MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  phplem2 Structured version   Unicode version

Theorem phplem2 7602
Description: Lemma for Pigeonhole Principle. A natural number is equinumerous to its successor minus one of its elements. (Contributed by NM, 11-Jun-1998.) (Revised by Mario Carneiro, 16-Nov-2014.)
Hypotheses
Ref Expression
phplem2.1  |-  A  e. 
_V
phplem2.2  |-  B  e. 
_V
Assertion
Ref Expression
phplem2  |-  ( ( A  e.  om  /\  B  e.  A )  ->  A  ~~  ( suc 
A  \  { B } ) )

Proof of Theorem phplem2
StepHypRef Expression
1 snex 4642 . . . . . 6  |-  { <. B ,  A >. }  e.  _V
2 phplem2.2 . . . . . . 7  |-  B  e. 
_V
3 phplem2.1 . . . . . . 7  |-  A  e. 
_V
42, 3f1osn 5787 . . . . . 6  |-  { <. B ,  A >. } : { B } -1-1-onto-> { A }
5 f1oen3g 7436 . . . . . 6  |-  ( ( { <. B ,  A >. }  e.  _V  /\  {
<. B ,  A >. } : { B } -1-1-onto-> { A } )  ->  { B }  ~~  { A }
)
61, 4, 5mp2an 672 . . . . 5  |-  { B }  ~~  { A }
7 difss 3592 . . . . . . 7  |-  ( A 
\  { B }
)  C_  A
83, 7ssexi 4546 . . . . . 6  |-  ( A 
\  { B }
)  e.  _V
98enref 7453 . . . . 5  |-  ( A 
\  { B }
)  ~~  ( A  \  { B } )
106, 9pm3.2i 455 . . . 4  |-  ( { B }  ~~  { A }  /\  ( A  \  { B }
)  ~~  ( A  \  { B } ) )
11 incom 3652 . . . . . 6  |-  ( { A }  i^i  ( A  \  { B }
) )  =  ( ( A  \  { B } )  i^i  { A } )
12 ssrin 3684 . . . . . . . . 9  |-  ( ( A  \  { B } )  C_  A  ->  ( ( A  \  { B } )  i^i 
{ A } ) 
C_  ( A  i^i  { A } ) )
137, 12ax-mp 5 . . . . . . . 8  |-  ( ( A  \  { B } )  i^i  { A } )  C_  ( A  i^i  { A }
)
14 nnord 6595 . . . . . . . . 9  |-  ( A  e.  om  ->  Ord  A )
15 orddisj 4866 . . . . . . . . 9  |-  ( Ord 
A  ->  ( A  i^i  { A } )  =  (/) )
1614, 15syl 16 . . . . . . . 8  |-  ( A  e.  om  ->  ( A  i^i  { A }
)  =  (/) )
1713, 16syl5sseq 3513 . . . . . . 7  |-  ( A  e.  om  ->  (
( A  \  { B } )  i^i  { A } )  C_  (/) )
18 ss0 3777 . . . . . . 7  |-  ( ( ( A  \  { B } )  i^i  { A } )  C_  (/)  ->  (
( A  \  { B } )  i^i  { A } )  =  (/) )
1917, 18syl 16 . . . . . 6  |-  ( A  e.  om  ->  (
( A  \  { B } )  i^i  { A } )  =  (/) )
2011, 19syl5eq 2507 . . . . 5  |-  ( A  e.  om  ->  ( { A }  i^i  ( A  \  { B }
) )  =  (/) )
21 disjdif 3860 . . . . 5  |-  ( { B }  i^i  ( A  \  { B }
) )  =  (/)
2220, 21jctil 537 . . . 4  |-  ( A  e.  om  ->  (
( { B }  i^i  ( A  \  { B } ) )  =  (/)  /\  ( { A }  i^i  ( A  \  { B } ) )  =  (/) ) )
23 unen 7503 . . . 4  |-  ( ( ( { B }  ~~  { A }  /\  ( A  \  { B } )  ~~  ( A  \  { B }
) )  /\  (
( { B }  i^i  ( A  \  { B } ) )  =  (/)  /\  ( { A }  i^i  ( A  \  { B } ) )  =  (/) ) )  -> 
( { B }  u.  ( A  \  { B } ) )  ~~  ( { A }  u.  ( A  \  { B } ) ) )
2410, 22, 23sylancr 663 . . 3  |-  ( A  e.  om  ->  ( { B }  u.  ( A  \  { B }
) )  ~~  ( { A }  u.  ( A  \  { B }
) ) )
2524adantr 465 . 2  |-  ( ( A  e.  om  /\  B  e.  A )  ->  ( { B }  u.  ( A  \  { B } ) )  ~~  ( { A }  u.  ( A  \  { B } ) ) )
26 uncom 3609 . . . 4  |-  ( { B }  u.  ( A  \  { B }
) )  =  ( ( A  \  { B } )  u.  { B } )
27 difsnid 4128 . . . 4  |-  ( B  e.  A  ->  (
( A  \  { B } )  u.  { B } )  =  A )
2826, 27syl5eq 2507 . . 3  |-  ( B  e.  A  ->  ( { B }  u.  ( A  \  { B }
) )  =  A )
2928adantl 466 . 2  |-  ( ( A  e.  om  /\  B  e.  A )  ->  ( { B }  u.  ( A  \  { B } ) )  =  A )
30 phplem1 7601 . 2  |-  ( ( A  e.  om  /\  B  e.  A )  ->  ( { A }  u.  ( A  \  { B } ) )  =  ( suc  A  \  { B } ) )
3125, 29, 303brtr3d 4430 1  |-  ( ( A  e.  om  /\  B  e.  A )  ->  A  ~~  ( suc 
A  \  { B } ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    /\ wa 369    = wceq 1370    e. wcel 1758   _Vcvv 3078    \ cdif 3434    u. cun 3435    i^i cin 3436    C_ wss 3437   (/)c0 3746   {csn 3986   <.cop 3992   class class class wbr 4401   Ord word 4827   suc csuc 4830   -1-1-onto->wf1o 5526   omcom 6587    ~~ cen 7418
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1592  ax-4 1603  ax-5 1671  ax-6 1710  ax-7 1730  ax-8 1760  ax-9 1762  ax-10 1777  ax-11 1782  ax-12 1794  ax-13 1955  ax-ext 2432  ax-sep 4522  ax-nul 4530  ax-pow 4579  ax-pr 4640  ax-un 6483
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3or 966  df-3an 967  df-tru 1373  df-ex 1588  df-nf 1591  df-sb 1703  df-eu 2266  df-mo 2267  df-clab 2440  df-cleq 2446  df-clel 2449  df-nfc 2604  df-ne 2650  df-ral 2804  df-rex 2805  df-rab 2808  df-v 3080  df-sbc 3295  df-dif 3440  df-un 3442  df-in 3444  df-ss 3451  df-pss 3453  df-nul 3747  df-if 3901  df-pw 3971  df-sn 3987  df-pr 3989  df-tp 3991  df-op 3993  df-uni 4201  df-br 4402  df-opab 4460  df-tr 4495  df-eprel 4741  df-id 4745  df-po 4750  df-so 4751  df-fr 4788  df-we 4790  df-ord 4831  df-on 4832  df-lim 4833  df-suc 4834  df-xp 4955  df-rel 4956  df-cnv 4957  df-co 4958  df-dm 4959  df-rn 4960  df-res 4961  df-ima 4962  df-fun 5529  df-fn 5530  df-f 5531  df-f1 5532  df-fo 5533  df-f1o 5534  df-om 6588  df-en 7422
This theorem is referenced by:  phplem3  7603
  Copyright terms: Public domain W3C validator