MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  phiprmpw Structured version   Unicode version

Theorem phiprmpw 14178
Description: Value of the Euler  phi function at a prime power. (Contributed by Mario Carneiro, 24-Feb-2014.)
Assertion
Ref Expression
phiprmpw  |-  ( ( P  e.  Prime  /\  K  e.  NN )  ->  ( phi `  ( P ^ K ) )  =  ( ( P ^
( K  -  1 ) )  x.  ( P  -  1 ) ) )

Proof of Theorem phiprmpw
Dummy variable  x is distinct from all other variables.
StepHypRef Expression
1 prmnn 14092 . . . 4  |-  ( P  e.  Prime  ->  P  e.  NN )
2 nnnn0 10803 . . . 4  |-  ( K  e.  NN  ->  K  e.  NN0 )
3 nnexpcl 12153 . . . 4  |-  ( ( P  e.  NN  /\  K  e.  NN0 )  -> 
( P ^ K
)  e.  NN )
41, 2, 3syl2an 477 . . 3  |-  ( ( P  e.  Prime  /\  K  e.  NN )  ->  ( P ^ K )  e.  NN )
5 phival 14169 . . 3  |-  ( ( P ^ K )  e.  NN  ->  ( phi `  ( P ^ K ) )  =  ( # `  {
x  e.  ( 1 ... ( P ^ K ) )  |  ( x  gcd  ( P ^ K ) )  =  1 } ) )
64, 5syl 16 . 2  |-  ( ( P  e.  Prime  /\  K  e.  NN )  ->  ( phi `  ( P ^ K ) )  =  ( # `  {
x  e.  ( 1 ... ( P ^ K ) )  |  ( x  gcd  ( P ^ K ) )  =  1 } ) )
7 nnm1nn0 10838 . . . . . 6  |-  ( K  e.  NN  ->  ( K  -  1 )  e.  NN0 )
8 nnexpcl 12153 . . . . . 6  |-  ( ( P  e.  NN  /\  ( K  -  1
)  e.  NN0 )  ->  ( P ^ ( K  -  1 ) )  e.  NN )
91, 7, 8syl2an 477 . . . . 5  |-  ( ( P  e.  Prime  /\  K  e.  NN )  ->  ( P ^ ( K  - 
1 ) )  e.  NN )
109nncnd 10553 . . . 4  |-  ( ( P  e.  Prime  /\  K  e.  NN )  ->  ( P ^ ( K  - 
1 ) )  e.  CC )
111nncnd 10553 . . . . 5  |-  ( P  e.  Prime  ->  P  e.  CC )
1211adantr 465 . . . 4  |-  ( ( P  e.  Prime  /\  K  e.  NN )  ->  P  e.  CC )
13 ax-1cn 9548 . . . . 5  |-  1  e.  CC
14 subdi 9991 . . . . 5  |-  ( ( ( P ^ ( K  -  1 ) )  e.  CC  /\  P  e.  CC  /\  1  e.  CC )  ->  (
( P ^ ( K  -  1 ) )  x.  ( P  -  1 ) )  =  ( ( ( P ^ ( K  -  1 ) )  x.  P )  -  ( ( P ^
( K  -  1 ) )  x.  1 ) ) )
1513, 14mp3an3 1312 . . . 4  |-  ( ( ( P ^ ( K  -  1 ) )  e.  CC  /\  P  e.  CC )  ->  ( ( P ^
( K  -  1 ) )  x.  ( P  -  1 ) )  =  ( ( ( P ^ ( K  -  1 ) )  x.  P )  -  ( ( P ^ ( K  - 
1 ) )  x.  1 ) ) )
1610, 12, 15syl2anc 661 . . 3  |-  ( ( P  e.  Prime  /\  K  e.  NN )  ->  (
( P ^ ( K  -  1 ) )  x.  ( P  -  1 ) )  =  ( ( ( P ^ ( K  -  1 ) )  x.  P )  -  ( ( P ^
( K  -  1 ) )  x.  1 ) ) )
1710mulid1d 9611 . . . 4  |-  ( ( P  e.  Prime  /\  K  e.  NN )  ->  (
( P ^ ( K  -  1 ) )  x.  1 )  =  ( P ^
( K  -  1 ) ) )
1817oveq2d 6293 . . 3  |-  ( ( P  e.  Prime  /\  K  e.  NN )  ->  (
( ( P ^
( K  -  1 ) )  x.  P
)  -  ( ( P ^ ( K  -  1 ) )  x.  1 ) )  =  ( ( ( P ^ ( K  -  1 ) )  x.  P )  -  ( P ^ ( K  -  1 ) ) ) )
19 inrab 3752 . . . . . . 7  |-  ( { x  e.  ( 1 ... ( P ^ K ) )  |  ( x  gcd  ( P ^ K ) )  =  1 }  i^i  { x  e.  ( 1 ... ( P ^ K ) )  |  P  ||  ( x  -  0 ) } )  =  { x  e.  ( 1 ... ( P ^ K ) )  |  ( ( x  gcd  ( P ^ K ) )  =  1  /\  P  ||  ( x  -  0
) ) }
20 elfzelz 11692 . . . . . . . . . . . 12  |-  ( x  e.  ( 1 ... ( P ^ K
) )  ->  x  e.  ZZ )
21 prmz 14093 . . . . . . . . . . . . . . . . 17  |-  ( P  e.  Prime  ->  P  e.  ZZ )
22 rpexp 14133 . . . . . . . . . . . . . . . . 17  |-  ( ( P  e.  ZZ  /\  x  e.  ZZ  /\  K  e.  NN )  ->  (
( ( P ^ K )  gcd  x
)  =  1  <->  ( P  gcd  x )  =  1 ) )
2321, 22syl3an1 1260 . . . . . . . . . . . . . . . 16  |-  ( ( P  e.  Prime  /\  x  e.  ZZ  /\  K  e.  NN )  ->  (
( ( P ^ K )  gcd  x
)  =  1  <->  ( P  gcd  x )  =  1 ) )
24233expa 1195 . . . . . . . . . . . . . . 15  |-  ( ( ( P  e.  Prime  /\  x  e.  ZZ )  /\  K  e.  NN )  ->  ( ( ( P ^ K )  gcd  x )  =  1  <->  ( P  gcd  x )  =  1 ) )
2524an32s 802 . . . . . . . . . . . . . 14  |-  ( ( ( P  e.  Prime  /\  K  e.  NN )  /\  x  e.  ZZ )  ->  ( ( ( P ^ K )  gcd  x )  =  1  <->  ( P  gcd  x )  =  1 ) )
26 simpr 461 . . . . . . . . . . . . . . . 16  |-  ( ( ( P  e.  Prime  /\  K  e.  NN )  /\  x  e.  ZZ )  ->  x  e.  ZZ )
27 zexpcl 12155 . . . . . . . . . . . . . . . . . 18  |-  ( ( P  e.  ZZ  /\  K  e.  NN0 )  -> 
( P ^ K
)  e.  ZZ )
2821, 2, 27syl2an 477 . . . . . . . . . . . . . . . . 17  |-  ( ( P  e.  Prime  /\  K  e.  NN )  ->  ( P ^ K )  e.  ZZ )
2928adantr 465 . . . . . . . . . . . . . . . 16  |-  ( ( ( P  e.  Prime  /\  K  e.  NN )  /\  x  e.  ZZ )  ->  ( P ^ K )  e.  ZZ )
30 gcdcom 14030 . . . . . . . . . . . . . . . 16  |-  ( ( x  e.  ZZ  /\  ( P ^ K )  e.  ZZ )  -> 
( x  gcd  ( P ^ K ) )  =  ( ( P ^ K )  gcd  x ) )
3126, 29, 30syl2anc 661 . . . . . . . . . . . . . . 15  |-  ( ( ( P  e.  Prime  /\  K  e.  NN )  /\  x  e.  ZZ )  ->  ( x  gcd  ( P ^ K ) )  =  ( ( P ^ K )  gcd  x ) )
3231eqeq1d 2443 . . . . . . . . . . . . . 14  |-  ( ( ( P  e.  Prime  /\  K  e.  NN )  /\  x  e.  ZZ )  ->  ( ( x  gcd  ( P ^ K ) )  =  1  <->  ( ( P ^ K )  gcd  x )  =  1 ) )
33 coprm 14113 . . . . . . . . . . . . . . 15  |-  ( ( P  e.  Prime  /\  x  e.  ZZ )  ->  ( -.  P  ||  x  <->  ( P  gcd  x )  =  1 ) )
3433adantlr 714 . . . . . . . . . . . . . 14  |-  ( ( ( P  e.  Prime  /\  K  e.  NN )  /\  x  e.  ZZ )  ->  ( -.  P  ||  x  <->  ( P  gcd  x )  =  1 ) )
3525, 32, 343bitr4d 285 . . . . . . . . . . . . 13  |-  ( ( ( P  e.  Prime  /\  K  e.  NN )  /\  x  e.  ZZ )  ->  ( ( x  gcd  ( P ^ K ) )  =  1  <->  -.  P  ||  x
) )
36 zcn 10870 . . . . . . . . . . . . . . . . 17  |-  ( x  e.  ZZ  ->  x  e.  CC )
3736adantl 466 . . . . . . . . . . . . . . . 16  |-  ( ( ( P  e.  Prime  /\  K  e.  NN )  /\  x  e.  ZZ )  ->  x  e.  CC )
3837subid1d 9920 . . . . . . . . . . . . . . 15  |-  ( ( ( P  e.  Prime  /\  K  e.  NN )  /\  x  e.  ZZ )  ->  ( x  - 
0 )  =  x )
3938breq2d 4445 . . . . . . . . . . . . . 14  |-  ( ( ( P  e.  Prime  /\  K  e.  NN )  /\  x  e.  ZZ )  ->  ( P  ||  ( x  -  0
)  <->  P  ||  x ) )
4039notbid 294 . . . . . . . . . . . . 13  |-  ( ( ( P  e.  Prime  /\  K  e.  NN )  /\  x  e.  ZZ )  ->  ( -.  P  ||  ( x  -  0 )  <->  -.  P  ||  x
) )
4135, 40bitr4d 256 . . . . . . . . . . . 12  |-  ( ( ( P  e.  Prime  /\  K  e.  NN )  /\  x  e.  ZZ )  ->  ( ( x  gcd  ( P ^ K ) )  =  1  <->  -.  P  ||  (
x  -  0 ) ) )
4220, 41sylan2 474 . . . . . . . . . . 11  |-  ( ( ( P  e.  Prime  /\  K  e.  NN )  /\  x  e.  ( 1 ... ( P ^ K ) ) )  ->  ( (
x  gcd  ( P ^ K ) )  =  1  <->  -.  P  ||  (
x  -  0 ) ) )
4342biimpd 207 . . . . . . . . . 10  |-  ( ( ( P  e.  Prime  /\  K  e.  NN )  /\  x  e.  ( 1 ... ( P ^ K ) ) )  ->  ( (
x  gcd  ( P ^ K ) )  =  1  ->  -.  P  ||  ( x  -  0 ) ) )
44 imnan 422 . . . . . . . . . 10  |-  ( ( ( x  gcd  ( P ^ K ) )  =  1  ->  -.  P  ||  ( x  - 
0 ) )  <->  -.  (
( x  gcd  ( P ^ K ) )  =  1  /\  P  ||  ( x  -  0 ) ) )
4543, 44sylib 196 . . . . . . . . 9  |-  ( ( ( P  e.  Prime  /\  K  e.  NN )  /\  x  e.  ( 1 ... ( P ^ K ) ) )  ->  -.  (
( x  gcd  ( P ^ K ) )  =  1  /\  P  ||  ( x  -  0 ) ) )
4645ralrimiva 2855 . . . . . . . 8  |-  ( ( P  e.  Prime  /\  K  e.  NN )  ->  A. x  e.  ( 1 ... ( P ^ K ) )  -.  ( ( x  gcd  ( P ^ K ) )  =  1  /\  P  ||  ( x  -  0
) ) )
47 rabeq0 3789 . . . . . . . 8  |-  ( { x  e.  ( 1 ... ( P ^ K ) )  |  ( ( x  gcd  ( P ^ K ) )  =  1  /\  P  ||  ( x  -  0 ) ) }  =  (/)  <->  A. x  e.  ( 1 ... ( P ^ K ) )  -.  ( ( x  gcd  ( P ^ K ) )  =  1  /\  P  ||  ( x  -  0
) ) )
4846, 47sylibr 212 . . . . . . 7  |-  ( ( P  e.  Prime  /\  K  e.  NN )  ->  { x  e.  ( 1 ... ( P ^ K ) )  |  ( ( x  gcd  ( P ^ K ) )  =  1  /\  P  ||  ( x  -  0
) ) }  =  (/) )
4919, 48syl5eq 2494 . . . . . 6  |-  ( ( P  e.  Prime  /\  K  e.  NN )  ->  ( { x  e.  (
1 ... ( P ^ K ) )  |  ( x  gcd  ( P ^ K ) )  =  1 }  i^i  { x  e.  ( 1 ... ( P ^ K ) )  |  P  ||  ( x  -  0 ) } )  =  (/) )
50 fzfi 12056 . . . . . . . 8  |-  ( 1 ... ( P ^ K ) )  e. 
Fin
51 ssrab2 3567 . . . . . . . 8  |-  { x  e.  ( 1 ... ( P ^ K ) )  |  ( x  gcd  ( P ^ K ) )  =  1 } 
C_  ( 1 ... ( P ^ K
) )
52 ssfi 7738 . . . . . . . 8  |-  ( ( ( 1 ... ( P ^ K ) )  e.  Fin  /\  {
x  e.  ( 1 ... ( P ^ K ) )  |  ( x  gcd  ( P ^ K ) )  =  1 }  C_  ( 1 ... ( P ^ K ) ) )  ->  { x  e.  ( 1 ... ( P ^ K ) )  |  ( x  gcd  ( P ^ K ) )  =  1 }  e.  Fin )
5350, 51, 52mp2an 672 . . . . . . 7  |-  { x  e.  ( 1 ... ( P ^ K ) )  |  ( x  gcd  ( P ^ K ) )  =  1 }  e.  Fin
54 ssrab2 3567 . . . . . . . 8  |-  { x  e.  ( 1 ... ( P ^ K ) )  |  P  ||  (
x  -  0 ) }  C_  ( 1 ... ( P ^ K ) )
55 ssfi 7738 . . . . . . . 8  |-  ( ( ( 1 ... ( P ^ K ) )  e.  Fin  /\  {
x  e.  ( 1 ... ( P ^ K ) )  |  P  ||  ( x  -  0 ) } 
C_  ( 1 ... ( P ^ K
) ) )  ->  { x  e.  (
1 ... ( P ^ K ) )  |  P  ||  ( x  -  0 ) }  e.  Fin )
5650, 54, 55mp2an 672 . . . . . . 7  |-  { x  e.  ( 1 ... ( P ^ K ) )  |  P  ||  (
x  -  0 ) }  e.  Fin
57 hashun 12424 . . . . . . 7  |-  ( ( { x  e.  ( 1 ... ( P ^ K ) )  |  ( x  gcd  ( P ^ K ) )  =  1 }  e.  Fin  /\  {
x  e.  ( 1 ... ( P ^ K ) )  |  P  ||  ( x  -  0 ) }  e.  Fin  /\  ( { x  e.  (
1 ... ( P ^ K ) )  |  ( x  gcd  ( P ^ K ) )  =  1 }  i^i  { x  e.  ( 1 ... ( P ^ K ) )  |  P  ||  ( x  -  0 ) } )  =  (/) )  -> 
( # `  ( { x  e.  ( 1 ... ( P ^ K ) )  |  ( x  gcd  ( P ^ K ) )  =  1 }  u.  { x  e.  ( 1 ... ( P ^ K ) )  |  P  ||  ( x  -  0 ) } ) )  =  ( ( # `  {
x  e.  ( 1 ... ( P ^ K ) )  |  ( x  gcd  ( P ^ K ) )  =  1 } )  +  ( # `  {
x  e.  ( 1 ... ( P ^ K ) )  |  P  ||  ( x  -  0 ) } ) ) )
5853, 56, 57mp3an12 1313 . . . . . 6  |-  ( ( { x  e.  ( 1 ... ( P ^ K ) )  |  ( x  gcd  ( P ^ K ) )  =  1 }  i^i  { x  e.  ( 1 ... ( P ^ K ) )  |  P  ||  (
x  -  0 ) } )  =  (/)  ->  ( # `  ( { x  e.  (
1 ... ( P ^ K ) )  |  ( x  gcd  ( P ^ K ) )  =  1 }  u.  { x  e.  ( 1 ... ( P ^ K ) )  |  P  ||  ( x  -  0 ) } ) )  =  ( ( # `  {
x  e.  ( 1 ... ( P ^ K ) )  |  ( x  gcd  ( P ^ K ) )  =  1 } )  +  ( # `  {
x  e.  ( 1 ... ( P ^ K ) )  |  P  ||  ( x  -  0 ) } ) ) )
5949, 58syl 16 . . . . 5  |-  ( ( P  e.  Prime  /\  K  e.  NN )  ->  ( # `
 ( { x  e.  ( 1 ... ( P ^ K ) )  |  ( x  gcd  ( P ^ K ) )  =  1 }  u.  { x  e.  ( 1 ... ( P ^ K ) )  |  P  ||  (
x  -  0 ) } ) )  =  ( ( # `  {
x  e.  ( 1 ... ( P ^ K ) )  |  ( x  gcd  ( P ^ K ) )  =  1 } )  +  ( # `  {
x  e.  ( 1 ... ( P ^ K ) )  |  P  ||  ( x  -  0 ) } ) ) )
6042biimprd 223 . . . . . . . . . . . 12  |-  ( ( ( P  e.  Prime  /\  K  e.  NN )  /\  x  e.  ( 1 ... ( P ^ K ) ) )  ->  ( -.  P  ||  ( x  - 
0 )  ->  (
x  gcd  ( P ^ K ) )  =  1 ) )
6160con1d 124 . . . . . . . . . . 11  |-  ( ( ( P  e.  Prime  /\  K  e.  NN )  /\  x  e.  ( 1 ... ( P ^ K ) ) )  ->  ( -.  ( x  gcd  ( P ^ K ) )  =  1  ->  P  ||  ( x  -  0 ) ) )
6261orrd 378 . . . . . . . . . 10  |-  ( ( ( P  e.  Prime  /\  K  e.  NN )  /\  x  e.  ( 1 ... ( P ^ K ) ) )  ->  ( (
x  gcd  ( P ^ K ) )  =  1  \/  P  ||  ( x  -  0
) ) )
6362ralrimiva 2855 . . . . . . . . 9  |-  ( ( P  e.  Prime  /\  K  e.  NN )  ->  A. x  e.  ( 1 ... ( P ^ K ) ) ( ( x  gcd  ( P ^ K ) )  =  1  \/  P  ||  ( x  -  0 ) ) )
64 rabid2 3019 . . . . . . . . 9  |-  ( ( 1 ... ( P ^ K ) )  =  { x  e.  ( 1 ... ( P ^ K ) )  |  ( ( x  gcd  ( P ^ K ) )  =  1  \/  P  ||  ( x  -  0
) ) }  <->  A. x  e.  ( 1 ... ( P ^ K ) ) ( ( x  gcd  ( P ^ K ) )  =  1  \/  P  ||  ( x  -  0 ) ) )
6563, 64sylibr 212 . . . . . . . 8  |-  ( ( P  e.  Prime  /\  K  e.  NN )  ->  (
1 ... ( P ^ K ) )  =  { x  e.  ( 1 ... ( P ^ K ) )  |  ( ( x  gcd  ( P ^ K ) )  =  1  \/  P  ||  ( x  -  0
) ) } )
66 unrab 3751 . . . . . . . 8  |-  ( { x  e.  ( 1 ... ( P ^ K ) )  |  ( x  gcd  ( P ^ K ) )  =  1 }  u.  { x  e.  ( 1 ... ( P ^ K ) )  |  P  ||  ( x  -  0 ) } )  =  { x  e.  ( 1 ... ( P ^ K ) )  |  ( ( x  gcd  ( P ^ K ) )  =  1  \/  P  ||  ( x  -  0
) ) }
6765, 66syl6reqr 2501 . . . . . . 7  |-  ( ( P  e.  Prime  /\  K  e.  NN )  ->  ( { x  e.  (
1 ... ( P ^ K ) )  |  ( x  gcd  ( P ^ K ) )  =  1 }  u.  { x  e.  ( 1 ... ( P ^ K ) )  |  P  ||  ( x  -  0 ) } )  =  ( 1 ... ( P ^ K ) ) )
6867fveq2d 5856 . . . . . 6  |-  ( ( P  e.  Prime  /\  K  e.  NN )  ->  ( # `
 ( { x  e.  ( 1 ... ( P ^ K ) )  |  ( x  gcd  ( P ^ K ) )  =  1 }  u.  { x  e.  ( 1 ... ( P ^ K ) )  |  P  ||  (
x  -  0 ) } ) )  =  ( # `  (
1 ... ( P ^ K ) ) ) )
694nnnn0d 10853 . . . . . . 7  |-  ( ( P  e.  Prime  /\  K  e.  NN )  ->  ( P ^ K )  e. 
NN0 )
70 hashfz1 12393 . . . . . . 7  |-  ( ( P ^ K )  e.  NN0  ->  ( # `  ( 1 ... ( P ^ K ) ) )  =  ( P ^ K ) )
7169, 70syl 16 . . . . . 6  |-  ( ( P  e.  Prime  /\  K  e.  NN )  ->  ( # `
 ( 1 ... ( P ^ K
) ) )  =  ( P ^ K
) )
72 expm1t 12168 . . . . . . 7  |-  ( ( P  e.  CC  /\  K  e.  NN )  ->  ( P ^ K
)  =  ( ( P ^ ( K  -  1 ) )  x.  P ) )
7311, 72sylan 471 . . . . . 6  |-  ( ( P  e.  Prime  /\  K  e.  NN )  ->  ( P ^ K )  =  ( ( P ^
( K  -  1 ) )  x.  P
) )
7468, 71, 733eqtrd 2486 . . . . 5  |-  ( ( P  e.  Prime  /\  K  e.  NN )  ->  ( # `
 ( { x  e.  ( 1 ... ( P ^ K ) )  |  ( x  gcd  ( P ^ K ) )  =  1 }  u.  { x  e.  ( 1 ... ( P ^ K ) )  |  P  ||  (
x  -  0 ) } ) )  =  ( ( P ^
( K  -  1 ) )  x.  P
) )
751adantr 465 . . . . . . . . 9  |-  ( ( P  e.  Prime  /\  K  e.  NN )  ->  P  e.  NN )
76 1zzd 10896 . . . . . . . . 9  |-  ( ( P  e.  Prime  /\  K  e.  NN )  ->  1  e.  ZZ )
77 nn0uz 11119 . . . . . . . . . . 11  |-  NN0  =  ( ZZ>= `  0 )
78 1m1e0 10605 . . . . . . . . . . . 12  |-  ( 1  -  1 )  =  0
7978fveq2i 5855 . . . . . . . . . . 11  |-  ( ZZ>= `  ( 1  -  1 ) )  =  (
ZZ>= `  0 )
8077, 79eqtr4i 2473 . . . . . . . . . 10  |-  NN0  =  ( ZZ>= `  ( 1  -  1 ) )
8169, 80syl6eleq 2539 . . . . . . . . 9  |-  ( ( P  e.  Prime  /\  K  e.  NN )  ->  ( P ^ K )  e.  ( ZZ>= `  ( 1  -  1 ) ) )
82 0zd 10877 . . . . . . . . 9  |-  ( ( P  e.  Prime  /\  K  e.  NN )  ->  0  e.  ZZ )
8375, 76, 81, 82hashdvds 14177 . . . . . . . 8  |-  ( ( P  e.  Prime  /\  K  e.  NN )  ->  ( # `
 { x  e.  ( 1 ... ( P ^ K ) )  |  P  ||  (
x  -  0 ) } )  =  ( ( |_ `  (
( ( P ^ K )  -  0 )  /  P ) )  -  ( |_
`  ( ( ( 1  -  1 )  -  0 )  /  P ) ) ) )
844nncnd 10553 . . . . . . . . . . . . . 14  |-  ( ( P  e.  Prime  /\  K  e.  NN )  ->  ( P ^ K )  e.  CC )
8584subid1d 9920 . . . . . . . . . . . . 13  |-  ( ( P  e.  Prime  /\  K  e.  NN )  ->  (
( P ^ K
)  -  0 )  =  ( P ^ K ) )
8685oveq1d 6292 . . . . . . . . . . . 12  |-  ( ( P  e.  Prime  /\  K  e.  NN )  ->  (
( ( P ^ K )  -  0 )  /  P )  =  ( ( P ^ K )  /  P ) )
8775nnne0d 10581 . . . . . . . . . . . . 13  |-  ( ( P  e.  Prime  /\  K  e.  NN )  ->  P  =/=  0 )
88 nnz 10887 . . . . . . . . . . . . . 14  |-  ( K  e.  NN  ->  K  e.  ZZ )
8988adantl 466 . . . . . . . . . . . . 13  |-  ( ( P  e.  Prime  /\  K  e.  NN )  ->  K  e.  ZZ )
9012, 87, 89expm1d 12294 . . . . . . . . . . . 12  |-  ( ( P  e.  Prime  /\  K  e.  NN )  ->  ( P ^ ( K  - 
1 ) )  =  ( ( P ^ K )  /  P
) )
9186, 90eqtr4d 2485 . . . . . . . . . . 11  |-  ( ( P  e.  Prime  /\  K  e.  NN )  ->  (
( ( P ^ K )  -  0 )  /  P )  =  ( P ^
( K  -  1 ) ) )
9291fveq2d 5856 . . . . . . . . . 10  |-  ( ( P  e.  Prime  /\  K  e.  NN )  ->  ( |_ `  ( ( ( P ^ K )  -  0 )  /  P ) )  =  ( |_ `  ( P ^ ( K  - 
1 ) ) ) )
939nnzd 10968 . . . . . . . . . . 11  |-  ( ( P  e.  Prime  /\  K  e.  NN )  ->  ( P ^ ( K  - 
1 ) )  e.  ZZ )
94 flid 11919 . . . . . . . . . . 11  |-  ( ( P ^ ( K  -  1 ) )  e.  ZZ  ->  ( |_ `  ( P ^
( K  -  1 ) ) )  =  ( P ^ ( K  -  1 ) ) )
9593, 94syl 16 . . . . . . . . . 10  |-  ( ( P  e.  Prime  /\  K  e.  NN )  ->  ( |_ `  ( P ^
( K  -  1 ) ) )  =  ( P ^ ( K  -  1 ) ) )
9692, 95eqtrd 2482 . . . . . . . . 9  |-  ( ( P  e.  Prime  /\  K  e.  NN )  ->  ( |_ `  ( ( ( P ^ K )  -  0 )  /  P ) )  =  ( P ^ ( K  -  1 ) ) )
9778oveq1i 6287 . . . . . . . . . . . . . 14  |-  ( ( 1  -  1 )  -  0 )  =  ( 0  -  0 )
98 0m0e0 10646 . . . . . . . . . . . . . 14  |-  ( 0  -  0 )  =  0
9997, 98eqtri 2470 . . . . . . . . . . . . 13  |-  ( ( 1  -  1 )  -  0 )  =  0
10099oveq1i 6287 . . . . . . . . . . . 12  |-  ( ( ( 1  -  1 )  -  0 )  /  P )  =  ( 0  /  P
)
10112, 87div0d 10320 . . . . . . . . . . . 12  |-  ( ( P  e.  Prime  /\  K  e.  NN )  ->  (
0  /  P )  =  0 )
102100, 101syl5eq 2494 . . . . . . . . . . 11  |-  ( ( P  e.  Prime  /\  K  e.  NN )  ->  (
( ( 1  -  1 )  -  0 )  /  P )  =  0 )
103102fveq2d 5856 . . . . . . . . . 10  |-  ( ( P  e.  Prime  /\  K  e.  NN )  ->  ( |_ `  ( ( ( 1  -  1 )  -  0 )  /  P ) )  =  ( |_ `  0
) )
104 0z 10876 . . . . . . . . . . 11  |-  0  e.  ZZ
105 flid 11919 . . . . . . . . . . 11  |-  ( 0  e.  ZZ  ->  ( |_ `  0 )  =  0 )
106104, 105ax-mp 5 . . . . . . . . . 10  |-  ( |_
`  0 )  =  0
107103, 106syl6eq 2498 . . . . . . . . 9  |-  ( ( P  e.  Prime  /\  K  e.  NN )  ->  ( |_ `  ( ( ( 1  -  1 )  -  0 )  /  P ) )  =  0 )
10896, 107oveq12d 6295 . . . . . . . 8  |-  ( ( P  e.  Prime  /\  K  e.  NN )  ->  (
( |_ `  (
( ( P ^ K )  -  0 )  /  P ) )  -  ( |_
`  ( ( ( 1  -  1 )  -  0 )  /  P ) ) )  =  ( ( P ^ ( K  - 
1 ) )  - 
0 ) )
10910subid1d 9920 . . . . . . . 8  |-  ( ( P  e.  Prime  /\  K  e.  NN )  ->  (
( P ^ ( K  -  1 ) )  -  0 )  =  ( P ^
( K  -  1 ) ) )
11083, 108, 1093eqtrd 2486 . . . . . . 7  |-  ( ( P  e.  Prime  /\  K  e.  NN )  ->  ( # `
 { x  e.  ( 1 ... ( P ^ K ) )  |  P  ||  (
x  -  0 ) } )  =  ( P ^ ( K  -  1 ) ) )
111110oveq2d 6293 . . . . . 6  |-  ( ( P  e.  Prime  /\  K  e.  NN )  ->  (
( # `  { x  e.  ( 1 ... ( P ^ K ) )  |  ( x  gcd  ( P ^ K ) )  =  1 } )  +  ( # `  { x  e.  ( 1 ... ( P ^ K ) )  |  P  ||  (
x  -  0 ) } ) )  =  ( ( # `  {
x  e.  ( 1 ... ( P ^ K ) )  |  ( x  gcd  ( P ^ K ) )  =  1 } )  +  ( P ^
( K  -  1 ) ) ) )
112 hashcl 12402 . . . . . . . . 9  |-  ( { x  e.  ( 1 ... ( P ^ K ) )  |  ( x  gcd  ( P ^ K ) )  =  1 }  e.  Fin  ->  ( # `  {
x  e.  ( 1 ... ( P ^ K ) )  |  ( x  gcd  ( P ^ K ) )  =  1 } )  e.  NN0 )
11353, 112ax-mp 5 . . . . . . . 8  |-  ( # `  { x  e.  ( 1 ... ( P ^ K ) )  |  ( x  gcd  ( P ^ K ) )  =  1 } )  e.  NN0
114113nn0cni 10808 . . . . . . 7  |-  ( # `  { x  e.  ( 1 ... ( P ^ K ) )  |  ( x  gcd  ( P ^ K ) )  =  1 } )  e.  CC
115 addcom 9764 . . . . . . 7  |-  ( ( ( # `  {
x  e.  ( 1 ... ( P ^ K ) )  |  ( x  gcd  ( P ^ K ) )  =  1 } )  e.  CC  /\  ( P ^ ( K  - 
1 ) )  e.  CC )  ->  (
( # `  { x  e.  ( 1 ... ( P ^ K ) )  |  ( x  gcd  ( P ^ K ) )  =  1 } )  +  ( P ^ ( K  - 
1 ) ) )  =  ( ( P ^ ( K  - 
1 ) )  +  ( # `  {
x  e.  ( 1 ... ( P ^ K ) )  |  ( x  gcd  ( P ^ K ) )  =  1 } ) ) )
116114, 10, 115sylancr 663 . . . . . 6  |-  ( ( P  e.  Prime  /\  K  e.  NN )  ->  (
( # `  { x  e.  ( 1 ... ( P ^ K ) )  |  ( x  gcd  ( P ^ K ) )  =  1 } )  +  ( P ^ ( K  - 
1 ) ) )  =  ( ( P ^ ( K  - 
1 ) )  +  ( # `  {
x  e.  ( 1 ... ( P ^ K ) )  |  ( x  gcd  ( P ^ K ) )  =  1 } ) ) )
117111, 116eqtrd 2482 . . . . 5  |-  ( ( P  e.  Prime  /\  K  e.  NN )  ->  (
( # `  { x  e.  ( 1 ... ( P ^ K ) )  |  ( x  gcd  ( P ^ K ) )  =  1 } )  +  ( # `  { x  e.  ( 1 ... ( P ^ K ) )  |  P  ||  (
x  -  0 ) } ) )  =  ( ( P ^
( K  -  1 ) )  +  (
# `  { x  e.  ( 1 ... ( P ^ K ) )  |  ( x  gcd  ( P ^ K ) )  =  1 } ) ) )
11859, 74, 1173eqtr3rd 2491 . . . 4  |-  ( ( P  e.  Prime  /\  K  e.  NN )  ->  (
( P ^ ( K  -  1 ) )  +  ( # `  { x  e.  ( 1 ... ( P ^ K ) )  |  ( x  gcd  ( P ^ K ) )  =  1 } ) )  =  ( ( P ^ ( K  -  1 ) )  x.  P ) )
11910, 12mulcld 9614 . . . . 5  |-  ( ( P  e.  Prime  /\  K  e.  NN )  ->  (
( P ^ ( K  -  1 ) )  x.  P )  e.  CC )
120114a1i 11 . . . . 5  |-  ( ( P  e.  Prime  /\  K  e.  NN )  ->  ( # `
 { x  e.  ( 1 ... ( P ^ K ) )  |  ( x  gcd  ( P ^ K ) )  =  1 } )  e.  CC )
121119, 10, 120subaddd 9949 . . . 4  |-  ( ( P  e.  Prime  /\  K  e.  NN )  ->  (
( ( ( P ^ ( K  - 
1 ) )  x.  P )  -  ( P ^ ( K  - 
1 ) ) )  =  ( # `  {
x  e.  ( 1 ... ( P ^ K ) )  |  ( x  gcd  ( P ^ K ) )  =  1 } )  <-> 
( ( P ^
( K  -  1 ) )  +  (
# `  { x  e.  ( 1 ... ( P ^ K ) )  |  ( x  gcd  ( P ^ K ) )  =  1 } ) )  =  ( ( P ^ ( K  -  1 ) )  x.  P ) ) )
122118, 121mpbird 232 . . 3  |-  ( ( P  e.  Prime  /\  K  e.  NN )  ->  (
( ( P ^
( K  -  1 ) )  x.  P
)  -  ( P ^ ( K  - 
1 ) ) )  =  ( # `  {
x  e.  ( 1 ... ( P ^ K ) )  |  ( x  gcd  ( P ^ K ) )  =  1 } ) )
12316, 18, 1223eqtrrd 2487 . 2  |-  ( ( P  e.  Prime  /\  K  e.  NN )  ->  ( # `
 { x  e.  ( 1 ... ( P ^ K ) )  |  ( x  gcd  ( P ^ K ) )  =  1 } )  =  ( ( P ^ ( K  -  1 ) )  x.  ( P  - 
1 ) ) )
1246, 123eqtrd 2482 1  |-  ( ( P  e.  Prime  /\  K  e.  NN )  ->  ( phi `  ( P ^ K ) )  =  ( ( P ^
( K  -  1 ) )  x.  ( P  -  1 ) ) )
Colors of variables: wff setvar class
Syntax hints:   -. wn 3    -> wi 4    <-> wb 184    \/ wo 368    /\ wa 369    = wceq 1381    e. wcel 1802   A.wral 2791   {crab 2795    u. cun 3456    i^i cin 3457    C_ wss 3458   (/)c0 3767   class class class wbr 4433   ` cfv 5574  (class class class)co 6277   Fincfn 7514   CCcc 9488   0cc0 9490   1c1 9491    + caddc 9493    x. cmul 9495    - cmin 9805    / cdiv 10207   NNcn 10537   NN0cn0 10796   ZZcz 10865   ZZ>=cuz 11085   ...cfz 11676   |_cfl 11901   ^cexp 12140   #chash 12379    || cdvds 13858    gcd cgcd 14016   Primecprime 14089   phicphi 14166
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1603  ax-4 1616  ax-5 1689  ax-6 1732  ax-7 1774  ax-8 1804  ax-9 1806  ax-10 1821  ax-11 1826  ax-12 1838  ax-13 1983  ax-ext 2419  ax-rep 4544  ax-sep 4554  ax-nul 4562  ax-pow 4611  ax-pr 4672  ax-un 6573  ax-cnex 9546  ax-resscn 9547  ax-1cn 9548  ax-icn 9549  ax-addcl 9550  ax-addrcl 9551  ax-mulcl 9552  ax-mulrcl 9553  ax-mulcom 9554  ax-addass 9555  ax-mulass 9556  ax-distr 9557  ax-i2m1 9558  ax-1ne0 9559  ax-1rid 9560  ax-rnegex 9561  ax-rrecex 9562  ax-cnre 9563  ax-pre-lttri 9564  ax-pre-lttrn 9565  ax-pre-ltadd 9566  ax-pre-mulgt0 9567  ax-pre-sup 9568
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3or 973  df-3an 974  df-tru 1384  df-ex 1598  df-nf 1602  df-sb 1725  df-eu 2270  df-mo 2271  df-clab 2427  df-cleq 2433  df-clel 2436  df-nfc 2591  df-ne 2638  df-nel 2639  df-ral 2796  df-rex 2797  df-reu 2798  df-rmo 2799  df-rab 2800  df-v 3095  df-sbc 3312  df-csb 3418  df-dif 3461  df-un 3463  df-in 3465  df-ss 3472  df-pss 3474  df-nul 3768  df-if 3923  df-pw 3995  df-sn 4011  df-pr 4013  df-tp 4015  df-op 4017  df-uni 4231  df-int 4268  df-iun 4313  df-br 4434  df-opab 4492  df-mpt 4493  df-tr 4527  df-eprel 4777  df-id 4781  df-po 4786  df-so 4787  df-fr 4824  df-we 4826  df-ord 4867  df-on 4868  df-lim 4869  df-suc 4870  df-xp 4991  df-rel 4992  df-cnv 4993  df-co 4994  df-dm 4995  df-rn 4996  df-res 4997  df-ima 4998  df-iota 5537  df-fun 5576  df-fn 5577  df-f 5578  df-f1 5579  df-fo 5580  df-f1o 5581  df-fv 5582  df-riota 6238  df-ov 6280  df-oprab 6281  df-mpt2 6282  df-om 6682  df-1st 6781  df-2nd 6782  df-recs 7040  df-rdg 7074  df-1o 7128  df-2o 7129  df-oadd 7132  df-er 7309  df-en 7515  df-dom 7516  df-sdom 7517  df-fin 7518  df-sup 7899  df-card 8318  df-cda 8546  df-pnf 9628  df-mnf 9629  df-xr 9630  df-ltxr 9631  df-le 9632  df-sub 9807  df-neg 9808  df-div 10208  df-nn 10538  df-2 10595  df-3 10596  df-n0 10797  df-z 10866  df-uz 11086  df-rp 11225  df-fz 11677  df-fl 11903  df-mod 11971  df-seq 12082  df-exp 12141  df-hash 12380  df-cj 12906  df-re 12907  df-im 12908  df-sqrt 13042  df-abs 13043  df-dvds 13859  df-gcd 14017  df-prm 14090  df-phi 14168
This theorem is referenced by:  phiprm  14179
  Copyright terms: Public domain W3C validator