MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  php3 Structured version   Unicode version

Theorem php3 7741
Description: Corollary of Pigeonhole Principle. If  A is finite and  B is a proper subset of  A, the  B is strictly less numerous than  A. Stronger version of Corollary 6C of [Enderton] p. 135. (Contributed by NM, 22-Aug-2008.)
Assertion
Ref Expression
php3  |-  ( ( A  e.  Fin  /\  B  C.  A )  ->  B  ~<  A )

Proof of Theorem php3
Dummy variables  x  f  y are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 isfi 7577 . . 3  |-  ( A  e.  Fin  <->  E. x  e.  om  A  ~~  x
)
2 relen 7559 . . . . . . . . 9  |-  Rel  ~~
32brrelexi 4864 . . . . . . . 8  |-  ( A 
~~  x  ->  A  e.  _V )
4 pssss 3538 . . . . . . . 8  |-  ( B 
C.  A  ->  B  C_  A )
5 ssdomg 7599 . . . . . . . . 9  |-  ( A  e.  _V  ->  ( B  C_  A  ->  B  ~<_  A ) )
65imp 427 . . . . . . . 8  |-  ( ( A  e.  _V  /\  B  C_  A )  ->  B  ~<_  A )
73, 4, 6syl2an 475 . . . . . . 7  |-  ( ( A  ~~  x  /\  B  C.  A )  ->  B  ~<_  A )
87adantll 712 . . . . . 6  |-  ( ( ( x  e.  om  /\  A  ~~  x )  /\  B  C.  A
)  ->  B  ~<_  A )
9 bren 7563 . . . . . . . . 9  |-  ( A 
~~  x  <->  E. f 
f : A -1-1-onto-> x )
10 imass2 5192 . . . . . . . . . . . . . . . . 17  |-  ( B 
C_  A  ->  (
f " B ) 
C_  ( f " A ) )
114, 10syl 17 . . . . . . . . . . . . . . . 16  |-  ( B 
C.  A  ->  (
f " B ) 
C_  ( f " A ) )
1211adantl 464 . . . . . . . . . . . . . . 15  |-  ( ( f : A -1-1-onto-> x  /\  B  C.  A )  -> 
( f " B
)  C_  ( f " A ) )
13 pssnel 3837 . . . . . . . . . . . . . . . . 17  |-  ( B 
C.  A  ->  E. y
( y  e.  A  /\  -.  y  e.  B
) )
14 eldif 3424 . . . . . . . . . . . . . . . . . . . 20  |-  ( y  e.  ( A  \  B )  <->  ( y  e.  A  /\  -.  y  e.  B ) )
15 f1ofn 5800 . . . . . . . . . . . . . . . . . . . . . . 23  |-  ( f : A -1-1-onto-> x  ->  f  Fn  A )
16 difss 3570 . . . . . . . . . . . . . . . . . . . . . . 23  |-  ( A 
\  B )  C_  A
17 fnfvima 6131 . . . . . . . . . . . . . . . . . . . . . . . 24  |-  ( ( f  Fn  A  /\  ( A  \  B ) 
C_  A  /\  y  e.  ( A  \  B
) )  ->  (
f `  y )  e.  ( f " ( A  \  B ) ) )
18173expia 1199 . . . . . . . . . . . . . . . . . . . . . . 23  |-  ( ( f  Fn  A  /\  ( A  \  B ) 
C_  A )  -> 
( y  e.  ( A  \  B )  ->  ( f `  y )  e.  ( f " ( A 
\  B ) ) ) )
1915, 16, 18sylancl 660 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( f : A -1-1-onto-> x  ->  ( y  e.  ( A  \  B )  ->  (
f `  y )  e.  ( f " ( A  \  B ) ) ) )
20 dff1o3 5805 . . . . . . . . . . . . . . . . . . . . . . . . 25  |-  ( f : A -1-1-onto-> x  <->  ( f : A -onto-> x  /\  Fun  `' f ) )
2120simprbi 462 . . . . . . . . . . . . . . . . . . . . . . . 24  |-  ( f : A -1-1-onto-> x  ->  Fun  `' f )
22 imadif 5644 . . . . . . . . . . . . . . . . . . . . . . . 24  |-  ( Fun  `' f  ->  ( f
" ( A  \  B ) )  =  ( ( f " A )  \  (
f " B ) ) )
2321, 22syl 17 . . . . . . . . . . . . . . . . . . . . . . 23  |-  ( f : A -1-1-onto-> x  ->  ( f
" ( A  \  B ) )  =  ( ( f " A )  \  (
f " B ) ) )
2423eleq2d 2472 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( f : A -1-1-onto-> x  ->  ( ( f `  y )  e.  ( f "
( A  \  B
) )  <->  ( f `  y )  e.  ( ( f " A
)  \  ( f " B ) ) ) )
2519, 24sylibd 214 . . . . . . . . . . . . . . . . . . . . 21  |-  ( f : A -1-1-onto-> x  ->  ( y  e.  ( A  \  B )  ->  (
f `  y )  e.  ( ( f " A )  \  (
f " B ) ) ) )
26 n0i 3743 . . . . . . . . . . . . . . . . . . . . 21  |-  ( ( f `  y )  e.  ( ( f
" A )  \ 
( f " B
) )  ->  -.  ( ( f " A )  \  (
f " B ) )  =  (/) )
2725, 26syl6 31 . . . . . . . . . . . . . . . . . . . 20  |-  ( f : A -1-1-onto-> x  ->  ( y  e.  ( A  \  B )  ->  -.  ( ( f " A )  \  (
f " B ) )  =  (/) ) )
2814, 27syl5bir 218 . . . . . . . . . . . . . . . . . . 19  |-  ( f : A -1-1-onto-> x  ->  ( ( y  e.  A  /\  -.  y  e.  B
)  ->  -.  (
( f " A
)  \  ( f " B ) )  =  (/) ) )
2928exlimdv 1745 . . . . . . . . . . . . . . . . . 18  |-  ( f : A -1-1-onto-> x  ->  ( E. y ( y  e.  A  /\  -.  y  e.  B )  ->  -.  ( ( f " A )  \  (
f " B ) )  =  (/) ) )
3029imp 427 . . . . . . . . . . . . . . . . 17  |-  ( ( f : A -1-1-onto-> x  /\  E. y ( y  e.  A  /\  -.  y  e.  B ) )  ->  -.  ( ( f " A )  \  (
f " B ) )  =  (/) )
3113, 30sylan2 472 . . . . . . . . . . . . . . . 16  |-  ( ( f : A -1-1-onto-> x  /\  B  C.  A )  ->  -.  ( ( f " A )  \  (
f " B ) )  =  (/) )
32 ssdif0 3828 . . . . . . . . . . . . . . . 16  |-  ( ( f " A ) 
C_  ( f " B )  <->  ( (
f " A ) 
\  ( f " B ) )  =  (/) )
3331, 32sylnibr 303 . . . . . . . . . . . . . . 15  |-  ( ( f : A -1-1-onto-> x  /\  B  C.  A )  ->  -.  ( f " A
)  C_  ( f " B ) )
34 dfpss3 3529 . . . . . . . . . . . . . . 15  |-  ( ( f " B ) 
C.  ( f " A )  <->  ( (
f " B ) 
C_  ( f " A )  /\  -.  ( f " A
)  C_  ( f " B ) ) )
3512, 33, 34sylanbrc 662 . . . . . . . . . . . . . 14  |-  ( ( f : A -1-1-onto-> x  /\  B  C.  A )  -> 
( f " B
)  C.  ( f " A ) )
36 imadmrn 5167 . . . . . . . . . . . . . . . . 17  |-  ( f
" dom  f )  =  ran  f
37 f1odm 5803 . . . . . . . . . . . . . . . . . 18  |-  ( f : A -1-1-onto-> x  ->  dom  f  =  A )
3837imaeq2d 5157 . . . . . . . . . . . . . . . . 17  |-  ( f : A -1-1-onto-> x  ->  ( f
" dom  f )  =  ( f " A ) )
39 f1ofo 5806 . . . . . . . . . . . . . . . . . 18  |-  ( f : A -1-1-onto-> x  ->  f : A -onto-> x )
40 forn 5781 . . . . . . . . . . . . . . . . . 18  |-  ( f : A -onto-> x  ->  ran  f  =  x
)
4139, 40syl 17 . . . . . . . . . . . . . . . . 17  |-  ( f : A -1-1-onto-> x  ->  ran  f  =  x )
4236, 38, 413eqtr3a 2467 . . . . . . . . . . . . . . . 16  |-  ( f : A -1-1-onto-> x  ->  ( f
" A )  =  x )
4342psseq2d 3536 . . . . . . . . . . . . . . 15  |-  ( f : A -1-1-onto-> x  ->  ( ( f " B ) 
C.  ( f " A )  <->  ( f " B )  C.  x
) )
4443adantr 463 . . . . . . . . . . . . . 14  |-  ( ( f : A -1-1-onto-> x  /\  B  C.  A )  -> 
( ( f " B )  C.  (
f " A )  <-> 
( f " B
)  C.  x )
)
4535, 44mpbid 210 . . . . . . . . . . . . 13  |-  ( ( f : A -1-1-onto-> x  /\  B  C.  A )  -> 
( f " B
)  C.  x )
46 php 7739 . . . . . . . . . . . . 13  |-  ( ( x  e.  om  /\  ( f " B
)  C.  x )  ->  -.  x  ~~  (
f " B ) )
4745, 46sylan2 472 . . . . . . . . . . . 12  |-  ( ( x  e.  om  /\  ( f : A -1-1-onto-> x  /\  B  C.  A ) )  ->  -.  x  ~~  ( f " B
) )
48 f1of1 5798 . . . . . . . . . . . . . . . 16  |-  ( f : A -1-1-onto-> x  ->  f : A -1-1-> x )
49 f1ores 5813 . . . . . . . . . . . . . . . 16  |-  ( ( f : A -1-1-> x  /\  B  C_  A )  ->  ( f  |`  B ) : B -1-1-onto-> (
f " B ) )
5048, 4, 49syl2an 475 . . . . . . . . . . . . . . 15  |-  ( ( f : A -1-1-onto-> x  /\  B  C.  A )  -> 
( f  |`  B ) : B -1-1-onto-> ( f " B
) )
51 vex 3062 . . . . . . . . . . . . . . . . . 18  |-  f  e. 
_V
5251resex 5137 . . . . . . . . . . . . . . . . 17  |-  ( f  |`  B )  e.  _V
53 f1oeq1 5790 . . . . . . . . . . . . . . . . 17  |-  ( y  =  ( f  |`  B )  ->  (
y : B -1-1-onto-> ( f
" B )  <->  ( f  |`  B ) : B -1-1-onto-> (
f " B ) ) )
5452, 53spcev 3151 . . . . . . . . . . . . . . . 16  |-  ( ( f  |`  B ) : B -1-1-onto-> ( f " B
)  ->  E. y 
y : B -1-1-onto-> ( f
" B ) )
55 bren 7563 . . . . . . . . . . . . . . . 16  |-  ( B 
~~  ( f " B )  <->  E. y 
y : B -1-1-onto-> ( f
" B ) )
5654, 55sylibr 212 . . . . . . . . . . . . . . 15  |-  ( ( f  |`  B ) : B -1-1-onto-> ( f " B
)  ->  B  ~~  ( f " B
) )
5750, 56syl 17 . . . . . . . . . . . . . 14  |-  ( ( f : A -1-1-onto-> x  /\  B  C.  A )  ->  B  ~~  ( f " B ) )
58 entr 7605 . . . . . . . . . . . . . . 15  |-  ( ( x  ~~  B  /\  B  ~~  ( f " B ) )  ->  x  ~~  ( f " B ) )
5958expcom 433 . . . . . . . . . . . . . 14  |-  ( B 
~~  ( f " B )  ->  (
x  ~~  B  ->  x 
~~  ( f " B ) ) )
6057, 59syl 17 . . . . . . . . . . . . 13  |-  ( ( f : A -1-1-onto-> x  /\  B  C.  A )  -> 
( x  ~~  B  ->  x  ~~  ( f
" B ) ) )
6160adantl 464 . . . . . . . . . . . 12  |-  ( ( x  e.  om  /\  ( f : A -1-1-onto-> x  /\  B  C.  A ) )  ->  ( x  ~~  B  ->  x  ~~  ( f " B
) ) )
6247, 61mtod 177 . . . . . . . . . . 11  |-  ( ( x  e.  om  /\  ( f : A -1-1-onto-> x  /\  B  C.  A ) )  ->  -.  x  ~~  B )
6362exp32 603 . . . . . . . . . 10  |-  ( x  e.  om  ->  (
f : A -1-1-onto-> x  -> 
( B  C.  A  ->  -.  x  ~~  B
) ) )
6463exlimdv 1745 . . . . . . . . 9  |-  ( x  e.  om  ->  ( E. f  f : A
-1-1-onto-> x  ->  ( B  C.  A  ->  -.  x  ~~  B ) ) )
659, 64syl5bi 217 . . . . . . . 8  |-  ( x  e.  om  ->  ( A  ~~  x  ->  ( B  C.  A  ->  -.  x  ~~  B ) ) )
6665imp31 430 . . . . . . 7  |-  ( ( ( x  e.  om  /\  A  ~~  x )  /\  B  C.  A
)  ->  -.  x  ~~  B )
67 entr 7605 . . . . . . . . . 10  |-  ( ( B  ~~  A  /\  A  ~~  x )  ->  B  ~~  x )
6867ex 432 . . . . . . . . 9  |-  ( B 
~~  A  ->  ( A  ~~  x  ->  B  ~~  x ) )
69 ensym 7602 . . . . . . . . 9  |-  ( B 
~~  x  ->  x  ~~  B )
7068, 69syl6com 33 . . . . . . . 8  |-  ( A 
~~  x  ->  ( B  ~~  A  ->  x  ~~  B ) )
7170ad2antlr 725 . . . . . . 7  |-  ( ( ( x  e.  om  /\  A  ~~  x )  /\  B  C.  A
)  ->  ( B  ~~  A  ->  x  ~~  B ) )
7266, 71mtod 177 . . . . . 6  |-  ( ( ( x  e.  om  /\  A  ~~  x )  /\  B  C.  A
)  ->  -.  B  ~~  A )
73 brsdom 7576 . . . . . 6  |-  ( B 
~<  A  <->  ( B  ~<_  A  /\  -.  B  ~~  A ) )
748, 72, 73sylanbrc 662 . . . . 5  |-  ( ( ( x  e.  om  /\  A  ~~  x )  /\  B  C.  A
)  ->  B  ~<  A )
7574exp31 602 . . . 4  |-  ( x  e.  om  ->  ( A  ~~  x  ->  ( B  C.  A  ->  B  ~<  A ) ) )
7675rexlimiv 2890 . . 3  |-  ( E. x  e.  om  A  ~~  x  ->  ( B 
C.  A  ->  B  ~<  A ) )
771, 76sylbi 195 . 2  |-  ( A  e.  Fin  ->  ( B  C.  A  ->  B  ~<  A ) )
7877imp 427 1  |-  ( ( A  e.  Fin  /\  B  C.  A )  ->  B  ~<  A )
Colors of variables: wff setvar class
Syntax hints:   -. wn 3    -> wi 4    <-> wb 184    /\ wa 367    = wceq 1405   E.wex 1633    e. wcel 1842   E.wrex 2755   _Vcvv 3059    \ cdif 3411    C_ wss 3414    C. wpss 3415   (/)c0 3738   class class class wbr 4395   `'ccnv 4822   dom cdm 4823   ran crn 4824    |` cres 4825   "cima 4826   Fun wfun 5563    Fn wfn 5564   -1-1->wf1 5566   -onto->wfo 5567   -1-1-onto->wf1o 5568   ` cfv 5569   omcom 6683    ~~ cen 7551    ~<_ cdom 7552    ~< csdm 7553   Fincfn 7554
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1639  ax-4 1652  ax-5 1725  ax-6 1771  ax-7 1814  ax-8 1844  ax-9 1846  ax-10 1861  ax-11 1866  ax-12 1878  ax-13 2026  ax-ext 2380  ax-sep 4517  ax-nul 4525  ax-pow 4572  ax-pr 4630  ax-un 6574
This theorem depends on definitions:  df-bi 185  df-or 368  df-an 369  df-3or 975  df-3an 976  df-tru 1408  df-ex 1634  df-nf 1638  df-sb 1764  df-eu 2242  df-mo 2243  df-clab 2388  df-cleq 2394  df-clel 2397  df-nfc 2552  df-ne 2600  df-ral 2759  df-rex 2760  df-rab 2763  df-v 3061  df-sbc 3278  df-dif 3417  df-un 3419  df-in 3421  df-ss 3428  df-pss 3430  df-nul 3739  df-if 3886  df-pw 3957  df-sn 3973  df-pr 3975  df-tp 3977  df-op 3979  df-uni 4192  df-br 4396  df-opab 4454  df-tr 4490  df-eprel 4734  df-id 4738  df-po 4744  df-so 4745  df-fr 4782  df-we 4784  df-xp 4829  df-rel 4830  df-cnv 4831  df-co 4832  df-dm 4833  df-rn 4834  df-res 4835  df-ima 4836  df-ord 5413  df-on 5414  df-lim 5415  df-suc 5416  df-iota 5533  df-fun 5571  df-fn 5572  df-f 5573  df-f1 5574  df-fo 5575  df-f1o 5576  df-fv 5577  df-om 6684  df-er 7348  df-en 7555  df-dom 7556  df-sdom 7557  df-fin 7558
This theorem is referenced by:  pssinf  7765  f1finf1o  7781  findcard3  7797  fofinf1o  7835  ackbij1b  8651  fincssdom  8735  fin23lem25  8736  canthp1lem2  9061  pwfseqlem4  9070  uzindi  12132  symggen  16819  pgpssslw  16958  pgpfaclem2  17453  ppiltx  23832  finminlem  30546
  Copyright terms: Public domain W3C validator