
ph  /\  ( g  e.  U. V  /\  h  e.  U. V  /\  [
g ] (  ~=ph  `  J )  =  [
h ] (  ~=ph  `  J ) ) )  ->  ( g  e. 
U. V  <->  ( g  e.  ( II  Cn  J
)  /\  ( g `  0 )  =  A  /\  ( g `
 1 )  =  A ) ) )
6058, 59mpbid 210 . . . . . . . . 9  |-  ( (
ph  /\  ( g  e.  U. V  /\  h  e.  U. V  /\  [
g ] (  ~=ph  `  J )  =  [
h ] (  ~=ph  `  J ) ) )  ->  ( g  e.  ( II  Cn  J
)  /\  ( g `  0 )  =  A  /\  ( g `
 1 )  =  A ) )
6160simp1d 1008 . . . . . . . 8  |-  ( (
ph  /\  ( g  e.  U. V  /\  h  e.  U. V  /\  [
g ] (  ~=ph  `  J )  =  [
h ] (  ~=ph  `  J ) ) )  ->  g  e.  ( II  Cn  J ) )
6257, 61erth 7353 . . . . . . 7  |-  ( (
ph  /\  ( g  e.  U. V  /\  h  e.  U. V  /\  [
g ] (  ~=ph  `  J )  =  [
h ] (  ~=ph  `  J ) ) )  ->  ( g ( 
~=ph  `  J ) h  <->  [ g ] ( 
~=ph  `  J )  =  [ h ] ( 
~=ph  `  J ) ) )
6355, 62mpbird 232 . . . . . 6  |-  ( (
ph  /\  ( g  e.  U. V  /\  h  e.  U. V  /\  [
g ] (  ~=ph  `  J )  =  [
h ] (  ~=ph  `  J ) ) )  ->  g (  ~=ph  `  J ) h )
647adantr 465 . . . . . 6  |-  ( (
ph  /\  ( g  e.  U. V  /\  h  e.  U. V  /\  [
g ] (  ~=ph  `  J )  =  [
h ] (  ~=ph  `  J ) ) )  ->  F  e.  ( J  Cn  K ) )
6563, 64phtpcco2 21234 . . . . 5  |-  ( (
ph  /\  ( g  e.  U. V  /\  h  e.  U. V  /\  [
g ] (  ~=ph  `  J )  =  [
h ] (  ~=ph  `  J ) ) )  ->  ( F  o.  g ) (  ~=ph  `  K ) ( F  o.  h ) )
6654, 65erthi 7355 . . . 4  |-  ( (
ph  /\  ( g  e.  U. V  /\  h  e.  U. V  /\  [
g ] (  ~=ph  `  J )  =  [
h ] (  ~=ph  `  J ) ) )  ->  [ ( F  o.  g ) ] (  ~=ph  `  K )  =  [ ( F  o.  h ) ] (  ~=ph  `  K ) )
671, 4, 49, 50, 52, 66fliftfund 6197 . . 3  |-  ( ph  ->  Fun  G )
681, 4, 49fliftf 6199 . . 3  |-  ( ph  ->  ( Fun  G  <->  G : ran  ( g  e.  U. V  |->  [ g ] (  ~=ph  `  J ) ) --> ( Base `  Q
) ) )
6967, 68mpbid 210 . 2  |-  ( ph  ->  G : ran  (
g  e.  U. V  |->  [ g ] ( 
~=ph  `  J ) ) --> ( Base `  Q
) )
7022, 15, 18, 24pi1bas2 21276 . . . 4  |-  ( ph  ->  V  =  ( U. V /. (  ~=ph  `  J
) ) )
71 df-qs 7314 . . . . 5  |-  ( U. V /. (  ~=ph  `  J
) )  =  {
s  |  E. g  e.  U. V s  =  [ g ] ( 
~=ph  `  J ) }
72 eqid 2467 . . . . . 6  |-  ( g  e.  U. V  |->  [ g ] (  ~=ph  `  J ) )  =  ( g  e.  U. V  |->  [ g ] (  ~=ph  `  J ) )
7372rnmpt 5246 . . . . 5  |-  ran  (
g  e.  U. V  |->  [ g ] ( 
~=ph  `  J ) )  =  { s  |  E. g  e.  U. V s  =  [
g ] (  ~=ph  `  J ) }
7471, 73eqtr4i 2499 . . . 4  |-  ( U. V /. (  ~=ph  `  J
) )  =  ran  ( g  e.  U. V  |->  [ g ] (  ~=ph  `  J ) )
7570, 74syl6eq 2524 . . 3  |-  ( ph  ->  V  =  ran  (
g  e.  U. V  |->  [ g ] ( 
~=ph  `  J ) ) )
7675feq2d 5716 . 2  |-  ( ph  ->  ( G : V --> ( Base `  Q )  <->  G : ran  ( g  e.  U. V  |->  [ g ] (  ~=ph  `  J ) ) --> (
Base `  Q )
) )
7769, 76mpbird 232 1  |-  ( ph  ->  G : V --> ( Base `  Q ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 184    /\ wa 369    /\ w3a 973    = wceq 1379    e. wcel 1767   {cab 2452   E.wrex 2815   _Vcvv 3113   <.cop 4033   U.cuni 4245   class class class wbr 4447    |-> cmpt 4505   ran crn 5000    o. ccom 5003   Fun wfun 5580   -->wf 5582   ` cfv 5586  (class class class)co 6282    Er wer 7305   [cec 7306   /.cqs 7307   0cc0 9488   1c1 9489   [,]cicc 11528   Basecbs 14486   Topctop 19161  TopOnctopon 19162    Cn ccn 19491   IIcii 21114    ~=ph cphtpc 21204    pi1 cpi1 21238
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1601  ax-4 1612  ax-5 1680  ax-6 1719  ax-7 1739  ax-8 1769  ax-9 1771  ax-10 1786  ax-11 1791  ax-12 1803  ax-13 1968  ax-ext 2445  ax-rep 4558  ax-sep 4568  ax-nul 4576  ax-pow 4625  ax-pr 4686  ax-un 6574  ax-inf2 8054  ax-cnex 9544  ax-resscn 9545  ax-1cn 9546  ax-icn 9547  ax-addcl 9548  ax-addrcl 9549  ax-mulcl 9550  ax-mulrcl 9551  ax-mulcom 9552  ax-addass 9553  ax-mulass 9554  ax-distr 9555  ax-i2m1 9556  ax-1ne0 9557  ax-1rid 9558  ax-rnegex 9559  ax-rrecex 9560  ax-cnre 9561  ax-pre-lttri 9562  ax-pre-lttrn 9563  ax-pre-ltadd 9564  ax-pre-mulgt0 9565  ax-pre-sup 9566  ax-mulf 9568
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3or 974  df-3an 975  df-tru 1382  df-ex 1597  df-nf 1600  df-sb 1712  df-eu 2279  df-mo 2280  df-clab 2453  df-cleq 2459  df-clel 2462  df-nfc 2617  df-ne 2664  df-nel 2665  df-ral 2819  df-rex 2820  df-reu 2821  df-rmo 2822  df-rab 2823  df-v 3115  df-sbc 3332  df-csb 3436  df-dif 3479  df-un 3481  df-in 3483  df-ss 3490  df-pss 3492  df-nul 3786  df-if 3940  df-pw 4012  df-sn 4028  df-pr 4030  df-tp 4032  df-op 4034  df-uni 4246  df-int 4283  df-iun 4327  df-iin 4328  df-br 4448  df-opab 4506  df-mpt 4507  df-tr 4541  df-eprel 4791  df-id 4795  df-po 4800  df-so 4801  df-fr 4838  df-se 4839  df-we 4840  df-ord 4881  df-on 4882  df-lim 4883  df-suc 4884  df-xp 5005  df-rel 5006  df-cnv 5007  df-co 5008  df-dm 5009  df-rn 5010  df-res 5011  df-ima 5012  df-iota 5549  df-fun 5588  df-fn 5589  df-f 5590  df-f1 5591  df-fo 5592  df-f1o 5593  df-fv 5594  df-isom 5595  df-riota 6243  df-ov 6285  df-oprab 6286  df-mpt2 6287  df-of 6522  df-om 6679  df-1st 6781  df-2nd 6782  df-supp 6899  df-recs 7039  df-rdg 7073  df-1o 7127  df-2o 7128  df-oadd 7131  df-er 7308  df-ec 7310  df-qs 7314  df-map 7419  df-ixp 7467  df-en 7514  df-dom 7515  df-sdom 7516  df-fin 7517  df-fsupp 7826  df-fi 7867  df-sup 7897  df-oi 7931  df-card 8316  df-cda 8544  df-pnf 9626  df-mnf 9627  df-xr 9628  df-ltxr 9629  df-le 9630  df-sub 9803  df-neg 9804  df-div 10203  df-nn 10533  df-2 10590  df-3 10591  df-4 10592  df-5 10593  df-6 10594  df-7 10595  df-8 10596  df-9 10597  df-10 10598  df-n0 10792  df-z 10861  df-dec 10973  df-uz 11079  df-q 11179  df-rp 11217  df-xneg 11314  df-xadd 11315  df-xmul 11316  df-ioo 11529  df-icc 11532  df-fz 11669  df-fzo 11789  df-seq 12072  df-exp 12131  df-hash 12370  df-cj 12891  df-re 12892  df-im 12893  df-sqrt 13027  df-abs 13028  df-struct 14488  df-ndx 14489  df-slot 14490  df-base 14491  df-sets 14492  df-ress 14493  df-plusg 14564  df-mulr 14565  df-starv 14566  df-sca 14567  df-vsca 14568  df-ip 14569  df-tset 14570  df-ple 14571  df-ds 14573  df-unif 14574  df-hom 14575  df-cco 14576  df-rest 14674  df-topn 14675  df-0g 14693  df-gsum 14694  df-topgen 14695  df-pt 14696  df-prds 14699  df-xrs 14753  df-qtop 14758  df-imas 14759  df-divs 14760  df-xps 14761  df-mre 14837  df-mrc 14838  df-acs 14840  df-mnd 15728  df-submnd 15778  df-mulg 15861  df-cntz 16150  df-cmn 16596  df-psmet 18182  df-xmet 18183  df-met 18184  df-bl 18185  df-mopn 18186  df-cnfld 18192  df-top 19166  df-bases 19168  df-topon 19169  df-topsp 19170  df-cld 19286  df-cn 19494  df-cnp 19495  df-tx 19798  df-hmeo 19991  df-xms 20558  df-ms 20559  df-tms 20560  df-ii 21116  df-htpy 21205  df-phtpy 21206  df-phtpc 21227  df-om1 21241  df-pi1 21243
This theorem is referenced by:  pi1coval  21295  pi1coghm  21296
  Copyright terms: Public domain W3C validator