MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  phtpcer Structured version   Unicode version

Theorem phtpcer 21621
Description: Path homotopy is an equivalence relation. Proposition 1.2 of [Hatcher] p. 26. (Contributed by Jeff Madsen, 2-Sep-2009.) (Revised by Mario Carneiro, 6-Jul-2015.)
Assertion
Ref Expression
phtpcer  |-  (  ~=ph  `  J )  Er  (
II  Cn  J )

Proof of Theorem phtpcer
Dummy variables  f 
g  u  v  x  y  z are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 phtpcrel 21619 . . . 4  |-  Rel  (  ~=ph  `  J )
21a1i 11 . . 3  |-  ( T. 
->  Rel  (  ~=ph  `  J
) )
3 isphtpc 21620 . . . . . 6  |-  ( x (  ~=ph  `  J ) y  <->  ( x  e.  ( II  Cn  J
)  /\  y  e.  ( II  Cn  J
)  /\  ( x
( PHtpy `  J )
y )  =/=  (/) ) )
43simp2bi 1012 . . . . 5  |-  ( x (  ~=ph  `  J ) y  ->  y  e.  ( II  Cn  J
) )
53simp1bi 1011 . . . . 5  |-  ( x (  ~=ph  `  J ) y  ->  x  e.  ( II  Cn  J
) )
63simp3bi 1013 . . . . . . 7  |-  ( x (  ~=ph  `  J ) y  ->  ( x
( PHtpy `  J )
y )  =/=  (/) )
7 n0 3803 . . . . . . 7  |-  ( ( x ( PHtpy `  J
) y )  =/=  (/) 
<->  E. f  f  e.  ( x ( PHtpy `  J ) y ) )
86, 7sylib 196 . . . . . 6  |-  ( x (  ~=ph  `  J ) y  ->  E. f 
f  e.  ( x ( PHtpy `  J )
y ) )
95adantr 465 . . . . . . . 8  |-  ( ( x (  ~=ph  `  J
) y  /\  f  e.  ( x ( PHtpy `  J ) y ) )  ->  x  e.  ( II  Cn  J
) )
104adantr 465 . . . . . . . 8  |-  ( ( x (  ~=ph  `  J
) y  /\  f  e.  ( x ( PHtpy `  J ) y ) )  ->  y  e.  ( II  Cn  J
) )
11 eqid 2457 . . . . . . . 8  |-  ( u  e.  ( 0 [,] 1 ) ,  v  e.  ( 0 [,] 1 )  |->  ( u f ( 1  -  v ) ) )  =  ( u  e.  ( 0 [,] 1
) ,  v  e.  ( 0 [,] 1
)  |->  ( u f ( 1  -  v
) ) )
12 simpr 461 . . . . . . . 8  |-  ( ( x (  ~=ph  `  J
) y  /\  f  e.  ( x ( PHtpy `  J ) y ) )  ->  f  e.  ( x ( PHtpy `  J ) y ) )
139, 10, 11, 12phtpycom 21614 . . . . . . 7  |-  ( ( x (  ~=ph  `  J
) y  /\  f  e.  ( x ( PHtpy `  J ) y ) )  ->  ( u  e.  ( 0 [,] 1
) ,  v  e.  ( 0 [,] 1
)  |->  ( u f ( 1  -  v
) ) )  e.  ( y ( PHtpy `  J ) x ) )
14 ne0i 3799 . . . . . . 7  |-  ( ( u  e.  ( 0 [,] 1 ) ,  v  e.  ( 0 [,] 1 )  |->  ( u f ( 1  -  v ) ) )  e.  ( y ( PHtpy `  J )
x )  ->  (
y ( PHtpy `  J
) x )  =/=  (/) )
1513, 14syl 16 . . . . . 6  |-  ( ( x (  ~=ph  `  J
) y  /\  f  e.  ( x ( PHtpy `  J ) y ) )  ->  ( y
( PHtpy `  J )
x )  =/=  (/) )
168, 15exlimddv 1727 . . . . 5  |-  ( x (  ~=ph  `  J ) y  ->  ( y
( PHtpy `  J )
x )  =/=  (/) )
17 isphtpc 21620 . . . . 5  |-  ( y (  ~=ph  `  J ) x  <->  ( y  e.  ( II  Cn  J
)  /\  x  e.  ( II  Cn  J
)  /\  ( y
( PHtpy `  J )
x )  =/=  (/) ) )
184, 5, 16, 17syl3anbrc 1180 . . . 4  |-  ( x (  ~=ph  `  J ) y  ->  y (  ~=ph  `  J ) x )
1918adantl 466 . . 3  |-  ( ( T.  /\  x ( 
~=ph  `  J ) y )  ->  y (  ~=ph  `  J ) x )
205adantr 465 . . . . 5  |-  ( ( x (  ~=ph  `  J
) y  /\  y
(  ~=ph  `  J )
z )  ->  x  e.  ( II  Cn  J
) )
21 simpr 461 . . . . . . 7  |-  ( ( x (  ~=ph  `  J
) y  /\  y
(  ~=ph  `  J )
z )  ->  y
(  ~=ph  `  J )
z )
22 isphtpc 21620 . . . . . . 7  |-  ( y (  ~=ph  `  J ) z  <->  ( y  e.  ( II  Cn  J
)  /\  z  e.  ( II  Cn  J
)  /\  ( y
( PHtpy `  J )
z )  =/=  (/) ) )
2321, 22sylib 196 . . . . . 6  |-  ( ( x (  ~=ph  `  J
) y  /\  y
(  ~=ph  `  J )
z )  ->  (
y  e.  ( II 
Cn  J )  /\  z  e.  ( II  Cn  J )  /\  (
y ( PHtpy `  J
) z )  =/=  (/) ) )
2423simp2d 1009 . . . . 5  |-  ( ( x (  ~=ph  `  J
) y  /\  y
(  ~=ph  `  J )
z )  ->  z  e.  ( II  Cn  J
) )
256adantr 465 . . . . . . . 8  |-  ( ( x (  ~=ph  `  J
) y  /\  y
(  ~=ph  `  J )
z )  ->  (
x ( PHtpy `  J
) y )  =/=  (/) )
2625, 7sylib 196 . . . . . . 7  |-  ( ( x (  ~=ph  `  J
) y  /\  y
(  ~=ph  `  J )
z )  ->  E. f 
f  e.  ( x ( PHtpy `  J )
y ) )
2723simp3d 1010 . . . . . . . 8  |-  ( ( x (  ~=ph  `  J
) y  /\  y
(  ~=ph  `  J )
z )  ->  (
y ( PHtpy `  J
) z )  =/=  (/) )
28 n0 3803 . . . . . . . 8  |-  ( ( y ( PHtpy `  J
) z )  =/=  (/) 
<->  E. g  g  e.  ( y ( PHtpy `  J ) z ) )
2927, 28sylib 196 . . . . . . 7  |-  ( ( x (  ~=ph  `  J
) y  /\  y
(  ~=ph  `  J )
z )  ->  E. g 
g  e.  ( y ( PHtpy `  J )
z ) )
30 eeanv 1989 . . . . . . 7  |-  ( E. f E. g ( f  e.  ( x ( PHtpy `  J )
y )  /\  g  e.  ( y ( PHtpy `  J ) z ) )  <->  ( E. f 
f  e.  ( x ( PHtpy `  J )
y )  /\  E. g  g  e.  (
y ( PHtpy `  J
) z ) ) )
3126, 29, 30sylanbrc 664 . . . . . 6  |-  ( ( x (  ~=ph  `  J
) y  /\  y
(  ~=ph  `  J )
z )  ->  E. f E. g ( f  e.  ( x ( PHtpy `  J ) y )  /\  g  e.  ( y ( PHtpy `  J
) z ) ) )
32 eqid 2457 . . . . . . . . . 10  |-  ( u  e.  ( 0 [,] 1 ) ,  v  e.  ( 0 [,] 1 )  |->  if ( v  <_  ( 1  /  2 ) ,  ( u f ( 2  x.  v ) ) ,  ( u g ( ( 2  x.  v )  - 
1 ) ) ) )  =  ( u  e.  ( 0 [,] 1 ) ,  v  e.  ( 0 [,] 1 )  |->  if ( v  <_  ( 1  /  2 ) ,  ( u f ( 2  x.  v ) ) ,  ( u g ( ( 2  x.  v )  - 
1 ) ) ) )
3320adantr 465 . . . . . . . . . 10  |-  ( ( ( x (  ~=ph  `  J ) y  /\  y (  ~=ph  `  J
) z )  /\  ( f  e.  ( x ( PHtpy `  J
) y )  /\  g  e.  ( y
( PHtpy `  J )
z ) ) )  ->  x  e.  ( II  Cn  J ) )
3423simp1d 1008 . . . . . . . . . . 11  |-  ( ( x (  ~=ph  `  J
) y  /\  y
(  ~=ph  `  J )
z )  ->  y  e.  ( II  Cn  J
) )
3534adantr 465 . . . . . . . . . 10  |-  ( ( ( x (  ~=ph  `  J ) y  /\  y (  ~=ph  `  J
) z )  /\  ( f  e.  ( x ( PHtpy `  J
) y )  /\  g  e.  ( y
( PHtpy `  J )
z ) ) )  ->  y  e.  ( II  Cn  J ) )
3624adantr 465 . . . . . . . . . 10  |-  ( ( ( x (  ~=ph  `  J ) y  /\  y (  ~=ph  `  J
) z )  /\  ( f  e.  ( x ( PHtpy `  J
) y )  /\  g  e.  ( y
( PHtpy `  J )
z ) ) )  ->  z  e.  ( II  Cn  J ) )
37 simprl 756 . . . . . . . . . 10  |-  ( ( ( x (  ~=ph  `  J ) y  /\  y (  ~=ph  `  J
) z )  /\  ( f  e.  ( x ( PHtpy `  J
) y )  /\  g  e.  ( y
( PHtpy `  J )
z ) ) )  ->  f  e.  ( x ( PHtpy `  J
) y ) )
38 simprr 757 . . . . . . . . . 10  |-  ( ( ( x (  ~=ph  `  J ) y  /\  y (  ~=ph  `  J
) z )  /\  ( f  e.  ( x ( PHtpy `  J
) y )  /\  g  e.  ( y
( PHtpy `  J )
z ) ) )  ->  g  e.  ( y ( PHtpy `  J
) z ) )
3932, 33, 35, 36, 37, 38phtpycc 21617 . . . . . . . . 9  |-  ( ( ( x (  ~=ph  `  J ) y  /\  y (  ~=ph  `  J
) z )  /\  ( f  e.  ( x ( PHtpy `  J
) y )  /\  g  e.  ( y
( PHtpy `  J )
z ) ) )  ->  ( u  e.  ( 0 [,] 1
) ,  v  e.  ( 0 [,] 1
)  |->  if ( v  <_  ( 1  / 
2 ) ,  ( u f ( 2  x.  v ) ) ,  ( u g ( ( 2  x.  v )  -  1 ) ) ) )  e.  ( x (
PHtpy `  J ) z ) )
40 ne0i 3799 . . . . . . . . 9  |-  ( ( u  e.  ( 0 [,] 1 ) ,  v  e.  ( 0 [,] 1 )  |->  if ( v  <_  (
1  /  2 ) ,  ( u f ( 2  x.  v
) ) ,  ( u g ( ( 2  x.  v )  -  1 ) ) ) )  e.  ( x ( PHtpy `  J
) z )  -> 
( x ( PHtpy `  J ) z )  =/=  (/) )
4139, 40syl 16 . . . . . . . 8  |-  ( ( ( x (  ~=ph  `  J ) y  /\  y (  ~=ph  `  J
) z )  /\  ( f  e.  ( x ( PHtpy `  J
) y )  /\  g  e.  ( y
( PHtpy `  J )
z ) ) )  ->  ( x (
PHtpy `  J ) z )  =/=  (/) )
4241ex 434 . . . . . . 7  |-  ( ( x (  ~=ph  `  J
) y  /\  y
(  ~=ph  `  J )
z )  ->  (
( f  e.  ( x ( PHtpy `  J
) y )  /\  g  e.  ( y
( PHtpy `  J )
z ) )  -> 
( x ( PHtpy `  J ) z )  =/=  (/) ) )
4342exlimdvv 1726 . . . . . 6  |-  ( ( x (  ~=ph  `  J
) y  /\  y
(  ~=ph  `  J )
z )  ->  ( E. f E. g ( f  e.  ( x ( PHtpy `  J )
y )  /\  g  e.  ( y ( PHtpy `  J ) z ) )  ->  ( x
( PHtpy `  J )
z )  =/=  (/) ) )
4431, 43mpd 15 . . . . 5  |-  ( ( x (  ~=ph  `  J
) y  /\  y
(  ~=ph  `  J )
z )  ->  (
x ( PHtpy `  J
) z )  =/=  (/) )
45 isphtpc 21620 . . . . 5  |-  ( x (  ~=ph  `  J ) z  <->  ( x  e.  ( II  Cn  J
)  /\  z  e.  ( II  Cn  J
)  /\  ( x
( PHtpy `  J )
z )  =/=  (/) ) )
4620, 24, 44, 45syl3anbrc 1180 . . . 4  |-  ( ( x (  ~=ph  `  J
) y  /\  y
(  ~=ph  `  J )
z )  ->  x
(  ~=ph  `  J )
z )
4746adantl 466 . . 3  |-  ( ( T.  /\  ( x (  ~=ph  `  J ) y  /\  y ( 
~=ph  `  J ) z ) )  ->  x
(  ~=ph  `  J )
z )
48 eqid 2457 . . . . . . . . . 10  |-  ( y  e.  ( 0 [,] 1 ) ,  z  e.  ( 0 [,] 1 )  |->  ( x `
 y ) )  =  ( y  e.  ( 0 [,] 1
) ,  z  e.  ( 0 [,] 1
)  |->  ( x `  y ) )
49 id 22 . . . . . . . . . 10  |-  ( x  e.  ( II  Cn  J )  ->  x  e.  ( II  Cn  J
) )
5048, 49phtpyid 21615 . . . . . . . . 9  |-  ( x  e.  ( II  Cn  J )  ->  (
y  e.  ( 0 [,] 1 ) ,  z  e.  ( 0 [,] 1 )  |->  ( x `  y ) )  e.  ( x ( PHtpy `  J )
x ) )
51 ne0i 3799 . . . . . . . . 9  |-  ( ( y  e.  ( 0 [,] 1 ) ,  z  e.  ( 0 [,] 1 )  |->  ( x `  y ) )  e.  ( x ( PHtpy `  J )
x )  ->  (
x ( PHtpy `  J
) x )  =/=  (/) )
5250, 51syl 16 . . . . . . . 8  |-  ( x  e.  ( II  Cn  J )  ->  (
x ( PHtpy `  J
) x )  =/=  (/) )
5352ancli 551 . . . . . . 7  |-  ( x  e.  ( II  Cn  J )  ->  (
x  e.  ( II 
Cn  J )  /\  ( x ( PHtpy `  J ) x )  =/=  (/) ) )
5453pm4.71ri 633 . . . . . 6  |-  ( x  e.  ( II  Cn  J )  <->  ( (
x  e.  ( II 
Cn  J )  /\  ( x ( PHtpy `  J ) x )  =/=  (/) )  /\  x  e.  ( II  Cn  J
) ) )
55 df-3an 975 . . . . . 6  |-  ( ( x  e.  ( II 
Cn  J )  /\  ( x ( PHtpy `  J ) x )  =/=  (/)  /\  x  e.  ( II  Cn  J
) )  <->  ( (
x  e.  ( II 
Cn  J )  /\  ( x ( PHtpy `  J ) x )  =/=  (/) )  /\  x  e.  ( II  Cn  J
) ) )
56 3ancomb 982 . . . . . 6  |-  ( ( x  e.  ( II 
Cn  J )  /\  ( x ( PHtpy `  J ) x )  =/=  (/)  /\  x  e.  ( II  Cn  J
) )  <->  ( x  e.  ( II  Cn  J
)  /\  x  e.  ( II  Cn  J
)  /\  ( x
( PHtpy `  J )
x )  =/=  (/) ) )
5754, 55, 563bitr2i 273 . . . . 5  |-  ( x  e.  ( II  Cn  J )  <->  ( x  e.  ( II  Cn  J
)  /\  x  e.  ( II  Cn  J
)  /\  ( x
( PHtpy `  J )
x )  =/=  (/) ) )
58 isphtpc 21620 . . . . 5  |-  ( x (  ~=ph  `  J ) x  <->  ( x  e.  ( II  Cn  J
)  /\  x  e.  ( II  Cn  J
)  /\  ( x
( PHtpy `  J )
x )  =/=  (/) ) )
5957, 58bitr4i 252 . . . 4  |-  ( x  e.  ( II  Cn  J )  <->  x (  ~=ph  `  J ) x )
6059a1i 11 . . 3  |-  ( T. 
->  ( x  e.  ( II  Cn  J )  <-> 
x (  ~=ph  `  J
) x ) )
612, 19, 47, 60iserd 7355 . 2  |-  ( T. 
->  (  ~=ph  `  J
)  Er  ( II 
Cn  J ) )
6261trud 1404 1  |-  (  ~=ph  `  J )  Er  (
II  Cn  J )
Colors of variables: wff setvar class
Syntax hints:    <-> wb 184    /\ wa 369    /\ w3a 973   T. wtru 1396   E.wex 1613    e. wcel 1819    =/= wne 2652   (/)c0 3793   ifcif 3944   class class class wbr 4456   Rel wrel 5013   ` cfv 5594  (class class class)co 6296    |-> cmpt2 6298    Er wer 7326   0cc0 9509   1c1 9510    x. cmul 9514    <_ cle 9646    - cmin 9824    / cdiv 10227   2c2 10606   [,]cicc 11557    Cn ccn 19852   IIcii 21505   PHtpycphtpy 21594    ~=ph cphtpc 21595
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1619  ax-4 1632  ax-5 1705  ax-6 1748  ax-7 1791  ax-8 1821  ax-9 1823  ax-10 1838  ax-11 1843  ax-12 1855  ax-13 2000  ax-ext 2435  ax-rep 4568  ax-sep 4578  ax-nul 4586  ax-pow 4634  ax-pr 4695  ax-un 6591  ax-inf2 8075  ax-cnex 9565  ax-resscn 9566  ax-1cn 9567  ax-icn 9568  ax-addcl 9569  ax-addrcl 9570  ax-mulcl 9571  ax-mulrcl 9572  ax-mulcom 9573  ax-addass 9574  ax-mulass 9575  ax-distr 9576  ax-i2m1 9577  ax-1ne0 9578  ax-1rid 9579  ax-rnegex 9580  ax-rrecex 9581  ax-cnre 9582  ax-pre-lttri 9583  ax-pre-lttrn 9584  ax-pre-ltadd 9585  ax-pre-mulgt0 9586  ax-pre-sup 9587  ax-mulf 9589
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3or 974  df-3an 975  df-tru 1398  df-ex 1614  df-nf 1618  df-sb 1741  df-eu 2287  df-mo 2288  df-clab 2443  df-cleq 2449  df-clel 2452  df-nfc 2607  df-ne 2654  df-nel 2655  df-ral 2812  df-rex 2813  df-reu 2814  df-rmo 2815  df-rab 2816  df-v 3111  df-sbc 3328  df-csb 3431  df-dif 3474  df-un 3476  df-in 3478  df-ss 3485  df-pss 3487  df-nul 3794  df-if 3945  df-pw 4017  df-sn 4033  df-pr 4035  df-tp 4037  df-op 4039  df-uni 4252  df-int 4289  df-iun 4334  df-iin 4335  df-br 4457  df-opab 4516  df-mpt 4517  df-tr 4551  df-eprel 4800  df-id 4804  df-po 4809  df-so 4810  df-fr 4847  df-se 4848  df-we 4849  df-ord 4890  df-on 4891  df-lim 4892  df-suc 4893  df-xp 5014  df-rel 5015  df-cnv 5016  df-co 5017  df-dm 5018  df-rn 5019  df-res 5020  df-ima 5021  df-iota 5557  df-fun 5596  df-fn 5597  df-f 5598  df-f1 5599  df-fo 5600  df-f1o 5601  df-fv 5602  df-isom 5603  df-riota 6258  df-ov 6299  df-oprab 6300  df-mpt2 6301  df-of 6539  df-om 6700  df-1st 6799  df-2nd 6800  df-supp 6918  df-recs 7060  df-rdg 7094  df-1o 7148  df-2o 7149  df-oadd 7152  df-er 7329  df-map 7440  df-ixp 7489  df-en 7536  df-dom 7537  df-sdom 7538  df-fin 7539  df-fsupp 7848  df-fi 7889  df-sup 7919  df-oi 7953  df-card 8337  df-cda 8565  df-pnf 9647  df-mnf 9648  df-xr 9649  df-ltxr 9650  df-le 9651  df-sub 9826  df-neg 9827  df-div 10228  df-nn 10557  df-2 10615  df-3 10616  df-4 10617  df-5 10618  df-6 10619  df-7 10620  df-8 10621  df-9 10622  df-10 10623  df-n0 10817  df-z 10886  df-dec 11001  df-uz 11107  df-q 11208  df-rp 11246  df-xneg 11343  df-xadd 11344  df-xmul 11345  df-ioo 11558  df-icc 11561  df-fz 11698  df-fzo 11822  df-seq 12111  df-exp 12170  df-hash 12409  df-cj 12944  df-re 12945  df-im 12946  df-sqrt 13080  df-abs 13081  df-struct 14646  df-ndx 14647  df-slot 14648  df-base 14649  df-sets 14650  df-ress 14651  df-plusg 14725  df-mulr 14726  df-starv 14727  df-sca 14728  df-vsca 14729  df-ip 14730  df-tset 14731  df-ple 14732  df-ds 14734  df-unif 14735  df-hom 14736  df-cco 14737  df-rest 14840  df-topn 14841  df-0g 14859  df-gsum 14860  df-topgen 14861  df-pt 14862  df-prds 14865  df-xrs 14919  df-qtop 14924  df-imas 14925  df-xps 14927  df-mre 15003  df-mrc 15004  df-acs 15006  df-mgm 15999  df-sgrp 16038  df-mnd 16048  df-submnd 16094  df-mulg 16187  df-cntz 16482  df-cmn 16927  df-psmet 18538  df-xmet 18539  df-met 18540  df-bl 18541  df-mopn 18542  df-cnfld 18548  df-top 19526  df-bases 19528  df-topon 19529  df-topsp 19530  df-cld 19647  df-cn 19855  df-cnp 19856  df-tx 20189  df-hmeo 20382  df-xms 20949  df-ms 20950  df-tms 20951  df-ii 21507  df-htpy 21596  df-phtpy 21597  df-phtpc 21618
This theorem is referenced by:  pcophtb  21655  pi1buni  21666  pi1addf  21673  pi1addval  21674  pi1grplem  21675  pi1inv  21678  pi1xfrf  21679  pi1xfr  21681  pi1xfrcnvlem  21682  pi1cof  21685  sconpi1  28881
  Copyright terms: Public domain W3C validator