MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  phtpyco2 Structured version   Visualization version   Unicode version

Theorem phtpyco2 22099
Description: Compose a path homotopy with a continuous map. (Contributed by Mario Carneiro, 10-Mar-2015.)
Hypotheses
Ref Expression
phtpyco2.f  |-  ( ph  ->  F  e.  ( II 
Cn  J ) )
phtpyco2.g  |-  ( ph  ->  G  e.  ( II 
Cn  J ) )
phtpyco2.p  |-  ( ph  ->  P  e.  ( J  Cn  K ) )
phtpyco2.h  |-  ( ph  ->  H  e.  ( F ( PHtpy `  J ) G ) )
Assertion
Ref Expression
phtpyco2  |-  ( ph  ->  ( P  o.  H
)  e.  ( ( P  o.  F ) ( PHtpy `  K )
( P  o.  G
) ) )

Proof of Theorem phtpyco2
Dummy variable  s is distinct from all other variables.
StepHypRef Expression
1 phtpyco2.f . . 3  |-  ( ph  ->  F  e.  ( II 
Cn  J ) )
2 phtpyco2.p . . 3  |-  ( ph  ->  P  e.  ( J  Cn  K ) )
3 cnco 20359 . . 3  |-  ( ( F  e.  ( II 
Cn  J )  /\  P  e.  ( J  Cn  K ) )  -> 
( P  o.  F
)  e.  ( II 
Cn  K ) )
41, 2, 3syl2anc 673 . 2  |-  ( ph  ->  ( P  o.  F
)  e.  ( II 
Cn  K ) )
5 phtpyco2.g . . 3  |-  ( ph  ->  G  e.  ( II 
Cn  J ) )
6 cnco 20359 . . 3  |-  ( ( G  e.  ( II 
Cn  J )  /\  P  e.  ( J  Cn  K ) )  -> 
( P  o.  G
)  e.  ( II 
Cn  K ) )
75, 2, 6syl2anc 673 . 2  |-  ( ph  ->  ( P  o.  G
)  e.  ( II 
Cn  K ) )
81, 5phtpyhtpy 22091 . . . 4  |-  ( ph  ->  ( F ( PHtpy `  J ) G ) 
C_  ( F ( II Htpy  J ) G ) )
9 phtpyco2.h . . . 4  |-  ( ph  ->  H  e.  ( F ( PHtpy `  J ) G ) )
108, 9sseldd 3419 . . 3  |-  ( ph  ->  H  e.  ( F ( II Htpy  J ) G ) )
111, 5, 2, 10htpyco2 22088 . 2  |-  ( ph  ->  ( P  o.  H
)  e.  ( ( P  o.  F ) ( II Htpy  K ) ( P  o.  G
) ) )
121, 5, 9phtpyi 22093 . . . . 5  |-  ( (
ph  /\  s  e.  ( 0 [,] 1
) )  ->  (
( 0 H s )  =  ( F `
 0 )  /\  ( 1 H s )  =  ( F `
 1 ) ) )
1312simpld 466 . . . 4  |-  ( (
ph  /\  s  e.  ( 0 [,] 1
) )  ->  (
0 H s )  =  ( F ` 
0 ) )
1413fveq2d 5883 . . 3  |-  ( (
ph  /\  s  e.  ( 0 [,] 1
) )  ->  ( P `  ( 0 H s ) )  =  ( P `  ( F `  0 ) ) )
15 0elunit 11776 . . . . . 6  |-  0  e.  ( 0 [,] 1
)
16 simpr 468 . . . . . 6  |-  ( (
ph  /\  s  e.  ( 0 [,] 1
) )  ->  s  e.  ( 0 [,] 1
) )
17 opelxpi 4871 . . . . . 6  |-  ( ( 0  e.  ( 0 [,] 1 )  /\  s  e.  ( 0 [,] 1 ) )  ->  <. 0 ,  s
>.  e.  ( ( 0 [,] 1 )  X.  ( 0 [,] 1
) ) )
1815, 16, 17sylancr 676 . . . . 5  |-  ( (
ph  /\  s  e.  ( 0 [,] 1
) )  ->  <. 0 ,  s >.  e.  ( ( 0 [,] 1
)  X.  ( 0 [,] 1 ) ) )
19 iitopon 21989 . . . . . . . . 9  |-  II  e.  (TopOn `  ( 0 [,] 1 ) )
20 txtopon 20683 . . . . . . . . 9  |-  ( ( II  e.  (TopOn `  ( 0 [,] 1
) )  /\  II  e.  (TopOn `  ( 0 [,] 1 ) ) )  ->  ( II  tX  II )  e.  (TopOn `  ( ( 0 [,] 1 )  X.  (
0 [,] 1 ) ) ) )
2119, 19, 20mp2an 686 . . . . . . . 8  |-  ( II 
tX  II )  e.  (TopOn `  ( (
0 [,] 1 )  X.  ( 0 [,] 1 ) ) )
2221a1i 11 . . . . . . 7  |-  ( ph  ->  ( II  tX  II )  e.  (TopOn `  (
( 0 [,] 1
)  X.  ( 0 [,] 1 ) ) ) )
23 cntop2 20334 . . . . . . . . 9  |-  ( F  e.  ( II  Cn  J )  ->  J  e.  Top )
241, 23syl 17 . . . . . . . 8  |-  ( ph  ->  J  e.  Top )
25 eqid 2471 . . . . . . . . 9  |-  U. J  =  U. J
2625toptopon 20025 . . . . . . . 8  |-  ( J  e.  Top  <->  J  e.  (TopOn `  U. J ) )
2724, 26sylib 201 . . . . . . 7  |-  ( ph  ->  J  e.  (TopOn `  U. J ) )
281, 5phtpycn 22092 . . . . . . . 8  |-  ( ph  ->  ( F ( PHtpy `  J ) G ) 
C_  ( ( II 
tX  II )  Cn  J ) )
2928, 9sseldd 3419 . . . . . . 7  |-  ( ph  ->  H  e.  ( ( II  tX  II )  Cn  J ) )
30 cnf2 20342 . . . . . . 7  |-  ( ( ( II  tX  II )  e.  (TopOn `  (
( 0 [,] 1
)  X.  ( 0 [,] 1 ) ) )  /\  J  e.  (TopOn `  U. J )  /\  H  e.  ( ( II  tX  II )  Cn  J ) )  ->  H : ( ( 0 [,] 1
)  X.  ( 0 [,] 1 ) ) --> U. J )
3122, 27, 29, 30syl3anc 1292 . . . . . 6  |-  ( ph  ->  H : ( ( 0 [,] 1 )  X.  ( 0 [,] 1 ) ) --> U. J )
32 fvco3 5957 . . . . . 6  |-  ( ( H : ( ( 0 [,] 1 )  X.  ( 0 [,] 1 ) ) --> U. J  /\  <. 0 ,  s >.  e.  ( ( 0 [,] 1
)  X.  ( 0 [,] 1 ) ) )  ->  ( ( P  o.  H ) `  <. 0 ,  s
>. )  =  ( P `  ( H `  <. 0 ,  s
>. ) ) )
3331, 32sylan 479 . . . . 5  |-  ( (
ph  /\  <. 0 ,  s >.  e.  (
( 0 [,] 1
)  X.  ( 0 [,] 1 ) ) )  ->  ( ( P  o.  H ) `  <. 0 ,  s
>. )  =  ( P `  ( H `  <. 0 ,  s
>. ) ) )
3418, 33syldan 478 . . . 4  |-  ( (
ph  /\  s  e.  ( 0 [,] 1
) )  ->  (
( P  o.  H
) `  <. 0 ,  s >. )  =  ( P `  ( H `
 <. 0 ,  s
>. ) ) )
35 df-ov 6311 . . . 4  |-  ( 0 ( P  o.  H
) s )  =  ( ( P  o.  H ) `  <. 0 ,  s >. )
36 df-ov 6311 . . . . 5  |-  ( 0 H s )  =  ( H `  <. 0 ,  s >. )
3736fveq2i 5882 . . . 4  |-  ( P `
 ( 0 H s ) )  =  ( P `  ( H `  <. 0 ,  s >. ) )
3834, 35, 373eqtr4g 2530 . . 3  |-  ( (
ph  /\  s  e.  ( 0 [,] 1
) )  ->  (
0 ( P  o.  H ) s )  =  ( P `  ( 0 H s ) ) )
39 iiuni 21991 . . . . . . 7  |-  ( 0 [,] 1 )  = 
U. II
4039, 25cnf 20339 . . . . . 6  |-  ( F  e.  ( II  Cn  J )  ->  F : ( 0 [,] 1 ) --> U. J
)
411, 40syl 17 . . . . 5  |-  ( ph  ->  F : ( 0 [,] 1 ) --> U. J )
4241adantr 472 . . . 4  |-  ( (
ph  /\  s  e.  ( 0 [,] 1
) )  ->  F : ( 0 [,] 1 ) --> U. J
)
43 fvco3 5957 . . . 4  |-  ( ( F : ( 0 [,] 1 ) --> U. J  /\  0  e.  ( 0 [,] 1
) )  ->  (
( P  o.  F
) `  0 )  =  ( P `  ( F `  0 ) ) )
4442, 15, 43sylancl 675 . . 3  |-  ( (
ph  /\  s  e.  ( 0 [,] 1
) )  ->  (
( P  o.  F
) `  0 )  =  ( P `  ( F `  0 ) ) )
4514, 38, 443eqtr4d 2515 . 2  |-  ( (
ph  /\  s  e.  ( 0 [,] 1
) )  ->  (
0 ( P  o.  H ) s )  =  ( ( P  o.  F ) ` 
0 ) )
4612simprd 470 . . . 4  |-  ( (
ph  /\  s  e.  ( 0 [,] 1
) )  ->  (
1 H s )  =  ( F ` 
1 ) )
4746fveq2d 5883 . . 3  |-  ( (
ph  /\  s  e.  ( 0 [,] 1
) )  ->  ( P `  ( 1 H s ) )  =  ( P `  ( F `  1 ) ) )
48 1elunit 11777 . . . . . 6  |-  1  e.  ( 0 [,] 1
)
49 opelxpi 4871 . . . . . 6  |-  ( ( 1  e.  ( 0 [,] 1 )  /\  s  e.  ( 0 [,] 1 ) )  ->  <. 1 ,  s
>.  e.  ( ( 0 [,] 1 )  X.  ( 0 [,] 1
) ) )
5048, 16, 49sylancr 676 . . . . 5  |-  ( (
ph  /\  s  e.  ( 0 [,] 1
) )  ->  <. 1 ,  s >.  e.  ( ( 0 [,] 1
)  X.  ( 0 [,] 1 ) ) )
51 fvco3 5957 . . . . . 6  |-  ( ( H : ( ( 0 [,] 1 )  X.  ( 0 [,] 1 ) ) --> U. J  /\  <. 1 ,  s >.  e.  ( ( 0 [,] 1
)  X.  ( 0 [,] 1 ) ) )  ->  ( ( P  o.  H ) `  <. 1 ,  s
>. )  =  ( P `  ( H `  <. 1 ,  s
>. ) ) )
5231, 51sylan 479 . . . . 5  |-  ( (
ph  /\  <. 1 ,  s >.  e.  (
( 0 [,] 1
)  X.  ( 0 [,] 1 ) ) )  ->  ( ( P  o.  H ) `  <. 1 ,  s
>. )  =  ( P `  ( H `  <. 1 ,  s
>. ) ) )
5350, 52syldan 478 . . . 4  |-  ( (
ph  /\  s  e.  ( 0 [,] 1
) )  ->  (
( P  o.  H
) `  <. 1 ,  s >. )  =  ( P `  ( H `
 <. 1 ,  s
>. ) ) )
54 df-ov 6311 . . . 4  |-  ( 1 ( P  o.  H
) s )  =  ( ( P  o.  H ) `  <. 1 ,  s >. )
55 df-ov 6311 . . . . 5  |-  ( 1 H s )  =  ( H `  <. 1 ,  s >. )
5655fveq2i 5882 . . . 4  |-  ( P `
 ( 1 H s ) )  =  ( P `  ( H `  <. 1 ,  s >. ) )
5753, 54, 563eqtr4g 2530 . . 3  |-  ( (
ph  /\  s  e.  ( 0 [,] 1
) )  ->  (
1 ( P  o.  H ) s )  =  ( P `  ( 1 H s ) ) )
58 fvco3 5957 . . . 4  |-  ( ( F : ( 0 [,] 1 ) --> U. J  /\  1  e.  ( 0 [,] 1
) )  ->  (
( P  o.  F
) `  1 )  =  ( P `  ( F `  1 ) ) )
5942, 48, 58sylancl 675 . . 3  |-  ( (
ph  /\  s  e.  ( 0 [,] 1
) )  ->  (
( P  o.  F
) `  1 )  =  ( P `  ( F `  1 ) ) )
6047, 57, 593eqtr4d 2515 . 2  |-  ( (
ph  /\  s  e.  ( 0 [,] 1
) )  ->  (
1 ( P  o.  H ) s )  =  ( ( P  o.  F ) ` 
1 ) )
614, 7, 11, 45, 60isphtpyd 22095 1  |-  ( ph  ->  ( P  o.  H
)  e.  ( ( P  o.  F ) ( PHtpy `  K )
( P  o.  G
) ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    /\ wa 376    = wceq 1452    e. wcel 1904   <.cop 3965   U.cuni 4190    X. cxp 4837    o. ccom 4843   -->wf 5585   ` cfv 5589  (class class class)co 6308   0cc0 9557   1c1 9558   [,]cicc 11663   Topctop 19994  TopOnctopon 19995    Cn ccn 20317    tX ctx 20652   IIcii 21985   Htpy chtpy 22076   PHtpycphtpy 22077
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1677  ax-4 1690  ax-5 1766  ax-6 1813  ax-7 1859  ax-8 1906  ax-9 1913  ax-10 1932  ax-11 1937  ax-12 1950  ax-13 2104  ax-ext 2451  ax-rep 4508  ax-sep 4518  ax-nul 4527  ax-pow 4579  ax-pr 4639  ax-un 6602  ax-cnex 9613  ax-resscn 9614  ax-1cn 9615  ax-icn 9616  ax-addcl 9617  ax-addrcl 9618  ax-mulcl 9619  ax-mulrcl 9620  ax-mulcom 9621  ax-addass 9622  ax-mulass 9623  ax-distr 9624  ax-i2m1 9625  ax-1ne0 9626  ax-1rid 9627  ax-rnegex 9628  ax-rrecex 9629  ax-cnre 9630  ax-pre-lttri 9631  ax-pre-lttrn 9632  ax-pre-ltadd 9633  ax-pre-mulgt0 9634  ax-pre-sup 9635
This theorem depends on definitions:  df-bi 190  df-or 377  df-an 378  df-3or 1008  df-3an 1009  df-tru 1455  df-ex 1672  df-nf 1676  df-sb 1806  df-eu 2323  df-mo 2324  df-clab 2458  df-cleq 2464  df-clel 2467  df-nfc 2601  df-ne 2643  df-nel 2644  df-ral 2761  df-rex 2762  df-reu 2763  df-rmo 2764  df-rab 2765  df-v 3033  df-sbc 3256  df-csb 3350  df-dif 3393  df-un 3395  df-in 3397  df-ss 3404  df-pss 3406  df-nul 3723  df-if 3873  df-pw 3944  df-sn 3960  df-pr 3962  df-tp 3964  df-op 3966  df-uni 4191  df-iun 4271  df-br 4396  df-opab 4455  df-mpt 4456  df-tr 4491  df-eprel 4750  df-id 4754  df-po 4760  df-so 4761  df-fr 4798  df-we 4800  df-xp 4845  df-rel 4846  df-cnv 4847  df-co 4848  df-dm 4849  df-rn 4850  df-res 4851  df-ima 4852  df-pred 5387  df-ord 5433  df-on 5434  df-lim 5435  df-suc 5436  df-iota 5553  df-fun 5591  df-fn 5592  df-f 5593  df-f1 5594  df-fo 5595  df-f1o 5596  df-fv 5597  df-riota 6270  df-ov 6311  df-oprab 6312  df-mpt2 6313  df-om 6712  df-1st 6812  df-2nd 6813  df-wrecs 7046  df-recs 7108  df-rdg 7146  df-er 7381  df-map 7492  df-en 7588  df-dom 7589  df-sdom 7590  df-sup 7974  df-inf 7975  df-pnf 9695  df-mnf 9696  df-xr 9697  df-ltxr 9698  df-le 9699  df-sub 9882  df-neg 9883  df-div 10292  df-nn 10632  df-2 10690  df-3 10691  df-n0 10894  df-z 10962  df-uz 11183  df-q 11288  df-rp 11326  df-xneg 11432  df-xadd 11433  df-xmul 11434  df-icc 11667  df-seq 12252  df-exp 12311  df-cj 13239  df-re 13240  df-im 13241  df-sqrt 13375  df-abs 13376  df-topgen 15420  df-psmet 19039  df-xmet 19040  df-met 19041  df-bl 19042  df-mopn 19043  df-top 19998  df-bases 19999  df-topon 20000  df-cn 20320  df-tx 20654  df-ii 21987  df-htpy 22079  df-phtpy 22080
This theorem is referenced by:  phtpcco2  22108
  Copyright terms: Public domain W3C validator