MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  phlpropd Structured version   Unicode version

Theorem phlpropd 19153
Description: If two structures have the same components (properties), one is a pre-Hilbert space iff the other one is. (Contributed by Mario Carneiro, 8-Oct-2015.)
Hypotheses
Ref Expression
phlpropd.1  |-  ( ph  ->  B  =  ( Base `  K ) )
phlpropd.2  |-  ( ph  ->  B  =  ( Base `  L ) )
phlpropd.3  |-  ( (
ph  /\  ( x  e.  B  /\  y  e.  B ) )  -> 
( x ( +g  `  K ) y )  =  ( x ( +g  `  L ) y ) )
phlpropd.4  |-  ( ph  ->  F  =  (Scalar `  K ) )
phlpropd.5  |-  ( ph  ->  F  =  (Scalar `  L ) )
phlpropd.6  |-  P  =  ( Base `  F
)
phlpropd.7  |-  ( (
ph  /\  ( x  e.  P  /\  y  e.  B ) )  -> 
( x ( .s
`  K ) y )  =  ( x ( .s `  L
) y ) )
phlpropd.8  |-  ( (
ph  /\  ( x  e.  B  /\  y  e.  B ) )  -> 
( x ( .i
`  K ) y )  =  ( x ( .i `  L
) y ) )
Assertion
Ref Expression
phlpropd  |-  ( ph  ->  ( K  e.  PreHil  <->  L  e.  PreHil ) )
Distinct variable groups:    x, y, B    x, F, y    x, K, y    x, L, y   
x, P, y    ph, x, y

Proof of Theorem phlpropd
Dummy variables  a 
b are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 phlpropd.1 . . . 4  |-  ( ph  ->  B  =  ( Base `  K ) )
2 phlpropd.2 . . . 4  |-  ( ph  ->  B  =  ( Base `  L ) )
3 phlpropd.3 . . . 4  |-  ( (
ph  /\  ( x  e.  B  /\  y  e.  B ) )  -> 
( x ( +g  `  K ) y )  =  ( x ( +g  `  L ) y ) )
4 phlpropd.4 . . . 4  |-  ( ph  ->  F  =  (Scalar `  K ) )
5 phlpropd.5 . . . 4  |-  ( ph  ->  F  =  (Scalar `  L ) )
6 phlpropd.6 . . . 4  |-  P  =  ( Base `  F
)
7 phlpropd.7 . . . 4  |-  ( (
ph  /\  ( x  e.  P  /\  y  e.  B ) )  -> 
( x ( .s
`  K ) y )  =  ( x ( .s `  L
) y ) )
81, 2, 3, 4, 5, 6, 7lvecpropd 18325 . . 3  |-  ( ph  ->  ( K  e.  LVec  <->  L  e.  LVec ) )
94, 5eqtr3d 2472 . . . 4  |-  ( ph  ->  (Scalar `  K )  =  (Scalar `  L )
)
109eleq1d 2498 . . 3  |-  ( ph  ->  ( (Scalar `  K
)  e.  *Ring  <->  (Scalar `  L
)  e.  *Ring ) )
11 phlpropd.8 . . . . . . . . . . 11  |-  ( (
ph  /\  ( x  e.  B  /\  y  e.  B ) )  -> 
( x ( .i
`  K ) y )  =  ( x ( .i `  L
) y ) )
1211oveqrspc2v 6328 . . . . . . . . . 10  |-  ( (
ph  /\  ( b  e.  B  /\  a  e.  B ) )  -> 
( b ( .i
`  K ) a )  =  ( b ( .i `  L
) a ) )
1312anass1rs 814 . . . . . . . . 9  |-  ( ( ( ph  /\  a  e.  B )  /\  b  e.  B )  ->  (
b ( .i `  K ) a )  =  ( b ( .i `  L ) a ) )
1413mpteq2dva 4512 . . . . . . . 8  |-  ( (
ph  /\  a  e.  B )  ->  (
b  e.  B  |->  ( b ( .i `  K ) a ) )  =  ( b  e.  B  |->  ( b ( .i `  L
) a ) ) )
151adantr 466 . . . . . . . . 9  |-  ( (
ph  /\  a  e.  B )  ->  B  =  ( Base `  K
) )
1615mpteq1d 4507 . . . . . . . 8  |-  ( (
ph  /\  a  e.  B )  ->  (
b  e.  B  |->  ( b ( .i `  K ) a ) )  =  ( b  e.  ( Base `  K
)  |->  ( b ( .i `  K ) a ) ) )
172adantr 466 . . . . . . . . 9  |-  ( (
ph  /\  a  e.  B )  ->  B  =  ( Base `  L
) )
1817mpteq1d 4507 . . . . . . . 8  |-  ( (
ph  /\  a  e.  B )  ->  (
b  e.  B  |->  ( b ( .i `  L ) a ) )  =  ( b  e.  ( Base `  L
)  |->  ( b ( .i `  L ) a ) ) )
1914, 16, 183eqtr3d 2478 . . . . . . 7  |-  ( (
ph  /\  a  e.  B )  ->  (
b  e.  ( Base `  K )  |->  ( b ( .i `  K
) a ) )  =  ( b  e.  ( Base `  L
)  |->  ( b ( .i `  L ) a ) ) )
20 rlmbas 18353 . . . . . . . . . . . 12  |-  ( Base `  F )  =  (
Base `  (ringLMod `  F
) )
216, 20eqtri 2458 . . . . . . . . . . 11  |-  P  =  ( Base `  (ringLMod `  F ) )
2221a1i 11 . . . . . . . . . 10  |-  ( ph  ->  P  =  ( Base `  (ringLMod `  F )
) )
23 fvex 5891 . . . . . . . . . . . 12  |-  (Scalar `  K )  e.  _V
244, 23syl6eqel 2525 . . . . . . . . . . 11  |-  ( ph  ->  F  e.  _V )
25 rlmsca 18358 . . . . . . . . . . 11  |-  ( F  e.  _V  ->  F  =  (Scalar `  (ringLMod `  F
) ) )
2624, 25syl 17 . . . . . . . . . 10  |-  ( ph  ->  F  =  (Scalar `  (ringLMod `  F ) ) )
27 eqidd 2430 . . . . . . . . . 10  |-  ( (
ph  /\  ( x  e.  P  /\  y  e.  P ) )  -> 
( x ( +g  `  (ringLMod `  F )
) y )  =  ( x ( +g  `  (ringLMod `  F )
) y ) )
28 eqidd 2430 . . . . . . . . . 10  |-  ( (
ph  /\  ( x  e.  P  /\  y  e.  P ) )  -> 
( x ( .s
`  (ringLMod `  F )
) y )  =  ( x ( .s
`  (ringLMod `  F )
) y ) )
291, 22, 2, 22, 4, 26, 5, 26, 6, 6, 3, 27, 7, 28lmhmpropd 18231 . . . . . . . . 9  |-  ( ph  ->  ( K LMHom  (ringLMod `  F
) )  =  ( L LMHom  (ringLMod `  F )
) )
304fveq2d 5885 . . . . . . . . . 10  |-  ( ph  ->  (ringLMod `  F )  =  (ringLMod `  (Scalar `  K
) ) )
3130oveq2d 6321 . . . . . . . . 9  |-  ( ph  ->  ( K LMHom  (ringLMod `  F
) )  =  ( K LMHom  (ringLMod `  (Scalar `  K
) ) ) )
325fveq2d 5885 . . . . . . . . . 10  |-  ( ph  ->  (ringLMod `  F )  =  (ringLMod `  (Scalar `  L
) ) )
3332oveq2d 6321 . . . . . . . . 9  |-  ( ph  ->  ( L LMHom  (ringLMod `  F
) )  =  ( L LMHom  (ringLMod `  (Scalar `  L
) ) ) )
3429, 31, 333eqtr3d 2478 . . . . . . . 8  |-  ( ph  ->  ( K LMHom  (ringLMod `  (Scalar `  K ) ) )  =  ( L LMHom  (ringLMod `  (Scalar `  L )
) ) )
3534adantr 466 . . . . . . 7  |-  ( (
ph  /\  a  e.  B )  ->  ( K LMHom  (ringLMod `  (Scalar `  K
) ) )  =  ( L LMHom  (ringLMod `  (Scalar `  L ) ) ) )
3619, 35eleq12d 2511 . . . . . 6  |-  ( (
ph  /\  a  e.  B )  ->  (
( b  e.  (
Base `  K )  |->  ( b ( .i
`  K ) a ) )  e.  ( K LMHom  (ringLMod `  (Scalar `  K
) ) )  <->  ( b  e.  ( Base `  L
)  |->  ( b ( .i `  L ) a ) )  e.  ( L LMHom  (ringLMod `  (Scalar `  L ) ) ) ) )
3711oveqrspc2v 6328 . . . . . . . . 9  |-  ( (
ph  /\  ( a  e.  B  /\  a  e.  B ) )  -> 
( a ( .i
`  K ) a )  =  ( a ( .i `  L
) a ) )
3837anabsan2 829 . . . . . . . 8  |-  ( (
ph  /\  a  e.  B )  ->  (
a ( .i `  K ) a )  =  ( a ( .i `  L ) a ) )
399fveq2d 5885 . . . . . . . . 9  |-  ( ph  ->  ( 0g `  (Scalar `  K ) )  =  ( 0g `  (Scalar `  L ) ) )
4039adantr 466 . . . . . . . 8  |-  ( (
ph  /\  a  e.  B )  ->  ( 0g `  (Scalar `  K
) )  =  ( 0g `  (Scalar `  L ) ) )
4138, 40eqeq12d 2451 . . . . . . 7  |-  ( (
ph  /\  a  e.  B )  ->  (
( a ( .i
`  K ) a )  =  ( 0g
`  (Scalar `  K )
)  <->  ( a ( .i `  L ) a )  =  ( 0g `  (Scalar `  L ) ) ) )
421, 2, 3grpidpropd 16455 . . . . . . . . 9  |-  ( ph  ->  ( 0g `  K
)  =  ( 0g
`  L ) )
4342adantr 466 . . . . . . . 8  |-  ( (
ph  /\  a  e.  B )  ->  ( 0g `  K )  =  ( 0g `  L
) )
4443eqeq2d 2443 . . . . . . 7  |-  ( (
ph  /\  a  e.  B )  ->  (
a  =  ( 0g
`  K )  <->  a  =  ( 0g `  L ) ) )
4541, 44imbi12d 321 . . . . . 6  |-  ( (
ph  /\  a  e.  B )  ->  (
( ( a ( .i `  K ) a )  =  ( 0g `  (Scalar `  K ) )  -> 
a  =  ( 0g
`  K ) )  <-> 
( ( a ( .i `  L ) a )  =  ( 0g `  (Scalar `  L ) )  -> 
a  =  ( 0g
`  L ) ) ) )
469fveq2d 5885 . . . . . . . . . . . 12  |-  ( ph  ->  ( *r `  (Scalar `  K ) )  =  ( *r `  (Scalar `  L
) ) )
4746adantr 466 . . . . . . . . . . 11  |-  ( (
ph  /\  ( a  e.  B  /\  b  e.  B ) )  -> 
( *r `  (Scalar `  K ) )  =  ( *r `  (Scalar `  L
) ) )
4811oveqrspc2v 6328 . . . . . . . . . . 11  |-  ( (
ph  /\  ( a  e.  B  /\  b  e.  B ) )  -> 
( a ( .i
`  K ) b )  =  ( a ( .i `  L
) b ) )
4947, 48fveq12d 5887 . . . . . . . . . 10  |-  ( (
ph  /\  ( a  e.  B  /\  b  e.  B ) )  -> 
( ( *r `  (Scalar `  K
) ) `  (
a ( .i `  K ) b ) )  =  ( ( *r `  (Scalar `  L ) ) `  ( a ( .i
`  L ) b ) ) )
5049anassrs 652 . . . . . . . . 9  |-  ( ( ( ph  /\  a  e.  B )  /\  b  e.  B )  ->  (
( *r `  (Scalar `  K ) ) `
 ( a ( .i `  K ) b ) )  =  ( ( *r `  (Scalar `  L
) ) `  (
a ( .i `  L ) b ) ) )
5150, 13eqeq12d 2451 . . . . . . . 8  |-  ( ( ( ph  /\  a  e.  B )  /\  b  e.  B )  ->  (
( ( *r `  (Scalar `  K
) ) `  (
a ( .i `  K ) b ) )  =  ( b ( .i `  K
) a )  <->  ( (
*r `  (Scalar `  L ) ) `  ( a ( .i
`  L ) b ) )  =  ( b ( .i `  L ) a ) ) )
5251ralbidva 2868 . . . . . . 7  |-  ( (
ph  /\  a  e.  B )  ->  ( A. b  e.  B  ( ( *r `  (Scalar `  K
) ) `  (
a ( .i `  K ) b ) )  =  ( b ( .i `  K
) a )  <->  A. b  e.  B  ( (
*r `  (Scalar `  L ) ) `  ( a ( .i
`  L ) b ) )  =  ( b ( .i `  L ) a ) ) )
5315raleqdv 3038 . . . . . . 7  |-  ( (
ph  /\  a  e.  B )  ->  ( A. b  e.  B  ( ( *r `  (Scalar `  K
) ) `  (
a ( .i `  K ) b ) )  =  ( b ( .i `  K
) a )  <->  A. b  e.  ( Base `  K
) ( ( *r `  (Scalar `  K ) ) `  ( a ( .i
`  K ) b ) )  =  ( b ( .i `  K ) a ) ) )
5417raleqdv 3038 . . . . . . 7  |-  ( (
ph  /\  a  e.  B )  ->  ( A. b  e.  B  ( ( *r `  (Scalar `  L
) ) `  (
a ( .i `  L ) b ) )  =  ( b ( .i `  L
) a )  <->  A. b  e.  ( Base `  L
) ( ( *r `  (Scalar `  L ) ) `  ( a ( .i
`  L ) b ) )  =  ( b ( .i `  L ) a ) ) )
5552, 53, 543bitr3d 286 . . . . . 6  |-  ( (
ph  /\  a  e.  B )  ->  ( A. b  e.  ( Base `  K ) ( ( *r `  (Scalar `  K ) ) `
 ( a ( .i `  K ) b ) )  =  ( b ( .i
`  K ) a )  <->  A. b  e.  (
Base `  L )
( ( *r `  (Scalar `  L
) ) `  (
a ( .i `  L ) b ) )  =  ( b ( .i `  L
) a ) ) )
5636, 45, 553anbi123d 1335 . . . . 5  |-  ( (
ph  /\  a  e.  B )  ->  (
( ( b  e.  ( Base `  K
)  |->  ( b ( .i `  K ) a ) )  e.  ( K LMHom  (ringLMod `  (Scalar `  K ) ) )  /\  ( ( a ( .i `  K
) a )  =  ( 0g `  (Scalar `  K ) )  -> 
a  =  ( 0g
`  K ) )  /\  A. b  e.  ( Base `  K
) ( ( *r `  (Scalar `  K ) ) `  ( a ( .i
`  K ) b ) )  =  ( b ( .i `  K ) a ) )  <->  ( ( b  e.  ( Base `  L
)  |->  ( b ( .i `  L ) a ) )  e.  ( L LMHom  (ringLMod `  (Scalar `  L ) ) )  /\  ( ( a ( .i `  L
) a )  =  ( 0g `  (Scalar `  L ) )  -> 
a  =  ( 0g
`  L ) )  /\  A. b  e.  ( Base `  L
) ( ( *r `  (Scalar `  L ) ) `  ( a ( .i
`  L ) b ) )  =  ( b ( .i `  L ) a ) ) ) )
5756ralbidva 2868 . . . 4  |-  ( ph  ->  ( A. a  e.  B  ( ( b  e.  ( Base `  K
)  |->  ( b ( .i `  K ) a ) )  e.  ( K LMHom  (ringLMod `  (Scalar `  K ) ) )  /\  ( ( a ( .i `  K
) a )  =  ( 0g `  (Scalar `  K ) )  -> 
a  =  ( 0g
`  K ) )  /\  A. b  e.  ( Base `  K
) ( ( *r `  (Scalar `  K ) ) `  ( a ( .i
`  K ) b ) )  =  ( b ( .i `  K ) a ) )  <->  A. a  e.  B  ( ( b  e.  ( Base `  L
)  |->  ( b ( .i `  L ) a ) )  e.  ( L LMHom  (ringLMod `  (Scalar `  L ) ) )  /\  ( ( a ( .i `  L
) a )  =  ( 0g `  (Scalar `  L ) )  -> 
a  =  ( 0g
`  L ) )  /\  A. b  e.  ( Base `  L
) ( ( *r `  (Scalar `  L ) ) `  ( a ( .i
`  L ) b ) )  =  ( b ( .i `  L ) a ) ) ) )
581raleqdv 3038 . . . 4  |-  ( ph  ->  ( A. a  e.  B  ( ( b  e.  ( Base `  K
)  |->  ( b ( .i `  K ) a ) )  e.  ( K LMHom  (ringLMod `  (Scalar `  K ) ) )  /\  ( ( a ( .i `  K
) a )  =  ( 0g `  (Scalar `  K ) )  -> 
a  =  ( 0g
`  K ) )  /\  A. b  e.  ( Base `  K
) ( ( *r `  (Scalar `  K ) ) `  ( a ( .i
`  K ) b ) )  =  ( b ( .i `  K ) a ) )  <->  A. a  e.  (
Base `  K )
( ( b  e.  ( Base `  K
)  |->  ( b ( .i `  K ) a ) )  e.  ( K LMHom  (ringLMod `  (Scalar `  K ) ) )  /\  ( ( a ( .i `  K
) a )  =  ( 0g `  (Scalar `  K ) )  -> 
a  =  ( 0g
`  K ) )  /\  A. b  e.  ( Base `  K
) ( ( *r `  (Scalar `  K ) ) `  ( a ( .i
`  K ) b ) )  =  ( b ( .i `  K ) a ) ) ) )
592raleqdv 3038 . . . 4  |-  ( ph  ->  ( A. a  e.  B  ( ( b  e.  ( Base `  L
)  |->  ( b ( .i `  L ) a ) )  e.  ( L LMHom  (ringLMod `  (Scalar `  L ) ) )  /\  ( ( a ( .i `  L
) a )  =  ( 0g `  (Scalar `  L ) )  -> 
a  =  ( 0g
`  L ) )  /\  A. b  e.  ( Base `  L
) ( ( *r `  (Scalar `  L ) ) `  ( a ( .i
`  L ) b ) )  =  ( b ( .i `  L ) a ) )  <->  A. a  e.  (
Base `  L )
( ( b  e.  ( Base `  L
)  |->  ( b ( .i `  L ) a ) )  e.  ( L LMHom  (ringLMod `  (Scalar `  L ) ) )  /\  ( ( a ( .i `  L
) a )  =  ( 0g `  (Scalar `  L ) )  -> 
a  =  ( 0g
`  L ) )  /\  A. b  e.  ( Base `  L
) ( ( *r `  (Scalar `  L ) ) `  ( a ( .i
`  L ) b ) )  =  ( b ( .i `  L ) a ) ) ) )
6057, 58, 593bitr3d 286 . . 3  |-  ( ph  ->  ( A. a  e.  ( Base `  K
) ( ( b  e.  ( Base `  K
)  |->  ( b ( .i `  K ) a ) )  e.  ( K LMHom  (ringLMod `  (Scalar `  K ) ) )  /\  ( ( a ( .i `  K
) a )  =  ( 0g `  (Scalar `  K ) )  -> 
a  =  ( 0g
`  K ) )  /\  A. b  e.  ( Base `  K
) ( ( *r `  (Scalar `  K ) ) `  ( a ( .i
`  K ) b ) )  =  ( b ( .i `  K ) a ) )  <->  A. a  e.  (
Base `  L )
( ( b  e.  ( Base `  L
)  |->  ( b ( .i `  L ) a ) )  e.  ( L LMHom  (ringLMod `  (Scalar `  L ) ) )  /\  ( ( a ( .i `  L
) a )  =  ( 0g `  (Scalar `  L ) )  -> 
a  =  ( 0g
`  L ) )  /\  A. b  e.  ( Base `  L
) ( ( *r `  (Scalar `  L ) ) `  ( a ( .i
`  L ) b ) )  =  ( b ( .i `  L ) a ) ) ) )
618, 10, 603anbi123d 1335 . 2  |-  ( ph  ->  ( ( K  e. 
LVec  /\  (Scalar `  K
)  e.  *Ring  /\  A. a  e.  ( Base `  K ) ( ( b  e.  ( Base `  K )  |->  ( b ( .i `  K
) a ) )  e.  ( K LMHom  (ringLMod `  (Scalar `  K )
) )  /\  (
( a ( .i
`  K ) a )  =  ( 0g
`  (Scalar `  K )
)  ->  a  =  ( 0g `  K ) )  /\  A. b  e.  ( Base `  K
) ( ( *r `  (Scalar `  K ) ) `  ( a ( .i
`  K ) b ) )  =  ( b ( .i `  K ) a ) ) )  <->  ( L  e.  LVec  /\  (Scalar `  L
)  e.  *Ring  /\  A. a  e.  ( Base `  L ) ( ( b  e.  ( Base `  L )  |->  ( b ( .i `  L
) a ) )  e.  ( L LMHom  (ringLMod `  (Scalar `  L )
) )  /\  (
( a ( .i
`  L ) a )  =  ( 0g
`  (Scalar `  L )
)  ->  a  =  ( 0g `  L ) )  /\  A. b  e.  ( Base `  L
) ( ( *r `  (Scalar `  L ) ) `  ( a ( .i
`  L ) b ) )  =  ( b ( .i `  L ) a ) ) ) ) )
62 eqid 2429 . . 3  |-  ( Base `  K )  =  (
Base `  K )
63 eqid 2429 . . 3  |-  (Scalar `  K )  =  (Scalar `  K )
64 eqid 2429 . . 3  |-  ( .i
`  K )  =  ( .i `  K
)
65 eqid 2429 . . 3  |-  ( 0g
`  K )  =  ( 0g `  K
)
66 eqid 2429 . . 3  |-  ( *r `  (Scalar `  K ) )  =  ( *r `  (Scalar `  K ) )
67 eqid 2429 . . 3  |-  ( 0g
`  (Scalar `  K )
)  =  ( 0g
`  (Scalar `  K )
)
6862, 63, 64, 65, 66, 67isphl 19126 . 2  |-  ( K  e.  PreHil 
<->  ( K  e.  LVec  /\  (Scalar `  K )  e.  *Ring  /\  A. a  e.  ( Base `  K
) ( ( b  e.  ( Base `  K
)  |->  ( b ( .i `  K ) a ) )  e.  ( K LMHom  (ringLMod `  (Scalar `  K ) ) )  /\  ( ( a ( .i `  K
) a )  =  ( 0g `  (Scalar `  K ) )  -> 
a  =  ( 0g
`  K ) )  /\  A. b  e.  ( Base `  K
) ( ( *r `  (Scalar `  K ) ) `  ( a ( .i
`  K ) b ) )  =  ( b ( .i `  K ) a ) ) ) )
69 eqid 2429 . . 3  |-  ( Base `  L )  =  (
Base `  L )
70 eqid 2429 . . 3  |-  (Scalar `  L )  =  (Scalar `  L )
71 eqid 2429 . . 3  |-  ( .i
`  L )  =  ( .i `  L
)
72 eqid 2429 . . 3  |-  ( 0g
`  L )  =  ( 0g `  L
)
73 eqid 2429 . . 3  |-  ( *r `  (Scalar `  L ) )  =  ( *r `  (Scalar `  L ) )
74 eqid 2429 . . 3  |-  ( 0g
`  (Scalar `  L )
)  =  ( 0g
`  (Scalar `  L )
)
7569, 70, 71, 72, 73, 74isphl 19126 . 2  |-  ( L  e.  PreHil 
<->  ( L  e.  LVec  /\  (Scalar `  L )  e.  *Ring  /\  A. a  e.  ( Base `  L
) ( ( b  e.  ( Base `  L
)  |->  ( b ( .i `  L ) a ) )  e.  ( L LMHom  (ringLMod `  (Scalar `  L ) ) )  /\  ( ( a ( .i `  L
) a )  =  ( 0g `  (Scalar `  L ) )  -> 
a  =  ( 0g
`  L ) )  /\  A. b  e.  ( Base `  L
) ( ( *r `  (Scalar `  L ) ) `  ( a ( .i
`  L ) b ) )  =  ( b ( .i `  L ) a ) ) ) )
7661, 68, 753bitr4g 291 1  |-  ( ph  ->  ( K  e.  PreHil  <->  L  e.  PreHil ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 187    /\ wa 370    /\ w3a 982    = wceq 1437    e. wcel 1870   A.wral 2782   _Vcvv 3087    |-> cmpt 4484   ` cfv 5601  (class class class)co 6305   Basecbs 15084   +g cplusg 15152   *rcstv 15154  Scalarcsca 15155   .scvsca 15156   .icip 15157   0gc0g 15297   *Ringcsr 18007   LMHom clmhm 18177   LVecclvec 18260  ringLModcrglmod 18327   PreHilcphl 19122
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1665  ax-4 1678  ax-5 1751  ax-6 1797  ax-7 1841  ax-8 1872  ax-9 1874  ax-10 1889  ax-11 1894  ax-12 1907  ax-13 2055  ax-ext 2407  ax-rep 4538  ax-sep 4548  ax-nul 4556  ax-pow 4603  ax-pr 4661  ax-un 6597  ax-cnex 9594  ax-resscn 9595  ax-1cn 9596  ax-icn 9597  ax-addcl 9598  ax-addrcl 9599  ax-mulcl 9600  ax-mulrcl 9601  ax-mulcom 9602  ax-addass 9603  ax-mulass 9604  ax-distr 9605  ax-i2m1 9606  ax-1ne0 9607  ax-1rid 9608  ax-rnegex 9609  ax-rrecex 9610  ax-cnre 9611  ax-pre-lttri 9612  ax-pre-lttrn 9613  ax-pre-ltadd 9614  ax-pre-mulgt0 9615
This theorem depends on definitions:  df-bi 188  df-or 371  df-an 372  df-3or 983  df-3an 984  df-tru 1440  df-ex 1660  df-nf 1664  df-sb 1790  df-eu 2270  df-mo 2271  df-clab 2415  df-cleq 2421  df-clel 2424  df-nfc 2579  df-ne 2627  df-nel 2628  df-ral 2787  df-rex 2788  df-reu 2789  df-rmo 2790  df-rab 2791  df-v 3089  df-sbc 3306  df-csb 3402  df-dif 3445  df-un 3447  df-in 3449  df-ss 3456  df-pss 3458  df-nul 3768  df-if 3916  df-pw 3987  df-sn 4003  df-pr 4005  df-tp 4007  df-op 4009  df-uni 4223  df-iun 4304  df-br 4427  df-opab 4485  df-mpt 4486  df-tr 4521  df-eprel 4765  df-id 4769  df-po 4775  df-so 4776  df-fr 4813  df-we 4815  df-xp 4860  df-rel 4861  df-cnv 4862  df-co 4863  df-dm 4864  df-rn 4865  df-res 4866  df-ima 4867  df-pred 5399  df-ord 5445  df-on 5446  df-lim 5447  df-suc 5448  df-iota 5565  df-fun 5603  df-fn 5604  df-f 5605  df-f1 5606  df-fo 5607  df-f1o 5608  df-fv 5609  df-riota 6267  df-ov 6308  df-oprab 6309  df-mpt2 6310  df-om 6707  df-wrecs 7036  df-recs 7098  df-rdg 7136  df-er 7371  df-map 7482  df-en 7578  df-dom 7579  df-sdom 7580  df-pnf 9676  df-mnf 9677  df-xr 9678  df-ltxr 9679  df-le 9680  df-sub 9861  df-neg 9862  df-nn 10610  df-2 10668  df-3 10669  df-4 10670  df-5 10671  df-6 10672  df-7 10673  df-8 10674  df-ndx 15087  df-slot 15088  df-base 15089  df-sets 15090  df-ress 15091  df-plusg 15165  df-sca 15168  df-vsca 15169  df-ip 15170  df-0g 15299  df-mgm 16439  df-sgrp 16478  df-mnd 16488  df-mhm 16533  df-grp 16624  df-ghm 16832  df-mgp 17659  df-ur 17671  df-ring 17717  df-lmod 18028  df-lmhm 18180  df-lvec 18261  df-sra 18330  df-rgmod 18331  df-phl 19124
This theorem is referenced by:  tchphl  22094
  Copyright terms: Public domain W3C validator