MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  phiprm Structured version   Unicode version

Theorem phiprm 13857
Description: Value of the Euler  phi function at a prime. (Contributed by Mario Carneiro, 28-Feb-2014.)
Assertion
Ref Expression
phiprm  |-  ( P  e.  Prime  ->  ( phi `  P )  =  ( P  -  1 ) )

Proof of Theorem phiprm
StepHypRef Expression
1 1nn 10338 . . 3  |-  1  e.  NN
2 phiprmpw 13856 . . 3  |-  ( ( P  e.  Prime  /\  1  e.  NN )  ->  ( phi `  ( P ^
1 ) )  =  ( ( P ^
( 1  -  1 ) )  x.  ( P  -  1 ) ) )
31, 2mpan2 671 . 2  |-  ( P  e.  Prime  ->  ( phi `  ( P ^ 1 ) )  =  ( ( P ^ (
1  -  1 ) )  x.  ( P  -  1 ) ) )
4 prmz 13772 . . . . 5  |-  ( P  e.  Prime  ->  P  e.  ZZ )
54zcnd 10753 . . . 4  |-  ( P  e.  Prime  ->  P  e.  CC )
65exp1d 12008 . . 3  |-  ( P  e.  Prime  ->  ( P ^ 1 )  =  P )
76fveq2d 5700 . 2  |-  ( P  e.  Prime  ->  ( phi `  ( P ^ 1 ) )  =  ( phi `  P ) )
8 1m1e0 10395 . . . . . 6  |-  ( 1  -  1 )  =  0
98oveq2i 6107 . . . . 5  |-  ( P ^ ( 1  -  1 ) )  =  ( P ^ 0 )
105exp0d 12007 . . . . 5  |-  ( P  e.  Prime  ->  ( P ^ 0 )  =  1 )
119, 10syl5eq 2487 . . . 4  |-  ( P  e.  Prime  ->  ( P ^ ( 1  -  1 ) )  =  1 )
1211oveq1d 6111 . . 3  |-  ( P  e.  Prime  ->  ( ( P ^ ( 1  -  1 ) )  x.  ( P  - 
1 ) )  =  ( 1  x.  ( P  -  1 ) ) )
13 ax-1cn 9345 . . . . 5  |-  1  e.  CC
14 subcl 9614 . . . . 5  |-  ( ( P  e.  CC  /\  1  e.  CC )  ->  ( P  -  1 )  e.  CC )
155, 13, 14sylancl 662 . . . 4  |-  ( P  e.  Prime  ->  ( P  -  1 )  e.  CC )
1615mulid2d 9409 . . 3  |-  ( P  e.  Prime  ->  ( 1  x.  ( P  - 
1 ) )  =  ( P  -  1 ) )
1712, 16eqtrd 2475 . 2  |-  ( P  e.  Prime  ->  ( ( P ^ ( 1  -  1 ) )  x.  ( P  - 
1 ) )  =  ( P  -  1 ) )
183, 7, 173eqtr3d 2483 1  |-  ( P  e.  Prime  ->  ( phi `  P )  =  ( P  -  1 ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    = wceq 1369    e. wcel 1756   ` cfv 5423  (class class class)co 6096   CCcc 9285   0cc0 9287   1c1 9288    x. cmul 9292    - cmin 9600   NNcn 10327   ^cexp 11870   Primecprime 13768   phicphi 13844
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1591  ax-4 1602  ax-5 1670  ax-6 1708  ax-7 1728  ax-8 1758  ax-9 1760  ax-10 1775  ax-11 1780  ax-12 1792  ax-13 1943  ax-ext 2423  ax-rep 4408  ax-sep 4418  ax-nul 4426  ax-pow 4475  ax-pr 4536  ax-un 6377  ax-cnex 9343  ax-resscn 9344  ax-1cn 9345  ax-icn 9346  ax-addcl 9347  ax-addrcl 9348  ax-mulcl 9349  ax-mulrcl 9350  ax-mulcom 9351  ax-addass 9352  ax-mulass 9353  ax-distr 9354  ax-i2m1 9355  ax-1ne0 9356  ax-1rid 9357  ax-rnegex 9358  ax-rrecex 9359  ax-cnre 9360  ax-pre-lttri 9361  ax-pre-lttrn 9362  ax-pre-ltadd 9363  ax-pre-mulgt0 9364  ax-pre-sup 9365
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3or 966  df-3an 967  df-tru 1372  df-ex 1587  df-nf 1590  df-sb 1701  df-eu 2257  df-mo 2258  df-clab 2430  df-cleq 2436  df-clel 2439  df-nfc 2573  df-ne 2613  df-nel 2614  df-ral 2725  df-rex 2726  df-reu 2727  df-rmo 2728  df-rab 2729  df-v 2979  df-sbc 3192  df-csb 3294  df-dif 3336  df-un 3338  df-in 3340  df-ss 3347  df-pss 3349  df-nul 3643  df-if 3797  df-pw 3867  df-sn 3883  df-pr 3885  df-tp 3887  df-op 3889  df-uni 4097  df-int 4134  df-iun 4178  df-br 4298  df-opab 4356  df-mpt 4357  df-tr 4391  df-eprel 4637  df-id 4641  df-po 4646  df-so 4647  df-fr 4684  df-we 4686  df-ord 4727  df-on 4728  df-lim 4729  df-suc 4730  df-xp 4851  df-rel 4852  df-cnv 4853  df-co 4854  df-dm 4855  df-rn 4856  df-res 4857  df-ima 4858  df-iota 5386  df-fun 5425  df-fn 5426  df-f 5427  df-f1 5428  df-fo 5429  df-f1o 5430  df-fv 5431  df-riota 6057  df-ov 6099  df-oprab 6100  df-mpt2 6101  df-om 6482  df-1st 6582  df-2nd 6583  df-recs 6837  df-rdg 6871  df-1o 6925  df-2o 6926  df-oadd 6929  df-er 7106  df-en 7316  df-dom 7317  df-sdom 7318  df-fin 7319  df-sup 7696  df-card 8114  df-cda 8342  df-pnf 9425  df-mnf 9426  df-xr 9427  df-ltxr 9428  df-le 9429  df-sub 9602  df-neg 9603  df-div 9999  df-nn 10328  df-2 10385  df-3 10386  df-n0 10585  df-z 10652  df-uz 10867  df-rp 10997  df-fz 11443  df-fl 11647  df-mod 11714  df-seq 11812  df-exp 11871  df-hash 12109  df-cj 12593  df-re 12594  df-im 12595  df-sqr 12729  df-abs 12730  df-dvds 13541  df-gcd 13696  df-prm 13769  df-phi 13846
This theorem is referenced by:  fermltl  13864  prmdiv  13865  pockthlem  13971  lgslem1  22640  lgsqrlem2  22686
  Copyright terms: Public domain W3C validator