MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  phplem3 Structured version   Unicode version

Theorem phplem3 7656
Description: Lemma for Pigeonhole Principle. A natural number is equinumerous to its successor minus any element of the successor. (Contributed by NM, 26-May-1998.)
Hypotheses
Ref Expression
phplem2.1  |-  A  e. 
_V
phplem2.2  |-  B  e. 
_V
Assertion
Ref Expression
phplem3  |-  ( ( A  e.  om  /\  B  e.  suc  A )  ->  A  ~~  ( suc  A  \  { B } ) )

Proof of Theorem phplem3
StepHypRef Expression
1 elsuci 4887 . 2  |-  ( B  e.  suc  A  -> 
( B  e.  A  \/  B  =  A
) )
2 phplem2.1 . . . 4  |-  A  e. 
_V
3 phplem2.2 . . . 4  |-  B  e. 
_V
42, 3phplem2 7655 . . 3  |-  ( ( A  e.  om  /\  B  e.  A )  ->  A  ~~  ( suc 
A  \  { B } ) )
52enref 7506 . . . 4  |-  A  ~~  A
6 nnord 6646 . . . . . 6  |-  ( A  e.  om  ->  Ord  A )
7 orddif 4914 . . . . . 6  |-  ( Ord 
A  ->  A  =  ( suc  A  \  { A } ) )
86, 7syl 17 . . . . 5  |-  ( A  e.  om  ->  A  =  ( suc  A  \  { A } ) )
9 sneq 3981 . . . . . . 7  |-  ( A  =  B  ->  { A }  =  { B } )
109difeq2d 3560 . . . . . 6  |-  ( A  =  B  ->  ( suc  A  \  { A } )  =  ( suc  A  \  { B } ) )
1110eqcoms 2414 . . . . 5  |-  ( B  =  A  ->  ( suc  A  \  { A } )  =  ( suc  A  \  { B } ) )
128, 11sylan9eq 2463 . . . 4  |-  ( ( A  e.  om  /\  B  =  A )  ->  A  =  ( suc 
A  \  { B } ) )
135, 12syl5breq 4429 . . 3  |-  ( ( A  e.  om  /\  B  =  A )  ->  A  ~~  ( suc 
A  \  { B } ) )
144, 13jaodan 786 . 2  |-  ( ( A  e.  om  /\  ( B  e.  A  \/  B  =  A
) )  ->  A  ~~  ( suc  A  \  { B } ) )
151, 14sylan2 472 1  |-  ( ( A  e.  om  /\  B  e.  suc  A )  ->  A  ~~  ( suc  A  \  { B } ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    \/ wo 366    /\ wa 367    = wceq 1405    e. wcel 1842   _Vcvv 3058    \ cdif 3410   {csn 3971   class class class wbr 4394   Ord word 4820   suc csuc 4823   omcom 6638    ~~ cen 7471
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1639  ax-4 1652  ax-5 1725  ax-6 1771  ax-7 1814  ax-8 1844  ax-9 1846  ax-10 1861  ax-11 1866  ax-12 1878  ax-13 2026  ax-ext 2380  ax-sep 4516  ax-nul 4524  ax-pow 4571  ax-pr 4629  ax-un 6530
This theorem depends on definitions:  df-bi 185  df-or 368  df-an 369  df-3or 975  df-3an 976  df-tru 1408  df-ex 1634  df-nf 1638  df-sb 1764  df-eu 2242  df-mo 2243  df-clab 2388  df-cleq 2394  df-clel 2397  df-nfc 2552  df-ne 2600  df-ral 2758  df-rex 2759  df-rab 2762  df-v 3060  df-sbc 3277  df-dif 3416  df-un 3418  df-in 3420  df-ss 3427  df-pss 3429  df-nul 3738  df-if 3885  df-pw 3956  df-sn 3972  df-pr 3974  df-tp 3976  df-op 3978  df-uni 4191  df-br 4395  df-opab 4453  df-tr 4489  df-eprel 4733  df-id 4737  df-po 4743  df-so 4744  df-fr 4781  df-we 4783  df-ord 4824  df-on 4825  df-lim 4826  df-suc 4827  df-xp 4948  df-rel 4949  df-cnv 4950  df-co 4951  df-dm 4952  df-rn 4953  df-res 4954  df-ima 4955  df-fun 5527  df-fn 5528  df-f 5529  df-f1 5530  df-fo 5531  df-f1o 5532  df-om 6639  df-en 7475
This theorem is referenced by:  phplem4  7657  php  7659
  Copyright terms: Public domain W3C validator