MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  phplem4 Structured version   Unicode version

Theorem phplem4 7736
Description: Lemma for Pigeonhole Principle. Equinumerosity of successors implies equinumerosity of the original natural numbers. (Contributed by NM, 28-May-1998.) (Revised by Mario Carneiro, 24-Jun-2015.)
Hypotheses
Ref Expression
phplem2.1  |-  A  e. 
_V
phplem2.2  |-  B  e. 
_V
Assertion
Ref Expression
phplem4  |-  ( ( A  e.  om  /\  B  e.  om )  ->  ( suc  A  ~~  suc  B  ->  A  ~~  B ) )

Proof of Theorem phplem4
Dummy variable  f is distinct from all other variables.
StepHypRef Expression
1 bren 7562 . 2  |-  ( suc 
A  ~~  suc  B  <->  E. f 
f : suc  A -1-1-onto-> suc  B )
2 f1of1 5797 . . . . . . . . . 10  |-  ( f : suc  A -1-1-onto-> suc  B  ->  f : suc  A -1-1-> suc 
B )
32adantl 464 . . . . . . . . 9  |-  ( ( A  e.  om  /\  f : suc  A -1-1-onto-> suc  B
)  ->  f : suc  A -1-1-> suc  B )
4 phplem2.2 . . . . . . . . . 10  |-  B  e. 
_V
54sucex 6628 . . . . . . . . 9  |-  suc  B  e.  _V
6 sssucid 5486 . . . . . . . . . 10  |-  A  C_  suc  A
7 phplem2.1 . . . . . . . . . 10  |-  A  e. 
_V
8 f1imaen2g 7613 . . . . . . . . . 10  |-  ( ( ( f : suc  A
-1-1-> suc  B  /\  suc  B  e.  _V )  /\  ( A  C_  suc  A  /\  A  e.  _V ) )  ->  (
f " A ) 
~~  A )
96, 7, 8mpanr12 683 . . . . . . . . 9  |-  ( ( f : suc  A -1-1-> suc 
B  /\  suc  B  e. 
_V )  ->  (
f " A ) 
~~  A )
103, 5, 9sylancl 660 . . . . . . . 8  |-  ( ( A  e.  om  /\  f : suc  A -1-1-onto-> suc  B
)  ->  ( f " A )  ~~  A
)
1110ensymd 7603 . . . . . . 7  |-  ( ( A  e.  om  /\  f : suc  A -1-1-onto-> suc  B
)  ->  A  ~~  ( f " A
) )
12 nnord 6690 . . . . . . . . . 10  |-  ( A  e.  om  ->  Ord  A )
13 orddif 5502 . . . . . . . . . 10  |-  ( Ord 
A  ->  A  =  ( suc  A  \  { A } ) )
1412, 13syl 17 . . . . . . . . 9  |-  ( A  e.  om  ->  A  =  ( suc  A  \  { A } ) )
1514imaeq2d 5156 . . . . . . . 8  |-  ( A  e.  om  ->  (
f " A )  =  ( f "
( suc  A  \  { A } ) ) )
16 f1ofn 5799 . . . . . . . . . . 11  |-  ( f : suc  A -1-1-onto-> suc  B  ->  f  Fn  suc  A
)
177sucid 5488 . . . . . . . . . . 11  |-  A  e. 
suc  A
18 fnsnfv 5908 . . . . . . . . . . 11  |-  ( ( f  Fn  suc  A  /\  A  e.  suc  A )  ->  { (
f `  A ) }  =  ( f " { A } ) )
1916, 17, 18sylancl 660 . . . . . . . . . 10  |-  ( f : suc  A -1-1-onto-> suc  B  ->  { ( f `  A ) }  =  ( f " { A } ) )
2019difeq2d 3560 . . . . . . . . 9  |-  ( f : suc  A -1-1-onto-> suc  B  ->  ( ( f " suc  A )  \  {
( f `  A
) } )  =  ( ( f " suc  A )  \  (
f " { A } ) ) )
21 imadmrn 5166 . . . . . . . . . . . 12  |-  ( f
" dom  f )  =  ran  f
2221eqcomi 2415 . . . . . . . . . . 11  |-  ran  f  =  ( f " dom  f )
23 f1ofo 5805 . . . . . . . . . . . 12  |-  ( f : suc  A -1-1-onto-> suc  B  ->  f : suc  A -onto-> suc  B )
24 forn 5780 . . . . . . . . . . . 12  |-  ( f : suc  A -onto-> suc  B  ->  ran  f  =  suc  B )
2523, 24syl 17 . . . . . . . . . . 11  |-  ( f : suc  A -1-1-onto-> suc  B  ->  ran  f  =  suc  B )
26 f1odm 5802 . . . . . . . . . . . 12  |-  ( f : suc  A -1-1-onto-> suc  B  ->  dom  f  =  suc  A )
2726imaeq2d 5156 . . . . . . . . . . 11  |-  ( f : suc  A -1-1-onto-> suc  B  ->  ( f " dom  f )  =  ( f " suc  A
) )
2822, 25, 273eqtr3a 2467 . . . . . . . . . 10  |-  ( f : suc  A -1-1-onto-> suc  B  ->  suc  B  =  ( f " suc  A
) )
2928difeq1d 3559 . . . . . . . . 9  |-  ( f : suc  A -1-1-onto-> suc  B  ->  ( suc  B  \  { ( f `  A ) } )  =  ( ( f
" suc  A )  \  { ( f `  A ) } ) )
30 dff1o3 5804 . . . . . . . . . . 11  |-  ( f : suc  A -1-1-onto-> suc  B  <->  ( f : suc  A -onto-> suc  B  /\  Fun  `' f ) )
3130simprbi 462 . . . . . . . . . 10  |-  ( f : suc  A -1-1-onto-> suc  B  ->  Fun  `' f )
32 imadif 5643 . . . . . . . . . 10  |-  ( Fun  `' f  ->  ( f
" ( suc  A  \  { A } ) )  =  ( ( f " suc  A
)  \  ( f " { A } ) ) )
3331, 32syl 17 . . . . . . . . 9  |-  ( f : suc  A -1-1-onto-> suc  B  ->  ( f " ( suc  A  \  { A } ) )  =  ( ( f " suc  A )  \  (
f " { A } ) ) )
3420, 29, 333eqtr4rd 2454 . . . . . . . 8  |-  ( f : suc  A -1-1-onto-> suc  B  ->  ( f " ( suc  A  \  { A } ) )  =  ( suc  B  \  { ( f `  A ) } ) )
3515, 34sylan9eq 2463 . . . . . . 7  |-  ( ( A  e.  om  /\  f : suc  A -1-1-onto-> suc  B
)  ->  ( f " A )  =  ( suc  B  \  {
( f `  A
) } ) )
3611, 35breqtrd 4418 . . . . . 6  |-  ( ( A  e.  om  /\  f : suc  A -1-1-onto-> suc  B
)  ->  A  ~~  ( suc  B  \  {
( f `  A
) } ) )
37 fnfvelrn 6005 . . . . . . . . . 10  |-  ( ( f  Fn  suc  A  /\  A  e.  suc  A )  ->  ( f `  A )  e.  ran  f )
3816, 17, 37sylancl 660 . . . . . . . . 9  |-  ( f : suc  A -1-1-onto-> suc  B  ->  ( f `  A
)  e.  ran  f
)
3924eleq2d 2472 . . . . . . . . . 10  |-  ( f : suc  A -onto-> suc  B  ->  ( ( f `
 A )  e. 
ran  f  <->  ( f `  A )  e.  suc  B ) )
4023, 39syl 17 . . . . . . . . 9  |-  ( f : suc  A -1-1-onto-> suc  B  ->  ( ( f `  A )  e.  ran  f 
<->  ( f `  A
)  e.  suc  B
) )
4138, 40mpbid 210 . . . . . . . 8  |-  ( f : suc  A -1-1-onto-> suc  B  ->  ( f `  A
)  e.  suc  B
)
42 fvex 5858 . . . . . . . . 9  |-  ( f `
 A )  e. 
_V
434, 42phplem3 7735 . . . . . . . 8  |-  ( ( B  e.  om  /\  ( f `  A
)  e.  suc  B
)  ->  B  ~~  ( suc  B  \  {
( f `  A
) } ) )
4441, 43sylan2 472 . . . . . . 7  |-  ( ( B  e.  om  /\  f : suc  A -1-1-onto-> suc  B
)  ->  B  ~~  ( suc  B  \  {
( f `  A
) } ) )
4544ensymd 7603 . . . . . 6  |-  ( ( B  e.  om  /\  f : suc  A -1-1-onto-> suc  B
)  ->  ( suc  B 
\  { ( f `
 A ) } )  ~~  B )
46 entr 7604 . . . . . 6  |-  ( ( A  ~~  ( suc 
B  \  { (
f `  A ) } )  /\  ( suc  B  \  { ( f `  A ) } )  ~~  B
)  ->  A  ~~  B )
4736, 45, 46syl2an 475 . . . . 5  |-  ( ( ( A  e.  om  /\  f : suc  A -1-1-onto-> suc  B )  /\  ( B  e.  om  /\  f : suc  A -1-1-onto-> suc  B ) )  ->  A  ~~  B
)
4847anandirs 832 . . . 4  |-  ( ( ( A  e.  om  /\  B  e.  om )  /\  f : suc  A -1-1-onto-> suc  B )  ->  A  ~~  B )
4948ex 432 . . 3  |-  ( ( A  e.  om  /\  B  e.  om )  ->  ( f : suc  A -1-1-onto-> suc 
B  ->  A  ~~  B ) )
5049exlimdv 1745 . 2  |-  ( ( A  e.  om  /\  B  e.  om )  ->  ( E. f  f : suc  A -1-1-onto-> suc  B  ->  A  ~~  B ) )
511, 50syl5bi 217 1  |-  ( ( A  e.  om  /\  B  e.  om )  ->  ( suc  A  ~~  suc  B  ->  A  ~~  B ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 184    /\ wa 367    = wceq 1405   E.wex 1633    e. wcel 1842   _Vcvv 3058    \ cdif 3410    C_ wss 3413   {csn 3971   class class class wbr 4394   `'ccnv 4821   dom cdm 4822   ran crn 4823   "cima 4825   Ord word 5408   suc csuc 5411   Fun wfun 5562    Fn wfn 5563   -1-1->wf1 5565   -onto->wfo 5566   -1-1-onto->wf1o 5567   ` cfv 5568   omcom 6682    ~~ cen 7550
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1639  ax-4 1652  ax-5 1725  ax-6 1771  ax-7 1814  ax-8 1844  ax-9 1846  ax-10 1861  ax-11 1866  ax-12 1878  ax-13 2026  ax-ext 2380  ax-sep 4516  ax-nul 4524  ax-pow 4571  ax-pr 4629  ax-un 6573
This theorem depends on definitions:  df-bi 185  df-or 368  df-an 369  df-3or 975  df-3an 976  df-tru 1408  df-ex 1634  df-nf 1638  df-sb 1764  df-eu 2242  df-mo 2243  df-clab 2388  df-cleq 2394  df-clel 2397  df-nfc 2552  df-ne 2600  df-ral 2758  df-rex 2759  df-rab 2762  df-v 3060  df-sbc 3277  df-dif 3416  df-un 3418  df-in 3420  df-ss 3427  df-pss 3429  df-nul 3738  df-if 3885  df-pw 3956  df-sn 3972  df-pr 3974  df-tp 3976  df-op 3978  df-uni 4191  df-br 4395  df-opab 4453  df-tr 4489  df-eprel 4733  df-id 4737  df-po 4743  df-so 4744  df-fr 4781  df-we 4783  df-xp 4828  df-rel 4829  df-cnv 4830  df-co 4831  df-dm 4832  df-rn 4833  df-res 4834  df-ima 4835  df-ord 5412  df-on 5413  df-lim 5414  df-suc 5415  df-iota 5532  df-fun 5570  df-fn 5571  df-f 5572  df-f1 5573  df-fo 5574  df-f1o 5575  df-fv 5576  df-om 6683  df-er 7347  df-en 7554
This theorem is referenced by:  nneneq  7737
  Copyright terms: Public domain W3C validator